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Abstract

We apply the known formulae of the RESTART problem to Markov models of software
(and many other) systems, and derive new equations. We show how checkpoints might
be included, with their resultant performance under RESTART. The result is a complete
procedure for finding the mean, variance, and tail behavior of the job completion time as
a function of the failure rate. We also provide a detailed example.
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1. Introduction

There are three general scenarios on how to continue when a system crashes during execution
that have often been discussed in the literature. One possibility is to continue from the point
of failure after the system has been repaired. This was labeled preemptive resume in [9]
and RESUME in [13]. Another possibility is to discard the results so far and start from
scratch, thereby replacing everything. This is alternately called REPLACE or preemptive repeat
different. Both of these scenarios are amenable to mathematical treatment and can usually be
analyzed by Markov models. The third scenario, however, has proven difficult to treat. Here,
all the accumulated work is lost and the job must start from the beginning, retracing all steps
previously taken. This is alternately called RESTART or preemptive repeat identical. Clearly,
it is not memoryless, and Markov methods have fallen short.

Still, in recent years there has been much progress in analyzing systems under RESTART.
Restricting ourselves to exponential failure distributions with failure rate β, we now know that
this can lead to subexponential completion times. Let T be the random variable (RV) denoting
the time for a job to complete if failures cannot occur, and let X(β) be the time for completion,
including restarts after failures (but not repair time). Any particular job (T = t) will take, on
average (see, e.g. [5] or [13])

E[X(β)] = eβt − 1

β
.

Even if T has a distribution with finite support, X(β) will be exponentially distributed. Practi-
tioners have been forced to employ various strategies to counter this dismal behavior. The most
common is checkpointing.

Over the past thirty years, architecture-based analysis of software reliability has gained
prominence [11], [14]. In the architecture-based approach, the control flow graph of a software
application is mapped to a state space model (e.g. a continuous-time Markov chain (CTMC)) [6].
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196 L. LIPSKY ET AL.

Each node of the state space model represents the execution of a block of code (one or
more functions or methods). A CTMC is an appropriate choice to represent the application
architecture if the execution time in each code block is exponentially distributed, or can itself
be represented by a matrix exponential distribution. These models have long been applied to
the performance analysis of computer software [11] (among many other uses), where random
failures are often common. Here we derive formulae for evaluating the performance of such
systems under RESTART, including checkpointing. We provide expressions for the mean,
variance, and tail behavior of the job completion time. We also provide a detailed example to
demonstrate how all the parts fit.

2. RESTART and checkpointing

Let F(t), f (t), and F̄ (t) be the distribution, density, and complementary distribution
functions for T , respectively. Assume that the failure distribution is exponential, with failure
rate β, and that X(β), under RESTART, has probability distribution, probability density, and
complementary distribution functions H(x), h(x), and H̄ (x), respectively. We now present
two definitions.

Definition 1. Let

α := sup

{
�

∣∣∣∣
∫ ∞

0
x�h(x) dx < ∞

}
. (1)

Then X(β) is power tailed (PT) with index α if α < ∞.

Clearly, if α < 1 then E[X(β)] = ∞, and even if α > 1 but α < 2, E[X(β)2] = ∞, and
X(β) has infinite variance.

Definition 2. Let

λs := sup

{
λ

∣∣∣∣
∫ ∞

0
exp(λt)f (t) dt < ∞

}
. (2)

Then f (t) has an exponential tail with parameter λs if 0 < λs < ∞. If λs = 0 then f (t) is
subexponential. (For more precise definitions, see [1, A5, p. 412]).

Even if T has finite support (e.g. T = t , a constant) the time under RESTART, X(β), will
have an exponential tail. Asmussen et al. [3] (see also [8]) showed that if T has infinite support
then X(β) will be subexponential. Furthermore, it was shown in [3] and [13] that if T has an
exponential tail with parameter λs then X(β) will be PT with index

α = λs

β
. (3)

Clearly, as β becomes bigger, α becomes smaller, and the system behavior becomes more and
more unstable.

