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Abstract

The unsteady Hele-Shaw problem is a model nonlinear system that, for a certain
parameter range, exhibits the phenomenon known as viscous fingering. While not
directly applicable to multiphase porous-media flow, it does prove to be an ade-
quate mathematical model for unstable displacement in laboratory parallel-plate
devices. We seek here to determine, by use of an accurate boundary-integral
front-tracking scheme, the extent to which the simplified system captures the
canonical nonlinear behavior of displacement flows and, in particular, to ascer-
tain the role of noise in such systems. We choose to study a particular pattern of
injection and production "wells." The pattern chosen is the isolated "five-spot,"
that is a single source surrounded by four symmetrically-placed sinks in an infi-
nite two-dimensional "reservoir." In cases where the "pusher" fluid has negligible
viscosity, sweep efficiency is calculated for a range of values of the single dimen-
sionless parameter T, an inverse capillary number. As this parameter is reduced,
corresponding to increased flow rate or reduced interfacial tension, this efficiency
decreases continuously. For small values of r, these stable displacements change
abruptly to a regime characterized by unstable competing fingers and a significant
reduction in sweep efficiency. A simple stability argument appears to correctly
predict the noise level required to transit from the stable to the competing-finger
regimes. Published compilations of experimental results for sweep efficiency as
a function of viscosity ratio showed an unexplained divergence when the pusher
fluid is less viscous. Our simulations produce a similar divergence when, for a
given viscosity ratio, the parameter T is varied.
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1. Introduction

A Hele-Shaw cell is a simple laboratory device consisting of two plates of glass
separated by a small constant distance. A displacement process where, for ex-
ample, a more viscous fluid is pushed out by a less viscous one may thus be
visualized. Some time ago it was shown [1], [19] that this process is inherently
unstable and, provided the cell is of sufficient size, an initially straight interface
between the fluids will develop undulations. When these undulations grow to
large amplitude, the less viscous fluid may be observed to form "fingers" into the
more viscous one; this is the celebrated viscous fingering instability. A variant
of the Hele-Shaw cell is the sand-pack or bead-pack where the space between the
plates is filled with a packing of small particles. Viscous fingering has also been
observed in these devices when the "pusher" fluid is less viscous [4]. Unstable
displacements can be divided into two classes: they are called immiscible when
the fluid interface is sharp and possesses a finite value of interfacial tension; else
they are termed miscible.

Hele-Shaw cells have found application in the oil industry [4] because they
are (grossly) simplified models that illustrate the flow behavior when viscous oil
is pushed out by a less viscous fluid such as water. In this context, a canonical
problem may be formulated. We specify one or several points where water is
injected into the cell and some points where oil is "produced." Assuming that
the two phases are immiscible and that water completely replaces oil as the front
passes a given point, that is the "displacement efficiency" is unity, we wish to
determine or optimize the total amount of oil produced before the water "breaks
through" to a production well. Once a continuous water path is formed from an
injector to a producer, subsequent production will consist largely of water, since
the total resistance to flow along this path is very low for large values of the
ratio of oil to water viscosities. For unit displacement efficiency, the quantity
of oil produced is simply the portion of the cell contacted by the water prior
to break-through. Assuming the cell or "reservoir" to be two-dimensional, this
fraction is termed the areal sweep efficiency.

Mathematically, the problem to be solved is nonlinear with a moving interface
whose time history needs to be determined as part of the solution. Under a set
of a priori reasonable assumptions, [6], [22] we have a velocity field given as the
solution of the two-dimensional Laplace equation within each phase, that is

v = -(fc//x)Vp, (la)

V - V = - ( * / M ) V 2
P = 0, (lb)

where p is pressure, fi the constant fluid viscosity and k is the constant per-
meability which, for a Hele-Shaw cell, is equal to 62/12 where b is the spacing
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between the plates. The pressure jump across the interface is taken as OK where
o is the interfacial tension and /c is the curvature of the interface when the cell
is viewed from above. Viscous contributions to the pressure jump are neglected,
as is the variation in the curvature component between the plates. We shall
treat a number of cases where the driver fluid has negligible viscosity; under this
assumption, the pressure within the driver may be taken equal to zero without
loss of generality.

A number of laboratory studies of viscous fingering have been performed in
the past thirty years. While many of these employ a linear channel, several
investigators have used geometries related to that studied here. In miscible
displacements at large Peclet number, destabilising convective effects dominate
and rather sharp phase fronts are observed experimentally. Notable among these
miscible experiments are the works of Habermann [7], who performed sand-pack
floods, and Lee & Claridge [11], who used a Hele-Shaw apparatus. In both cases,
the well geometry was one-quarter of a developed five-spot pattern. This geom-
etry has many features in common with the isolated five-spot studied here. An
immiscible Hele-Shaw experiment was recently reported by Paterson [17], who
used a radial flow geometry with injection of the displacing fluid at the center of
the apparatus. In all these experiments, fingering is observed that is caused by
some type of noise in the experimental set-up. In the Paterson experiment, the
fingering arises via a linear instability mechanism and is stimulated, in princi-
ple, by infinitesimal disturbances. In the five-spot geometry, on the other hand,
a critical disturbance level, depending on flooding speed, needs to be exceeded
before fingering instabilities become important. This nonlinear effect will be
demonstrated numerically below. In this regard, the five-spot or, for that mat-
ter, any pattern with discrete production wells in the finite plane, is similar to
the linear channel case for which we have established [5], [6] that the relevant
instability mechanism is nonlinear. Unlike the case of a long rectilinear channel
where the repeated finger-tip splitting does not appear to greatly affect the av-
erage value of finger width, here the nonlinear instability may produce a large
reduction in the areal sweep efficiency.

