Mapping the Heart

Stephen W. Carmichael
Mayo Clinic, Rochester, MN 55905
carmichael.stephen@mayo.edu

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the \(\beta_1 \)- and \(\beta_2 \)-adrenergic receptors (\(\beta \)ARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time [1]. (See Figure 1.)

The key was to combine a fluorescence resonance energy transfer (FRET)-based cAMP sensor with scanning ion conductance microscopy (SICM). The FRET sensor gave functional data that was correlated spatially with SICM. SICM is a specialized version of scanning probe microscopy in which a nano-pipette is used to visualize the three-dimensional surface topography of living cells. The resolution is equal to the inner diameter of the pipette (in the range of 50 to 100 nm). Nikolaev et al. imaged structural features of cardiomyocytes such as Z-grooves, cell crests located between the grooves, and the opening of transverse (T)-tubules on the surface; they correlated...
SPI Supplies.
The complete source for all your microscopy needs...
just a click away. 2spi.com

Visit SPI Supplies to view the complete on-line catalog with up-to-the-minute product and pricing information.

SPI Supplies Division of STRUCTURE PROBE, Inc.
P.O. Box 656 • West Chester, PA 19381-0656 USA
Phone: 1-610-436-5400 • 1-800-2424-SPI (USA and Canada) • Fax: 1-610-436-5755 • E-mail: sales@2spi.com
Carmichael’s Concise Review

Next, Nikolaev et al. studied whether βAR localization was altered in a rat model of chronic heart failure induced by myocardial infarction. Extensive experiments suggested that the redistribution of the β2AR-cAMP from the T-tubules to the cell crest in failing cardiomyocytes results in uncoupling of the β2ARs from the normal compartmentation of β2AR-cAMP signaling. Thus, in failing cells, activation of the β2ARs leads to cell-wide cAMP signal propagation patterns similar to the patterns observed for the β1ARs. Thereby the normally cardioprotective properties of the β2AR response may acquire characteristics of the β1AR response, contributing to the heart failure phenotype.

Nikolaev et al. have combined two techniques to functionally localize β1- and β2ARs on cardiomyocytes and reveal mechanisms leading to abnormal cAMP compartmentation in heart failure. These findings provide a deeper understanding of this common cardiac disease and facilitate the development of new therapeutic strategies. Furthermore, they have demonstrated the usefulness of combining techniques that provide both functional and spatial information that can have significant biological and clinical implications [2].

References

[2] The author gratefully acknowledges Dr. Julia Gorelik for reviewing this article.

FIVE GENERATIONS OF PERFORMANCE...REFINED

The new Desk V HP sputtering tool.

With an enhanced sputter head, larger mechanical pump, a more powerful PLC and a larger power supply, the all new Desk V HP is generations ahead of the competition.

Features:
- Short deposition times
- Consistent deposition parameters
- Enhanced touchscreen controls
- Film thickness control
- Etch mode for sample cleaning
- Wide variety of coating materials
- Compact benchtop design
- 85 LPM Mechanical Pump

Call us today at 800-666-6004
or visit us online at www.dentonvacuum.com
QUEMESA – For absolute performance

Take the next step in TEM camera technology: Quemesa, the new 11 Megapixel on-axis TEM camera by Olympus Soft Imaging Solutions is an all-purpose solution for life science and materials science TEM applications. With its sensitivity improved 4x, frame rates 4x higher, and its speed 4x higher than competitor cameras, Quemesa guarantees exceptional results from the very beginning. This next generation of TEM camera technology combines superior technical implementation with outstanding user friendliness and flexibility.

- Visual field the size of a photo plate
- High frame rates for real live-image work on your monitor
- Unsurpassed sensitivity to resolve smallest details
- Best possible contrast by collecting maximum number of photons
- Easy-to-use control even for less experienced users.

For more information visit us at soft-imaging.net or contact us directly: info.osis@olympus-sis.com

"One of my customers was looking for a new on-axis TEM camera, and did detailed investigation of on-axis cameras based on price-performance. Quemesa came off as the odds-on winner. And we made the deal."

Kim Törnvist, CHEOS, Espoo, Finland

Visit us at the
M&M 2010
Booth #415