For many years, system designers have attempted to alleviate the instability problem by
checkpointing. During execution, a program is interrupted at some predetermined point so that
sufficient information can be placed in a nonvolatile place, and then the program continues. If
failure subsequently occurs, the job can return to this point without having to go back to the
beginning. The optimal strategy (if the cost is negligible) would be to interrupt at fixed time
intervals. But this is usually inconvenient and time costly, for the job could be in any state, thus
necessitating transfer of an inordinate amount of information in order for the job to continue
from this point if failure subsequently occurs. Other strategies are also used. For instance, one
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can find a place where the amount of information needed to restart would be minimal, and place
the checkpoint there, usually where a particular procedure ends. This is what we attempt here
(see, e.g. [13] for other strategies).

3. Markov models with exponential failures and checkpointing

In recent years, researchers have been analyzing the performance of computer software by
constructing Markov models based on flowcharts (see, e.g. [11] and [14]). We first discuss
such models, then include failures, and, finally, after some mathematical preliminaries, add
checkpoints.

3.1. Markov models of software (MMS): preliminary performance analysis

Each of the M nodes of a given flowchart is a program section that takes some time to
execute. The flowchart becomes an M-dimensional Markov matrix, P . If it is assumed that the
service time at each node is exponentially distributed with rate parameter µi := [M]ii > 0, and
there is a path to exit the system from each node, then the usual mathematical formulae (see,
e.g. [10] for full details) apply for obtaining the distribution of the time to execution, T . That
is, let p be the entrance vector, where [p]i is the probability that execution begins at node i,
and define

B := M(I − P ).

Then
F̄ (t) := Pr[T > t] = p exp(−tB)ε′, (4)

where ε′ is the M-dimensional column vector of 1s. Furthermore, let V := B−1. Then all the
moments can be found by

E[T �] =
∫ ∞

0
t�f (t) dt = �! pV �ε′. (5)

These are called matrix exponential (ME) distributions (in this case, phase distributions because
µi > 0 and [P ]ij ≥ 0; see [12, p. 45]), and have exponential tails, as defined by (2). From the
spectral decomposition theorem (see, e.g. [10, p. 143]), it is not hard to show that

λs = min[|λi |], (6)

where {λi | 1 ≤ i ≤ M} is the set of eigenvalues of B whose eigenvectors are not orthogonal
to p or ε′.

It is clear that if this system is subject to failure, the time to completion, X(β), will be PT
distributed, with, from (3), α = λs/β. Because H(x) is not ME, we cannot find out what it
looks like except by approximate methods such as numerical inversion of Laplace transforms
(see, e.g. [5]). However, E[X(β)] and E[X(β)2] can be calculated easily with the following
formulae, taken from [13] (higher moments can be found, but with increasing difficulty):

E[X(β)] = p[V (I − βV )−1]ε′ (7)

and
E[X(β)2] = 2p[V 2(I − 2βV )−2(I − βV )−1]ε′. (8)

Note that (I −βV ) is not invertible when β = λs, and can yield negative results when β > λs.
In other words, the expression for E[X(β)] is meaningless when α = λs/β ≤ 1, with a similar
statement for E[X(β)2] when α ≤ 2.

Our next task is to insert a checkpoint into the MMS. But before describing how this is done
in detail we must first establish a useful theorem.
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3.2. Continuous Markov chains with two absorbing states

Consider the (M + 2)-dimensional Markov matrix P̄ with two absorbing states, a and b.
That is,

P̄ ε̄′ = ε̄′ and (P̄ )aa = (P̄ )bb = 1,

where ε̄′ is an (M + 2)-dimensional column vector of 1s. Next delete the rows and columns of
a and b to produce the M-dimensional matrix P . Then

[Z]ij := [(I − P )−1]ij
is the expected number of visits to j before absorption, given that the chain started at i. Now
define the M-dimensional column vectors

(q ′
a)i := P̄ia and (q ′

b)i := P̄ib, where i �= a, b.

These are the probability vectors of being absorbed by a and b, respectively. It follows that the
ith components of

ε′
a := Zq ′

a and ε′
b := Zq ′

b

are the probabilities that the process will end at a or b, respectively, given that the process
started at i. Note that ε′

a + ε′
b = ε′.