Section 2 is devoted to problem formulation. The induced velocity, at any
instant of time, is found from the shape of the flood front as the solution of
a singular integral equation. In Section 3 we treat the numerical implementa-
tion of the front-tracking method as specialized to the five-spot pattern. When
the pusher fluid viscosity is equal to zero, breakthrough sweep efficiencies are
calculated for a range of values of capillary number. At relatively low speeds,
numerical results yield breakthrough profiles with only a single "finger" in each
five-spot quadrant. These "stable" solutions correspond to relatively large val-
ues of sweep efficiency. At high speeds, or at lower speeds where random noise
is introduced into the calculation, as discussed in Section 4, finger break-up is
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observed. By comparing the magnitude of the asymmetry caused by the remote
production wells with the initial rate of growth of unstable disturbance modes,
a critical noise amplitude may be estimated analytically. For a particular value
of capillary number, we have introduced white noise into our numerical solution
and have monitored its effect on fingering patterns and areal sweep efficiency.
Even though our analytical estimate uses only information known at the start
of a flood, it seems to correctly predict the noise level required for measurabie
changes in sweep efficiency. By a simple argument we associate noise level with
permeability variation. We find that the critical value of heterogeneity for tran-
sition to floods that are dominated by the unstable modes is surprisingly low.

In Section 5, results are extended to finite-viscosity-ratio cases. Sweep effi-
ciencies are higher, as expected. Both stable and unstable displacements are
considered, as well as the dependence of sweep efficiency on flooding speed. For
cases where the displacement front is not destabilised by noise, greater efficiency
arises simply from the increased flow resistance in the driving phase. When the
driver is less viscous and noise is introduced, the sensitivity of the front to noise
is reduced, and significantly larger disturbance levels can be tolerated before the
front breaks up into a multiply-fingered pattern.

In the final section we summarize our findings and relate our conclusions to
the results of others. We also briefly discuss the connection with the general
question of pattern formation in nonlinear systems.

2. Problem formulation

Recently we have developed a boundary integral technique to treat these Hele-
Shaw problems. The basic method is described in more detail elsewhere [5], [6];
here we will focus primarily on the implementation of the method to a particular
pattern of injection and production wells. Specifically we treat the isolated in-
verted five-spot pattern, a single injection well surrounded by four symmetrically-
placed production wells in a two-dimensionally infinite cell or reservoir.

The Hele-Shaw equations with finite viscosity ratio can be written as

V 2 p , = 0 , (! ,»)€ A , « = 1,2, (2)

where D\ is the domain occupied by the displaced fluid and D? corresponds to
the displacing phase. The velocity potentials are related to the pressures Pi by

(3)

The permeability k for a Hele-Shaw cell is &2/12, where b is the plate spacing.
At the interface dD, the continuity equations are

Pi - P2 = OK (4a)
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and
d(t>1/dn = d<f>2/dn. (4b)

Here K, is the curvature of the interface in the plane of the cell and a is the
interfacial tension. The kinematic condition determining the interface motion is

{xt,yt) n = d<t>/dn. (4c)

For the five-spot pattern, the problem is nondimensionalized by using the inter-
well distance L as reference length and Q, the areal flux in one-quarter of the
pattern, as reference potential. The viscosity ratio

m = \iil\x\ (5)

is less than one for unstable floods. The mobility ratio M, as usually defined, is
the reciprocal of m. The geometry is shown in Figure 1.

Figure 1. One-quarter of an isolated five-spot pattern. The general

direction of flow is from lower left to upper right.

The remainder of the derivation, at this point, will pertain to the case m = 0.
Specific extensions for finite viscosity ratios will be given in Section 5. Thus here
p = p\, fi = fi% and p2 = H2 = 0 without loss of generality. Measured in units of
12Qfi/b2, the dimensionless pressure satisfies

p = TK, z € 3D,

subject to the kinematic boundary condition, in complex notation,

dz/dt = df/dz, z e dD.

(6)

(7)
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Except for initial conditions, the time history of the motion is seen to depend
only on the single dimensionless parameter

r = ob2/\2nQL, (8)

where Q is the constant areal flux or production rate at each of the sinks. Over-
all continuity requires that the injection rate at the source be equal to 4 in
dimensionless units. In equation (7), / is the complex potential p -f %w and the
bar signifies complex conjugation. Note that only the surface-normal component
of (7) need be satisfied. Four-fold reflectional symmetry of the flow is assumed.
This is motivated both by a desire to contain the size of the computational prob-
lem and also to allow comparison with experiment where investigators typically
model only one quadrant of the five-spot pattern. It should be emphasized that
we do not address here actual problems of oil production. Rather our goal is to
investigate the mathematical behaviour of this simplified model and determine
to what extent complex fingering patterns, such as those seen in experiments,
can be produced.

With the assumed symmetry, we find it convenient to map the fluid domain
into a compact region of the f-plane using <; = 1/z2 where the flow pattern is
symmetric about the £(= Re f) axis. Having determined the boundary pressures
in the 2-plane using equation (6), we solve for the boundary source distribution
q(s) in the f-plane by

-H|, ?€£>?; (9a)

where vertical bars denote the modulus of a complex number. Having determined
q, the induced velocity at a point f, approaching dD? from within, is given by

• d s l 7T~ e~*P- (9b)

Here /? is the inclination of a segment of dD$ (the image of 3D) measured
counterclockwise from the positive £ axis and the integral is of Cauchy-principal-
value type. Finally the boundary velocities are transformed back to the physical
plane using

d± = d±* (10)
dz dqdz K '

3. Numerical implementation and results for inviscid driver

The numerical treatment of equations (9) and (10) is described in some detail
in reference [6]. Briefly, the surface is represented by 2N + 1 points or nodes
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in the f-plane and q is taken to be piecewise constant. Because of the assumed
symmetry in the 2-plane, however, the discrete version of equation (9a) is only
of dimension N. Having, in effect, reduced the problem to a system of first-order
nonlinear ordinary differential equations, the time evolution of the interface is
calculated implicitly using the LSODE [8] package with sufficiently small values
of error tolerance.

The power of the boundary-integral method for problems of this type can be
fully exploited by redistribution of the boundary nodes so as to cluster points in
regions of large potential gradients. At each time step the points are redistributed
along a cubic-spline representation of the boundary using the algorithm

As = Min(yiie, B(r/vy/7,C) (11)

where As is the distance between adjacent points in the 2-plane and v is the
magnitude of the velocity. Parameters A and C are selected so as to provide
reasonable definition of the interface. More critical is the choice of B which is
dictated by local stability considerations. Too large a value of B will, in effect,
introduce an artificial surface tension that prevents finger splitting. Too small a
value not only increases the dimension of the linear system to be solved but may,
in addition, cause the unsteady problem to become 'stiff,' that is, having widely
disparate eigenvalues; when the problem is stiff, computer run times increase
dramatically. For most of the cases discussed here, we used 0.5, 0.75, and 0.05
for A, B, and C respectively.

Two different five-spot patterns are discussed in the literature. Our isolated
five-spot may be contrasted with the developed five-spot pattern which is an
infinite double-periodic array of sources and sinks where each singularity is sur-
rounded by four symmetrically placed singularities of the other kind. For the
developed pattern, the sides of each square thus formed must be streamlines.
This is not the case for the isolated pattern. Both patterns are idealizations
of actual well configurations and the isolated case has the advantage that the
conformal map from the z to the ? planes is quite simple; the corresponding map
for the developed pattern would require many numerical evaluations of elliptic
functions with complex argument, which could add significantly to computer
usage.

For reference purposes, we shall calculate the frontal history of the isolated
five-spot assuming single-phase flow. The complex potential is simply

(12)
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Solving for z{f), the travel time from the central source along a particular
streamline ip to a point where the potential is p may be written as

-L
e*+d<l> C13I

The shape of the front at a given time t is then calculated by numerical quadra-
ture of (13) and use of quadratic inverse interpolation to find corresponding
points in the 2-plane. The single-phase fronts are shown in Figure 2.

Figure 2. Frontal history of a five-spot in single-phase flow, time

interval At = 0.01.

This figure may be compared with the single-phase flood history for the de-
veloped five-spot determined experimentally by Muskat [15] using electrolytic
models. For our isolated pattern, the breakthrough time is easily calculated to
be TT/6. Since the breakthrough time is proportional to the flooded area, this
corresponds to a contacted area equal to about 105 per cent of the area enclosed
by the square in Figure 1. We shall use this well pattern area as the reference
area in calculating sweep efficiency.

The single-phase flood result may be compared with the boundary-integral
simulation of flow at infinite (unfavorable) viscosity ratio as shown in Figure 3.
The value of r for this case is 0.001. This calculation was started with equally-
spaced points on a quarter circle of radius TQ = 0.1. Assuming circular symmet-
ric source flow until this radius is reached, the travel time from the source is
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7.85 x 10~3. Successive time profiles are shown for time increments At equal to
0.010 until the closest point on the front is within a distance of 0.2 of the sink.
Successively smaller time intervals are then used so that the breakthrough time
can be estimated to at least three significant figures. Here the time of break-
through is 0.368 corresponding to an areal sweep efficiency of 73.6 per cent. The
flood chooses an essentially symmetric pattern even though symmetry about the
diagonal is not imposed. We have repeated the calculation of Figure 3 with
symmetry imposed. This is conveniently accomplished by using the conformal
map

f = 1 + 1A4. (14)

The corresponding flow in the f-plane is bilaterally symmetric with a single sink
at the origin. The flow pattern is virtually identical to Figure 3 and the sweep
efficiency agrees with the previous result to within 0.2 per cent. For the case
without imposed symmetry, the number of points used to describe the front in-
creased from 17 at r0 = 0.1 to a maximum of 43 at the t = 0.31 profile. Point
redistribution was performed along each output profile using formula (11). Be-
cause redistribution changes the discrete problem, the choice of time intervals
influences the subsequent flood history. In all cases, time intervals were cho-
sen sufficiently small so that errors, from this source, may be neglected. The
calculation shown in Figure 3 required 40 sec on an IBM 3033 computer.

To establish convergence of the solution as the resolution of the interface is
increased, a series of runs were made at r = 10~3 with various values of the point-
spacing parameter B. In Table I we show computed values of breakthrough sweep
efficiency versus B. Examination of this sequence suggests that the convergence

Figure 3. A calculated stable sweep for T = 0.001, At = 0.01.
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of the sweep efficiency is approximately quadratic in B and that B = 0.75
is sufficiently small so that an accuracy claim of better than one per cent is
justified. Tests at other values of r show similar rates of convergence. In the
sequel we will consistently use B = 0.75 which is equivalent in most cases to
requiring that the number of points used to describe a profile scales as r"1/2.

TABLE I. Convergence cf Numerical Solution. Vaiiatiou of sweep efficiency rj with point-
space parameter B.

B

3.0
1.5
0.75
0.375

V

77.0%
75.0
73.6
73.2

4. The effect of noise on sweep efficiency for an inviscid driver

We wish now to consider the effect of noise on "stable" solutions such as
that shown in Figure 3. We require, for later use, the result of a linear stability
analysis for a slightly perturbed circular front that is expanding at constant areal
velocity. Let the shape of this interface by given by

R(9, t) = Ro(t) + eeut sin nO (15)

for integer values of n and e «C 1. The potential p at time t is given by

- p = (2Q/TT) log(r/i?o) + &V(12/i/£o) + C{Ro/r)n sin nO (16)

where C is order e and higher-order corrections have been neglected. Applying
now the pressure-jump and kinematic boundary conditions, with the curvature
approximated to 0(e), we readily arrive at the result

12/i.Ro
for the growth of the nth disturbance mode. An essentially similar expression
is derived by Wilson [24] using a somewhat different method. Equation (17)
reveals that a sufficiently small circle is stable to all small perturbations, and
that successively higher modes become unstable as RQ increases.