Let po be the entrance vector. Then

pa = poε
′
a and pb = poε

′
b, where pa + pb = 1,

are the probabilities that the process will be absorbed by a or b, respectively. As in Section 3.1,
let T be the RV denoting the time until absorption, while Ta and Tb are the conditional RVs
denoting the time until absorption at a and b. Then B = M(I − P ) is the generator of the
distribution function for T , whose complementary distribution function is given by (4), where
po is used instead of p.

It is well known that [po exp(−Bt)]i is the probability that absorption has not occurred by
time t , and the system is in state i. This leads to the following result.

Theorem 1. Let q ′
u, ε′

u, po, B, and V , where u ∈ {a, b}, be defined as above. Then Tu has
distribution

F̄u(t) := Pr[Tu > t] = po exp(−Bt)ε′
u

pu

, u = a, b.

The moments of these distributions follow easily from (5):

E[T �
u ] = �! po[V �]ε′

u

pu

.

We then say that F̄u(t) is generated by the triplet 〈po, B, ε′
u〉.

It is interesting that the conditional probabilities require that the final vector be different
from ε′. This implies that the components of these final vectors, [ε′

u], carry meaning. They are
the probabilities that the process will be absorbed by u, given the starting state. If there is only
one absorbing state then all probabilities of absorption are 1, hence ε′. (Thus ends a 30-year
debate that one of the authors has had with Appie van de Liefvoort [15] over whether ε′ must
always be a vector of 1s—vdL wins.)
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Furthermore, even though both F̄a(t) and F̄b(t) have the same po and B as F̄ (t), they often
have completely different properties. They may even have different asymptotic behavior. This
can happen if the left eigenvector of B belonging to λs (usB = λsus) is orthogonal to ε′

a and/or
ε′
b (e.g. usε

′
a = 0). This is not an unusual occurrence. Let

Sa := {si, i �= a | [P k]ia = 0 for all k > 0}
(i.e. there is no path from si to the absorbing state sa). If � := |Sa| > 0 then there must be at
least � left eigenvectors of B that are orthogonal to ε′

a . If us is one of them then

λa := min{λi | si �∈ Sa} > λs

will be the exponential tail parameter for F̄a . Thus, λa , λb, and λs can all be different, and F̄a ,
F̄b, and F̄ can all have different asymptotic behaviors. We make use of these equations in the
next section.
3.3. Inserting a checkpoint in MMS (MMSC)

Consider the MMS described in Section 3.1. First select some node m to be the node that is
followed by a system checkpoint (ideally, we might select each node, one at a time, and test to
see which node yields the best performance). Then

qm = [q ′]m := [(I − P )ε′]m
is the probability that execution will end after finishing at m. Now add one row and one column
to P at index M + 1, representing the system checkpoint state, to produce the matrix Pc with
the following specifications. For i �= m, M + 1, and j �= M + 1,

[Pc]ij = Pij , [Pc]i,M+1 = 0, [Pc]mi = 0, [Pc]m,M+1 = 1 − qm,

[Pc]M+1,k = 0 for all k.

This process can be visualized in the following way. Suppose that a customer enters the network
and goes to node i ([po]i), and then wanders from node to node ([Pc]ij ) until he/she either leaves
([q ′]j ) and the job is finished or goes to node m ([Pc]jm). At node m he/she either finishes (qm)
or goes to the checkpoint node (1 − qm). When work is completed at the checkpoint, operation
is suspended temporarily ([Pc]M+1,i = 0). The checkpoint can only be reached through m

([Pc]i,M+1 = 0, i �= m).
We have defined a Markov chain with two absorbing states: a subscript ‘e’ will be used

to indicate the end absorbing state and a subscript ‘c’ will be used to indicate the checkpoint
absorbing state. We can use the formulae presented in Theorem 1 once we have identified q ′

e
and q ′

c. The exit vector q ′
e is the same as for the original model, with the additional component

[q ′
e]M+1 = 0, so

[q ′
e]i = [(I − P )ε′]i , but [q ′

e](M+1) = 0,

while [q ′
c]i = 0 for i ≤ M and [q ′

c]M+1 = 1. As before, define the (M +1)-dimensional matrix

Zc = (I − Pc)
−1.

Then
ε′

e = Zcq
′
e and ε′

c = Zcq
′
c.