For RQ small, the effect of the remote sinks can also be treated as a pertur-
bation to the expanding circular front by approximating the flow field, given by
equation (9), for |z| «; 1. We wish to compare the growth rate of the asymmetry
caused by the suction of the remote wells with the rate of growth of the most
unstable noise-induced eigenmode as given by equation (17). The rationale for
considering these competing processes follows from the results of our previous
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study on flow in a linear channel, [5], [6] i.e. the standard Saffman-Taylor geom-
etry [19]. There it was established, by both numerical results and an heuristic
analytical model, that effective stability of developed fingers to small perturba-
tions rests on the observation that disturbances initiated near the finger tip are
convected backward by the dilation of the interface. While certain disturbance
modes will grow initially, they are ultimately "left behind" in the viscous liquid
as the finger tip progresses down the channel. Similarly, in the present case, the
four-lobed suction pattern will tend to draw the interface away from the noisy
perturbations. Only if the order of noise growth exceeds the rate of development
of the stable four-lobed pattern, can unstable fingering be expected. Just as in
the linear channel, we believe the patterns of the type shown in Figure 3, are
stable to low-level noise and (nonlinearly) unstable to noise of sufficient ampli-
tude. Thus this comparison of competing processes may be used to provide an
order-of-magnitude estimate of the critical noise level.

Combining these competing effects, we obtain the initial rate of growth of a
perturbed circle as

dR2Q2QRl £Un s i n n0
=

Ol 7T/10 7T.L*

The last two terms will be of comparable magnitude if
2R*Q/(wL*eujn) = C (19)

and C is order one. For ease of subsequent manipulation we take C equal to one
and obtain, for the critical nth mode disturbance amplitude

in = *o{(» - 1)(1 " ™(» + l)r/(2R0)}}-1 (20)

where i = £n/L, RQ = TQ/L. These critical amplitudes are seen to decrease with
decreasing RQ and decreasing r as expected. When the term in square brackets
in either equation (17) or (20) is equal to zero, we have the condition for neutral
growth of small perturbations. The point-spacing criterion, corresponding to the
second term on the right side of equation (11), is derived from the neutral growth
condition. Taking the constant B equal to 0.75 corresponds to using about eight
points per neutrally stable wavelength based on local conditions. The effective
value is somewhat larger, however, because of the surface dilation that occurs
between point redistribution time intervals.

To assess the effect of noise, associated with spatially varying permeability,
for example, we purposefully introduce slight displacements to the surface nodes
at each output time. A given coordinate xo, say, is moved to a new position x
according to

x = xo + 6Av (21)

where v is the local speed, A is a random number lying in the interval (—1,1)
and 6 is a global input parameter called the noise level. A relation between the
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noise level and the variation in permeability follows from a simple argument.
In a given (small) time interval At, we consider the displacement of a fluid
particle Ax. With a given value of pressure gradient, Ax will be proportional
to the permeability k. An incremental change in Ax will be proportional to a
permeability increment 8k, say. Thus 6k/k sa Av6/(vAt); since the average value
of the magnitude of A in either the forward or backward directions is (\A\) = 0.5,
we may calculate the average fractional permeability variation as

(Sk/k) = 6/(2 At). (22)

Some justification is required for our procedure of introducing noise only on
the fluid interface rather than within the fluid region as well. Since the effect of
permeability variation is to displace a fluid particle by an amount proportional
to its velocity, we wish to establish that the velocity change associated with a
small change in permeability is much larger for those particles that lie on the
interface.

For a Hele-Shaw cell, the permeability is proportional to the square of the
plate spacing b. Let bo be the average value of b and let b\ be the spatially-
varying uniformly-small deviation of b from its average. That is, we assume
l&iix>y)I -^.bo <g. R where R is a representative value of the radius of curvature
of the interface in the plane of the cell. The inequality on the right is a general
requirement of the Hele-Shaw approximation. Note that R scales as the critical
wavelength for instability of the front which varies, in turn, as Lr1/2. In addition,
the requirement of small slope of the cell wall implies that gradients associated
with permeability variation are O(l/R). For variable permeability, the field
equation is

V • (62Vp) = 0. (23)

Expanding equation (23) for small permeability variation and letting p = po+Pi,
we find that po satisfies Laplace's equation while p\ satisfies the inhomogeneous
equation V2pi = —(2/bo)Vbi • Vpo- This Poisson equation sets the scale of the
perturbation pressure gradient Vpi. Because the mean value of &i is zero, the
perturbation pressure gradient is

|Vp1|/ |Vp0|~O(61/60) (24)

at most.
The situation is quite different for points on the boundary. When the plate

spacing is allowed to vary, the boundary condition (6) must be replaced by

p = <r[(l/6) + (1/R)}, (x,y) e dD. (25a)

The first term in parentheses is much larger than the second, but when the plate
spacing is strictly constant, its gradient is zero and it may be ignored. With b
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variable however, we have, upon expanding the right side of (22a) for small b\
that |Vpo|/a ~ O{R~2) and |Vpi|/a ~ O(6i&o 2R~l). Consequently

|VPl O
(bo) ( b o ) '

(25b)

and we have established that, because of the capillary pressure jump mechanism
in a Hele-Shaw cell, small variations in permeability influence the solution most
strongly through the change in the boundary condition. In terms of their relative
influence on the induced velocity field, we see, by comparing equations (24) and
(25b), that boundary permeability variations are more important by a factor of
R/bo. The only exception to this conclusion is the uninteresting case when the
interface is uniformly stable in space for the entire flood history.

For the value r = 0.001 and Ro = 0.1, a number of cases, corresponding to
various values of noise level, were run. Provided 6 was less than 0(10~5), flood
histories similar to Figure 3 were obtained. For larger values of 6, pronounced
asymmetry resulted; a variety of different types of profiles, exhibiting quite dif-
ferent sweep efficiencies, could be produced for the same value of 6. Two such
cases, both for 6 = .0001 are shown in Figure 4. In (4a) the flood front breaks
up quite evenly about the centreline yielding, thereby, a large recovery. In (4b),
on the other hand, a recess develops to one side and the recovery is reduced.

In all our numerical experiments, the fingering pattern is established quite
early in the flood. Similarly, both Habermann [7] and Lee & Claridge [11], in
their experiments, also observe early breakup. This provides justification for
our simple stability analysis that only considers competition between noise and
stable growth on the initial profile. Our particular choice for A, a random number

(a)

Figure 4. Noise-induced pattern selection for T = 0.01, At = 0.01;

(4a) the sweep efficiency is 84.2%; the efficiency in (4b) is 68.8%.

For both cases the noise level is equivalent to a 0.5% permeability

variation.
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between —1 and 1, corresponds to white noise where the expected magnitudes of
all resolvable Fourier coefficients are the same and are equal to (12iV)~1/2. Here
N is the number of points that are uniformly distributed on the initial quarter
circle. The critical value of 6 for each noise mode, 6* say, is given approximately
by

6* = {INyl^Roi- = (3Ny/\B<>{(j - 1)[1 - nj(j + l)r/(2^0)]}-1 (26)

where equations (20) and (21) have been used. For r = 0.001, r0 = 0.1 and
B = 0.75, equation (26) predicts values of 6* equal to 0.000025,0.000011, and
0.000013 for modes 2,4, and 6, respectively. Mode 8 and higher modes are
all stable. Returning to Figure 4, we see that (4a) appears to have a mode 4
disturbance, while (4b) grows from a disturbance mode equal to 6. The predicted
magnitudes of 6* also appear to be consistent with the numerical results as will
be demonstrated.

We have also extended our numerical results to lower values of r. Starting
from a small initial circle, we find that a stable flood pattern cannot be produced.
This is consistent with our findings for the linear channel [5], [6] at small r. We
attribute this to an ambient noise level in the algorithm associated with the
discrete approximation of continuous functions. Both the spline redistribution
scheme and the numerical treatment of the improper integrals in equations (9)
are particularly implicated. In order to produce a determinate result however,
we introduce a particular perturbation that, while small, is still much larger than
the algorithmic noise. Figure 5 shows the early and late portions of the flood
history for r = 5 x 10~5 using the initial profile

0.1+ A[1+cos 12(0-TT/3)], \6 - 7T/3| < TT/12,

0.1, \e-n/3\>n/l2.

A small bump, using A = 0.001, imperceptible in Figure 5a, is located near
the asterisk on the RQ profile. The disturbance grows quickly and, because it
possesses components of all the Fourier modes, provides, in effect, an initial dis-
turbance for each of them. By the time the third front in the figure is reached,
it is clear that three and a half maxima are produced in the quadrant. This
corresponds to mode 14 on the full circle. Mode 14 is, in fact, the one with
the largest growth coefficient as given by equation (14). Profiles up to break-
through are shown in Figure (5b). Notice that each finger, except the central
one, ultimately stops growing, with the ones furthest from the producer stopping
first. For the essentially stagnant fingers further from the diagonal, there is a
tendency for them to slowly reduce the length of their boundaries through the
action of surface tension. By comparing Figures 4 and 5, we see that the fine-
structure increases as r is reduced, in this case, by a factor of 20. If we define
the fine-structure as the number of inflection points on the breakthrough profile,
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Figure 5. Multiple fingering caused by placing a small disturbance on

initial circle near the asterisk, r = 5 x 10~5. Early and late frontal

profiles; At = 0.005.

for example, on each figure, it is apparent that this increase scales essentially as
r"1/2, as would have been predicted by the linear stability analysis given above.

In Figure 6 we show front profiles from the miscible experiments of Lee &
Claridge [11] and Habermann [7]. In both of these, the viscosity ratio is such
that the floods are quite unstable. While these experiments also differed from
our simulation in that a developed five-spot geometry was employed, there are a
number of similarities with our results in Figure 5. In each of these studies the
almost immediate breakup can be attributed to the viscous fingering instability.
As in Figure 5, the competition mechanism leads to a single finger moving to-
wards a diagonal line between injector and producer with more remote branches
moving only slowly. In both cases the sweep efficiency is lower than our result,
48.6 per cent for the case shown in Figure 5, but this is also consistent with the
observation that the experiments show breakup into more fingers initially. In
the experiments the stabilizing mechanism is thought to be diffusive mixing and
there is no reason why this effect should be a detailed analog for surface tension
in a Hele-Shaw experiment or simulation. We hope soon to have the capability
of running at much smaller r values; it should then be possible to measure and
compare quantitative features of the two processes. It is clear, incidentally, in
Habermann's experiments, that the front is not breaking up on the pore scale.
For the mesh size of the sand used, the sand particles are smaller than the scale
of the narrowest fingers by perhaps a factor of 100. The value of r used for
Figure 5, 5 x 10~5, is our current practical lower limit on this quantity using the
present algorithm. This calculation used a maximum of 313 points to describe
the profile and required about five hours of computation time on the IBM 3033
computer.

In order to assess the effect of noise in a systematic manner, a number of runs
were made, for several different values of 6 using r = 10~3. The sweep efficiency
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(a)

Figure 6. Laboratory floods in a developed 5-spot at high mobility
ratio M.

(a) Miscible Hele-Shaw cell, M = 10, rj = 0.40 (Lee & Claridge,
1968).

(b) Miscible sand-pack, M = 17.3, t) = 0.3 (Habermann, 1960).

results, for ten runs at each 6 value, are shown in Table II. Also given are the
corresponding permeability variations using equation (22).

TABLE II. Dependence of Sweep Efficiency on Noise Level. Statistics of 10 runs for each
value of 6, r = 0.001

6

io-6

10"5

10-"
2 x 10-"
4 x 10~"
8 x 10-"

(Sk/k)
(96)

0.005
0.05
0.5
1.0
2.0
4.0

Sweep Efficiency (%)
Max

73.7
74.7
84.2
77.6
83.1
70.5

Min

73.5
72.8
68.4
65.4
62.5
59.8

Mean

73.6
73.7
72.7
69.3
71.0
64.8

Standard
deviation

0.08
0.57
4.7
4.0
7.1
3.8

We see, in this table, that for very small noise, the sweep efficiency results
are essentially constant at the deterministic value 73.6 per cent. When the noise
level is increased to IO"5, the numerical results become scattered about their
mean value to a significant degree. Recall that <5 = 10~5 is the predicted critical
noise level using the simple competition model. As the noise increases further,
the scatter also increases until 6 = O(10~4). At this point further noise increase
cannot be said to have either a quantitative or qualitative effect. For this value
of 6, there appears to be only a small average reduction in sweep efficiency as 6
increases past its threshold value.