From this we obtain the probability of finishing without reaching the checkpoint, poe := poε
′
e,

and the probability of reaching the checkpoint poc := poε
′
c. Let Toe and Toc be the conditional
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RVs for the times to finish without and with checkpointing, respectively. Furthermore, define
the diagonal matrices

[Mc]ii = [M]ii and [Mc]M+1,M+1 = µc,

where tc = 1/µc is the mean time to process a checkpoint. Then

Bc := Mc(I − Pc)

and

F̄ou(t) := Pr[Tou > t] = po exp(−tBc)ε
′
u

pou

for u ∈ {e, c}.

If the execution of the software takes the path described by oe, then the process is over. But
if the path leads instead to m, and thence to M + 1 (the checkpoint), then execution must
subsequently return to the system and transition between phases again. But now, the restart
vector corresponds to where the execution would have gone if it had left the original phase m

in P but did not leave the system. That is,

pc := [Pm1, Pm2, . . . , PmM, 0]
1 − qm

.

Then pce := pcε
′
e is the probability that execution will finish without returning to m, while

pcc := pcε
′
c is the probability that it will return to execute another checkpoint. The distributions

for the two RVs Tce and Tcc are

F̄cu(t) := Pr[Tcu > t] = pc exp(−tBc)ε
′
u

pcu
for u ∈ {e, c}.

What we have described is an embedded Markov chain with four nodes whose sojourn time
distributions are given by the four functions above. The transition matrix for this process is

P̂c :=

⎡
⎢⎢⎣

oe oc ce cc
oe 0 0 0 0
oc 0 0 pce pcc
ce 0 0 0 0
cc 0 0 pce pcc

⎤
⎥⎥⎦, with p̂c := [poe, poc, 0, 0]. (9)

This is simple enough so that the inverse of (Î − P̂c) can be written down without difficulty:

Ẑc := (Î − P̂c)
−1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 1 pcc/pce
0 0 1 0
0 0 1 1/pce

⎤
⎥⎥⎦ .

This will be useful below when E[Xc(β)] is computed, but it also yields the expected number
of times the checkpoint is executed, another important design parameter. Since

p̂cẐc =
[
poe, poc, poc,

pocpcc

pce

]
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is the vector of the expected number of visits to each node, and since nodes oc and cc include
visits to c, then

E[Nc] = poc + pocpcc

pce
= poc

pce
. (10)

This can also be computed by recognizing that node cc is reached a geometric number of times
and that node oc is reached at most once, with probability poc.

As it stands P̂c, together with its node ME distributions {Fu}, is an ME representation, and, for
tc = 0, it generates the same distribution as the original model generated by 〈p, B〉. For tc > 0,
it generates the distribution for Tc, the time to finish, including the multiple times the checkpoint
is executed (but with no failures). A straightforward representation of the distribution for Tc
when tc > 0 (but β = 0) can be constructed by replacing the last row of Pc with pc. This is
equivalent to replacing Pc with

P̄c = Pc + q ′
cpc,

thus allowing the process to continue after checkpointing. Then 〈pc, B̄c〉 generates Pr[Tc > t],
where

B̄c = Mc(I − P̄c) = Mc(I − Pc − q ′
cpc) = Bc − Mcq

′
cpc = Bc[I − ε′

cpc].

The proof will not be given here because this formulation cannot be used if β > 0. However,
we present an expression for E[Tc], the time to finish with checkpoints active, but no failures
(see [10, p. 167] for algebraic details):

E[Tc] = E[Xc(β = 0)] = poV̄cε
′ = poc

(
E[Toc] + E[Tce] + pcc

pce
E[Tcc]

)
+ poe E[Toe].

Note that this is different from poVcε
′, which is the mean time to either finishing without

checkpointing or visiting the checkpoint just once and then stopping.

3.4. The MMSC with exponential failures

We are now able to apply our model with checkpoints to system failures under RESTART. As
already mentioned, there is no way of obtaining the distribution of X(β) without performing
a heroic numerical effort to invert its Laplace transform. But we have the tools to find the
moments of the distribution, the first two of which are easy to obtain using (7) and (8) with
〈po, B〉. Asmussen et al. [3] showed how to find the asymptotic behavior, but we will be
satisfied here with only the power of the tail, α = λs/β. This is important because it tells us
how big the failure rate β can get before the system becomes unstable. That is, if β ≥ λs then
E[X(β)] = ∞, and if β ≥ λs/2 then E[X2(β)] = ∞.