The most striking effect in these noisy calculations is the very small value of
threshold noise. For a Hele-Shaw cell, spatial variations in plate spacing of less
than one per cent are quite sufficient to excite flow patterns of the types shown
in Figure 4. To the extent that we interpret noise as due only to permeability
variation, our model presupposes that flow paths of small resistance are uncor-
related over length scales equal to travel distances between point-redistribution
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time intervals. That is, we assume that important continuous high-permeability
paths between injector and producer are not present. Yet we see that small per-
meability heterogeneity of this type can result in gross alteration in the flooding
history. While this effect produces a small decrease in sweep efficiency, on av-
erage, for this value of r, more modes are excited at smaller r with significant
reduction in sweep efficiency, as in Figure 5.

In Figure 7 we show the dependence of areal sweep efficiency on r. Data are
given for values of r between 5 x 10~4 and 0.5. Shown for reference purposes
is the limiting efficiency for two-phase flow when T goes to infinity. In that
case the breakthrough profile is simply a circle of unit radius. Recall that, for
single-phase flow, r\ is 105 per cent. The solid curve includes results from 12
runs that exhibit flooding histories without finger splitting. Stable fingers could
not be produced, starting from a circle of radius 0.1 for r less than 3 x 10~4.
We see that r) decreases rather slowly as r is reduced. Also shown, as a dashed
line in the figure, are results obtained when the initial profile contains the small
bump as given by equation (27). The effect of this disturbance on rj is quite
pronounced for small values of r. In all cases tested, with this bump, efficiencies
are lower than for the stable patterns; because the imposed disturbance is very
small, perhaps comparable to imperfections in a laboratory Hele-Shaw cell, this
dashed curve is expected to be more representative of experimental results at
low r values. For relatively large r, on the other hand, the modes excited by
this initial disturbance quickly decay. Thus the bump is seen to have negligible
effect for r > 0.005.

1/T

Figure 7. Sweep efficiency versus modified capillary number T~X

stable solutions; results with perturbed ini-

tial profile given by equation (24); for r = 10~3, mean value and

standard deviation, for 10 runs at noise level S = 4 x 10~4, are

shown.
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Results of runs made with noise for r = 10~3 are also shown in Figure 7.
The two per cent permeability variation result, from Table II, is presented as an
average value with standard deviation error bars using the 10-run sample. Note
that the magnitude of the error bars is consistent with the difference between
the stable and perturbed results for this value of r.

5. Fingering patterns at finite viscosity ratio

In this section we present a technique for the numerical calculation of two-
phase displacement, using the Hele-Shaw equations, when the ratio of driver to
driven fluid viscosities, equivalent to the reciprocal of the mobility ratio, is fi-
nite. As before, we use a boundary integral scheme with continuously-adjustable
point spacing. For the present more general problem, we have modified the tech-
nique so as to use a singular vorticity distribution on the interface rather than a
source distribution. Inspection of the interface conditions for the more general
problem reveals that, for an interface represented by N line segments, a source
method leads to an imbedded linear problem of dimension 2N, while the vortic-
ity method yields a system of dimension N. The new method has been validated
by comparing results with the source-distribution algorithm for m = 0.

As before, two rather distinct types of solutions will be presented. The first,
which we refer to as stable solutions, is characterised by a smooth interface
where the only asymmetry results from the suction of the remote sinks. Such
solutions display relatively large values of 77, the breakthrough sweep efficiency.
When these solutions are sufficiently perturbed, however, the displacement front
breaks up into a multiply-fingering pattern; this second type of solution typically
corresponds to smaller values of 77. Because the required noise level is very low,
these unstable solutions will be the ones observed experimentally for systems
with low interfacial tension or, equivalently, at high flooding rates.

A vortex distribution w(s) on 3D is assumed whose strength is determined as
part of the solution. With this singularity distribution, condition (4b) is satisfied
identically, while the tangential velocity discontinuity on 3D is simply equal to
the local value of a;. The vorticity distribution satisfying (2), (3), and (4) is the
solution of the singular second-kind Fredholm equation

) , . , ,, Nr> fiexp(ia0) f u(s)ds
-w{zQ) + (1 - m)Re £-i—— / ———

L 27r J Z-ZQ
rdK .„ ._ f df ,. .1

(1 - m)Re ^ - e x p (ta0)
aso L ®zo J

(28)

where the integral is to be interpreted as a Cauchy principal value and Re denotes
the real part of a complex function. The dimensionless surface tension parameter
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is now referenced to the viscosity of the displaced phase, that is

r = {ab2)/{\2^QL). (29)

Equation (28) is obtained by differentiating (4a) in the tangential direction
and replacing the velocities in favour of the vorticity distribution. c*o is the
angle subtended by a tangent vector to the interface and the positive xo axis.
The function f(zo) is the complex potential for the single-phase source-sink flow
given by (12). Once the vorticity distribution has been determined, the normal
velocity of points on the boundary is given by

• ^ = - Im -j- exp(ta0) H „ / - L J — • (30)
on \_dzQ 2TT J ZQ — z \

The vortex method given here is applicable to general plane flows with dis-
crete sources and sinks. As before, we discuss only five-spot flows with reflec-
tional symmetry in each coordinate axis. Numerically, the algorithm includes
the following features:

(a) The time integration in condition (4c) is done implicitly using the LSODE
[8] package.

(b) The discretization of equations (28) and (30) employs a method that is
equivalent to separating the singular and nonsingular parts of the Cauchy prin-
cipal value integral. The singular part is integrated analytically. The remainder
is treated by assuming the vorticity to be piecewise linear. Certain other de-
tails are similar to the procedures discussed by Moore [14]; however the point
spacing along the interface is determined by local stability considerations and
simplifications possible with equally-spaced points are inapplicable here.

(c) Points are periodically redistributed along a cubic spline representation
of the interface so as to provide resolution of all locally unstable perturbations,
using the linear stability result given by Saffman & Taylor [19]. That is, for the
unstable cases, corresponding to m < 1, the point spacing is no greater than

where B is a constant and vn is the normal component of velocity locally. Closer
point spacing is used when necessary in regions of large interface curvature.

(d) The linear algebraic system corresponding to equation (28) is solved by
Gauss elimination. While implicit time integration and Gauss elimination min-
imize numerical errors associated with these processes, computational costs are
relatively high. Since the linear algebraic system equivalent to equation (28)
is diagonally dominant, potential savings can be realized by use of an iterative
solver such as a Neumann series expansion [3].

The algorithm has been used to generate flood histories for a variety of values
of surface tension and viscosity ratio. Two such cases are shown in Figures (8a)
and (8b). Both of these are for r = 2 x 10~4 with an initial profile taken to be a
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circle of radius 0.1. Figure (8a) presents results for the favorable viscosity ratio
m = 5. The point redistribution time interval is taken as 0.01; so as to view
successive fronts more distinctly, we show profiles spaced by 0.05 times units only.
Since the front is locally stable, the point spacing is taken to be constant using
As = 0.025 except in regions of high curvature, near breakthrough, when more
points are added. Observe that the flood proceeds essentially as an expanding
circle until it is close to the sink, when a cusp begins to form. In the limiting
cases, corresponding to arbitrarily large viscosity ratio and/or surface tension,
the flooded area should be a circle with radius equal to the well spacing. This
limiting value, ?r/2, may be compared with the calculated sweep efficiency for
the present case, which is 131 per cent.

At the other end of the stability range, we show, in Figure (8b), results for the
unfavorable viscosity ratio m = 0.1. Time intervals between point redistribution

Figure 8. Three floods at r = 2 x 10~4.
(a) m = 5.0, r) = 131%.
(b) m = 0.1; r) = 75.6%.

(c) The same conditions as for figure (8b), except a small bump,

given by eqn. (10) with A = 10~5, is imposed on the initial profile;

n = 71.1%.
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were taken as 0.01 except for the last five profiles shown. When the displace-
ment front was close to the sink, points were redistributed more frequently so
as to maintain high resolution when the surface is dilating rapidly. The spacing
constant B in equation (9) was taken as 0.75, corresponding to about nine points
per neutrally-stable wavelength using local conditions. Symmetry about the line
connecting source and sink was not imposed a priori in this calculation. Each
of the output profiles shown here was quite symmetric however; the horizontal
and vertical intercepts, for example, differed in all cases by less than one part in
10~3.

The case shown in Figure (8c) uses parameter values indentical to those in
(8b), except that a very small bump is placed on the initial profile near the
asterisk. The resulting profile has continuous slope; its equation is given by (24)
with A = 10~5. Because of the small value of T, the time history of the flood
is exceedingly sensitive to the initial conditions. A gross alteration of the flow
develops that is characterized, ultimately, by two competing fingers heading for
the sink.

In previous sections, we considered only floods where the driver viscosity was
zero. For the multiply-fingered patterns in Figures 4 and 5, troughs, once left
behind, remain essentially stagnant. Here, even though the viscosity ratio is only
0.1, the troughs continue to move forward at a speed which is an appreciable
fraction of the speed of the neighboring crests.

In Figure 9 we show the dependence of r\ on the disturbance amplitude A, from
equation (24), for three combinations of surface tension and viscosity ratio. The

80

70

60

O O o..
T = 1 0 3 , m = 0.2

- 8 - 7 - 6 - 5 - 4 - 3 - 2

log10 A

Figure 9. Variation in sweep efficiency T) with disturbance amplitude

A for three combinations of T and m.
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purpose of this comparison is the prediction of the critical disturbance amplitudes
required to alter stable sweeps, such as that of Figure (8a). For r = 2 x 10~4 and
m = 0.1, r\ remains constant at the undisturbed value, 75.6 per cent, until A
exceeds 10~8. Interestingly, r\ first increases with increasing A before ultimately
decreasing. (This somewhat surprising result is due to the excitation of modes
that tend to flatten the flood front for this particular range of values of A and r.)
Holding m constant, we increase T by a factor of five to 10~3. The critical value
of A increases by almost four orders of magnitude to about 10~4. Holding r
fixed, m is now increased by a factor of two. The value of A required to produce
a small but noticeable change in r\ increases by perhaps an additional order of
magnitude.

For finite viscosity ratio, we thus demonstrate numerically the existence of
linear stability, but nonlinear instability of a five-spot flood. In the absence of
any disturbance, the flood is symmetric and characterized, usually, by relatively
high values of r\. A small disturbance may destabilize the flood: the critical
magnitude of the required disturbance decreases dramatically with reduction in
surface tension or increase in flooding speed. Somewhat less dramatic, but still
important, is the effect of changing the viscosity ratio while remaining in the
unstable regime. In our previous work, we investigated this question, for zero
viscosity ratio, for both the rectilinear channel [5], [6] and the five-spot pattern
(Section 4). We see that the nonlinear character of the instability established
there, and driven by random noise, is also pertinent to finite viscosity ratio cases.

The exceedingly low values of the critical disturbance amplitude suggest that
experiments run in the small r regime will undoubtedly exhibit tip splitting. In
addition to the miscible flood of Lee & Claridge [11] shown in Figure 6, recent
experiments by Park & Homsy [16] using immiscible fluids in a rectilinear Hele-
Shaw cell have also shown tip splitting. We believe that these experimental
results are manifestations of the same nonlinear effect and that this effect is
modelled, at least qualitatively, by the Hele-Shaw system used here. In his
monograph on oil-reservoir water flooding, Craig [4] compiles sweep efficiency
data, obtained in ten laboratory investigations that use a variety of techniques.
These include miscible and immiscible floods in sand and bead packs, resistance
networks, and electrolytic and potentiometric models; see especially his Figure
5.2. Craig notes that there is "satisfactory agreement among most investigators
when the mobility ratio is 1.0 or less. However, at mobility ratios above unity a
wide divergence between reported values occurs." He offers no explanation for
this divergence.