Evaluating the moments and αc for Xc(β) requires more effort, but not as much as we
might expect. Consider the four-node system prepared in the previous section. If it should
fail during execution, it will be in one of the nodes. After repair, it must redo whatever it had
accomplished in that node only, and continue from there. In other words we need to apply (7)
and (8) to each node separately, getting E[Xu(β)] and E[X2

u(β)] for u ∈ {oe, oc, cc, ce}. These
can then be used to evaluate E[X�

c(β)] (� = 1, 2). The formulae for computing these are given
in Theorem 9.3.1 of [10, p. 518]. First define the four matrices (note that all objects with the
‘hat’ symbol come from (9), and are four dimensional)

[T̂c]uu := E[Xu(β)], V̂c := [Î − P̂c]−1T̂c, and [�̂��]uu := C2
u − 1,
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where C2
u = σ 2

u (β)/(E[Xu(β)])2 is the squared coefficient of variation of Xu(β). Then

E[Xc(β)] = p̂cV̂cε̂
′. (11)

The generator of the distribution that would have occurred if all the node distributions had been
exponential is given by B̂c = V̂ −1

c , so (11) states that the mean time is independent of node
distributions even if they are not ME. The variance can be evaluated from [10, p. 518] as

σ 2
c (β) = σ 2

exp + p̂cV̂cT̂c�̂ε̂′, (12)

where

σ 2
exp = 2(p̂cV̂

2
c ε̂′) − (p̂cV̂cε̂

′)2

is the variance of the similar exponential network.
This procedure can be extended to include two or more checkpoints, but the number of nodes

grows quadratically. That is,

Dim[P̂c] = (c + 1)2,

where c is the number of checkpoint nodes, and P̂c is the extension of (9).
These formulae are necessary for exploring the major design issue of when or whether to

use checkpointing at all. This is discussed in Section 3.6.

3.5. Asymptotic behavior

In Section 3.2 we showed that it is possible for T , Ta , and Tb to have completely different
asymptotic behaviors. It is even more likely that the four Tus and Tc will have different minimum
λs. In Section 3.2 it was assumed that every node could be reached by po. In checkpointing, by
judiciously choosing m, some nodes will be ‘downstream’, and thereby not be reachable from
po without passing through m. Furthermore, nodes that are strictly ‘upstream’ from m will not
be reachable from pc. We give an example of this in Section 4.

For asymptotic behavior under RESTART with checkpointing, we need only the smallest
λ among the four us, call it λsc. Note that this is almost surely greater than λs, and will only
be equal if pcc = 0. To see this, consider P̂c from (9). Fortunately, only node cc is relevant,
because the other three nodes are visited at most once. But cc is visited a geometric number of
times. It is known (see, e.g. [10, pp. 166–167]) that the sum of N independent and identically
distributed (i.i.d.) ME variables, where N is geometrically distributed (here, with parameter
pcc), is ME, but λs for the sum will be less than the λs for the original function. We leave the
full discussion of this for another time. What is important for our construction is that the same
is not true for a geometric sum of i.i.d. PT variables. It is known (see, e.g. Lemma 2.2 of [2,
p. 302]) that the geometric sum of i.i.d. regularly varying PT variables with power α retains
the same α in the sense of (1). Asmussen provided a proof for PT variables (not necessarily
regularly varying) which is presented in Appendix A. Thus, the asymptotic behavior of Xc(β)

is dominated by αc(β) = λsc/β in that E[Xc(β)] = ∞ for β ≥ λsc, and E[X2
c (β)] = ∞ for

β ≥ λsc/2.

It turns out that if qm = 0, one of the eigenvalues is µc. Furthermore, the other eigenvalues
do not depend on µc. So if tc = 1/µc is large enough λsc = µc. This can be very useful
for estimating how large β can be before a system becomes unstable, or even if checkpointing
should be used at all.
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3.6. The cost of checkpointing versus failure rate

The designer of an MMS creates a flowchart, or general plan, which abstracts to the pair p

and P . He/she then makes a good-faith effort to estimate the mean time spent at each node
for each visit, 1/µi . In effect, he/she knows from (5) what E[T ] is, and if he/she assumes
exponentially distributed service times for the nodes, then he/she can get the distribution. (The
model can be extended to include nodes with ME distributions.) But if the system is not error
free, he/she has no control over the value of β. From (7), he/she can estimate the total time
for execution, E[X(β)], under RESTART. If reasonable values for β make it too large, then
he/she must plant checkpoints in the software to reduce the time. At this point, he/she has
more decisions to make, e.g. where to place the checkpoints and how much effort should he/she
put in to make them efficient (thereby controlling the magnitude of tc). Obviously, if tc is
negligible then he/she can put checkpoints everywhere, and thus effectively turn the process
into RESUME (only the cost of repair remains). On the other hand, if β is very small then there
is no need for checkpointing at all.

In real life, β changes over time (but presumably slowly enough so that the software will
run many times for a constant β). For any tc > 0, E[X(β)] will be smaller than E[Xc(β)]
for small enough β. But as β grows, the two expectations will cross, say at βcross. Thus, the
checkpointing procedures can be shut off if it is believed that the β of the day will be less
than βcross. If E[Xc(β)] is larger than acceptable, or it is expected that β will approach λsc/2,
then the designer must return to the ‘drawing board’ to find a better checkpoint scheme. The
formulae described above are ideally suited to this exploration. A detailed example of such
studies is presented in the next section.

4. An example

The software model we chose for our example comes from a 1980 paper by Cheung [4].
In that article the nodes themselves have a probability of erring, but here we consider the
environment as a whole as failure prone. We make slight modifications to his program control
graph that abstracts to the eight-dimensional matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.70 0 0.30 0 0 0 0
0 0 0 1.00 0 0 0 0
0 0 0 0.75 0.25 0 0 0
0 0 0 0 0 0.40 0.60 0
0 0.30 0 0 0 0.30 0.10 0.30

0.80 0 0 0 0 0 0 0.20
0 0 0.75 0 0 0 0 0
0 0 0 0 0 0 0.10 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and q ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00
0.00
0.00
0.00
0.00
0.00
0.25
0.90

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(q ′ = (I − P )ε′) with entrance vector p = [0.60, 0.20, 0.20, 0, 0, 0, 0, 0]. Our choice for
M = diag[1.20, 2.30, 3.40, 0.80, 2.00, 2.40, 6.50, 1.40]. We used these matrices to compute
F̄ (t) from (4); see Figure 1. The logarithmic scale was used to show the exponential tail as
a straight line, whose slope is −0.1235, which is exactly the value of −λs from (6). We have
also computed E[T ] = 9.10 and σ 2

T = 66.30 from (5). Thus, C2
T = 66.30/(9.10)2 = 0.8006.

Following the instructions of Section 3.3 we then inserted a checkpoint following node
m = 4. Noting that q4 = 1 − 0.75 − 0.25 = 0.0, the resulting ((M + 1) = 9)-dimensional
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0 1 2 3 4 5 6 7 8 9 10
t

100

F(t)

Foc
Fcc
Foe
Fce
F

Figure 1: Plots of the five F̄ (t) functions for Tc, Toe, Toc, Tce, and Tcc. All have the same generator
matrix Bc (with tc = 0), but are very different in appearance. A semi-log plot was used to clearly show
the difference among the five distributions, in particular the exponential tails which show up as straight

lines. Note that because tc = 0, Tc and T have the same distribution.

transition matrix is

Pc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.70 0 0.30 0 0 0 0 0
0 0 0 1.00 0 0 0 0 0
0 0 0 0.75 0.25 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0.30 0 0 0 0.30 0.10 0.30 0

0.80 0 0 0 0 0 0 0.20 0
0 0 0.75 0 0 0 0 0 0
0 0 0 0 0 0 0.10 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with entrance and restart vectors

po = [0.60, 0.20, 0.20, 0, 0, 0, 0, 0, 0] and pc = [0, 0, 0, 0, 0, 0.40, 0.60, 0, 0].
The exit probability vectors are

q ′
e =

[
q ′
0

]
and q ′

c =
[

0′
1

]
.