In Figure 10, we present calculated values of rj versus mobility ratio for 6
values of r. Results for T = 0 are included, but only for M < 1. Local sta-
bility considerations suggest, and our numerical experiments confirm, that the
zero-surface- tension problem is completely ill-posed when the viscosity ratio
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10 100

Figure 10. Sweep efficiency versus mobility ratio M, for an isolated
five-spot, using present method. Results are presented for 6 different
values of inverse capillary number r.

o o, T = 0; H h, r = 10~4; A A, r = 2 x 10~4;

D Q, T = 10~3; • A, T = 0.01; • • , T = 0.05.

is unfavourable. We observe, in our results, relatively minor dependence of r)
on T in the stable range. Much more pronounced divergence is seen as M is
increased. For the mathematical model, the control parameter r, an inverse cap-
illary number, is a measure of the speed of the displacement process. We suggest
that such a speed dependence explains the divergence of the data presented by
Craig. Because Craig's data is compiled for a "developed" five-spot, that is for
a doubly-periodic pattern, the actual numerical range of r) is different. If the
swept areas, in both cases, are referenced to the appropriate single-phase results
(m = l ,r = 0), which is 72 per cent for the developed and 105 per cent for the
isolated five-spots respectively, a quite reasonable overlap of the data range can
be obtained.

6. Concluding remarks

In this paper we have presented results for the flooding history of an isolated
5-spot pattern as calculated by integration of the Hele-Shaw equations. We
have demonstrated the linear stability of smooth profile solutions over several
orders of magnitude in the single independent parameter r, an inverse capillary
number. When sufficient noise is introduced into the system, the stable solutions
break down and are replaced by patterns that exhibit many competing fingers.
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The amount of noise required to destabilize the symmetrical patterns decreases
rapidly as r is reduced. In this regard the effect is entirely equivalent to our
findings [5], [6] for the rectilinear channel. In the five-spot geometry, the break-
up mechanism leads to a reduction in sweep efficiency, the magnitude of the
reduction becoming greater as r is made smaller. This effect was demonstrated
by inserting a small bump on the initial profile and determining the resulting
function r){r) as shown in Figure 7.

Rather than use a specific disturbance, we have also made runs where random
white noise was introduced into the calculation to simulate permeability varia-
tion. Once the threshold noise level is exceeded, there may no longer be a strong
dependence of r\ on its actual magnitude. Rather we suspect that low-level noise
here acts as a trigger to cause the flood to enter the competing-finger regime. In
this regime, the value of rj is determined largely by the minimum finger width,
the latter scaling as r1/2. More statistical evidence, of the type presented in
Table II, is required to validate this premise, however.

Because the noise in our model is not spatially correlated, this type of het-
erogeneity is qualitatively different from heterogeneity that leads to connected
high-permeability paths, the latter being a type of "percolation" concept. In
order to fit network models to observed laboratory measurements of rj, often an
unrealistically high degree of heterogeneity must be assigned to the permeable
medium. This has been pointed out by Claridge [2] in his criticism of earlier the-
oretical work [20], [21]. His suggestion that the missing ingredient is the viscous
fingering instability is borne out by our numerical work.

At present our specific predictions of the dependence on 77 on r cannot be com-
pared with experiment since this particular parameter range has yet to explored
in the laboratory. Such cases should not be difficult to investigate experimen-
tally. For a flood at r = .001 in a cell measuring 30 cm on a side with a plate
space of 1 mm, values of a = 50 dynes/cm, \i = 1 poise, and a volumetric flow
rate of 0.1 cc/sec, the time to breakthrough will be about 15 minutes.

The Hele-Shaw model with surface tension may be capable of simulating ex-
isting miscible experiments [11], [12] with a suitable small value of r. The ex-
periments shown in Figure 6 possess a fine structure that is perhaps a factor of
three smaller than our computation shown in Figure 5. In order to effect such
a comparison, it would be necessary to solve for fronts whose description may
require a thousand points or more. This is presently not possible using direct
Gauss elimination to solve the linear integral equations in (9a) or (28). On the
other hand, an iterative solution strategy can be formulated and should provide
an increased 1OW-T capability.

Lower values of sweep efficiency than those calculated here would have been
obtained if four-fold symmetry in the flooding pattern had not been imposed a
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priori. One reason for this is that the symmetry assumption rules out half of
the potentially unstable modes. Four identical streams, each heading towards
a production well, is an unstable situation. As soon as one stream gets ahead
of the others, its growth will be enhanced at the expense of its competitors.
This would be particularly true if the flood were run at constant pressure drop
between injector and producers rather than at constant volumetric flow rate as
we have done here. It may be possible to mitigate this effect by restricting or
stopping the production at the well corresponding to the furthest advance to
the front. Such an optimization is possible using the present methods and the
results are potentially useful.

It is clear that detailed resolution of fine structure at scales comparable to
oil reservoir floods will never be possible. If we assume 100 m well-spacing and
single-phase permeability of 1 Darcy (« 10~8 cm2) with typical values of oil-
water interfacial tension, the corresponding value of T is of order 10"11. However
the large range of length scales in porous media problems is certainly suggestive
of the existence of scaling laws and self-similar behavior. With relatively minor
computational improvements, it may be possible to investigate this question and
determine possible power-law dependence of sweep efficiency on the parameter
r.

The present Hele-Shaw model assumes that the pressure difference at the
front separating two immiscible phases is proportional to the interface curvature.
When applied to porous media, it is necessary to relate this (capillary) pressure
difference to quantities that are macroscopic when measured in units of a typical
pore dimension. While experimental evidence has been offered that selection of
an effective surface tension that is a constant multiple of the real surface tension
produces an acceptable fit to core flood data [1], [18], it is generally believed
that this simple viewpoint is inadequate. Recently Jerauld, Davis and Scriven [9]
have developed a model for analyzing the linear instability of a slightly perturbed
plane interface that incorporates information about pore-level processes. Their
model also exhibits a short-wavelength cutoff as we believe any self-consistent
theory must do. It would be possible to insert a different jump condition at
the front into our nonlinear algorithm and to determine the effect of such a
modification upon the fingering behavior.

A problem that is closely related to two-phase Hele-Shaw flow and may be
similarly idealized is dendritic growth in solidification [23]. In fact both problems
are used as examples of pattern formation in nonlinear systems [10], [13]. Under
a different set of assumptions, pattern formation problems have been treated by
the technique known as diffusion limited aggregation [25]. A comparison of those
predictions with the results of our boundary-integral front-tracking procedure
would seem worthwhile.
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