After numerically evaluating Zc = (I − Pc)
−1, we obtained the column vectors

ε′
e = Zcq

′
e = [0.000, 0.000, 0.092, 0.000, 0.367, 0.186, 0.319, 0.932, 0.000]	,

ε′
c = Zcq

′
c = [1.000, 1.000, 0.908, 1.000, 0.633, 0.814, 0.681, 0.068, 1.000]	.
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Figure 2: (a) Plots of E[X(β)] and E[Xc(β)] as a function of β for three different values of tc. (b) Same
functions as in (a), but now multiplied by (1 − β/λu) (u ∈ {s, sc}). Plot (a) shows that, for tc > 0, the
no checkpointing curve lies below those with checkpointing for small β. But, as β increases, the curves
cross, and, finally, E[X(β)] goes off to ∞, as shown in plot (b). Thus, the resulting functions are finite

throughout the range up to β = λu = 0.1235 or 0.8000, and are meaningless above that point.

Note that ε′
e + ε′

c = ε′. From this come the branching probabilities poe = poε
′
e = 0.0184 and

poc = poε
′
c = 0.9816. Clearly, poe + poc = 1. Similarly, we computed pce = pcε

′
e = 0.2659

and pcc = pcε
′
c = 0.7341. As before, pce + pcc = 1. From (10) we calculated the expected

number of times the checkpoint will be executed, namely,

E[Nc] = poc

pce
= 0.9816

0.2659
= 3.6916.

We then computed the four conditional complementary distribution functions, F̄u(t), u ∈
[oe, oc, ce, cc], and plotted them in Figure 1 (again for tc = 0). We see two different slopes,
λoe = λoc = 1.3222 and λce = λcc = 0.8000, both different from λs = 0.1235. Note that F̄oe
has a nonzero slope at t = 0 [foe(0) > 0]. This can only occur if there is a path from entry to
exit that passes through only one node. That is the case here, namely c → 7 → e. All other
paths pass through at least two nodes. In fact, all paths to c, by construction, must pass through
both 4 and 9 (in general, · · · → m → M + 1 → c).

Using the representations for F̄u(t) in Section 3.3, E[X(β)], E[X(β)2], E[Xu(β)], and
E[Xu(β)2] (u ∈ {oe, oc, ce, cc}) were evaluated from (7) and (8). We then computed E[Xc(β)]
and E[Xc(β)2] from (11) and (12). This was done for three values of tc, with the values for
E[X(β)] and E[Xc(β)] plotted in Figure 2(a) as a function of β. As expected,

E[X(β = 0)] = E[Xc(β = 0; tc = 0)] < E[Xc(β = 0; tc > 0)].
But as β is increased, E[X(β)] crosses the other curves and goes to ∞ at β = λs = 0.1235.
From such graphs, it is not clear just where the blowups occur. But, from (11), and the spectral
decomposition theorem, it is easy to show that

Y := lim
β→λs

(
1 − β

λs

)
E[X(β)] = 1

λs
(pov

′
s)(usε

′),
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where us and v′
s are the eigenvectors of B for eigenvalue λs. It is clear that (1−β/λsc) E[Xc(β)]

must also approach a constant as β approaches λsc, so in Figure 2(b) we present the same four
functions, now scaled by their blowup factors, (1 − β/λu), u = s, sc. Clearly, they are finite
at β = 0.1235 and β = 0.800, respectively. Above those points the curves are meaningless.
This concurs with our argument that H̄c(x) behaves like a PT function with α = β/λsc.

Note that if µc < 0.8000, it dominates the tail and the blowup occurs at β = µc.

5. Conclusion

We have shown that if a procedure that can be described as a Markov chain is subjected
to random (exponentially distributed) failures, the formulae previously derived concerning the
RESTART problem can be applied to the Markov chain to yield E[X(β)], E[X(β)2], and its
asymptotic behavior as a PT with parameter α. Furthermore, if checkpointing is shown to
be needed, we have given a method for embedding the checkpoints and derived formulae for
getting E[Xc(β)], E[Xc(β)2], and αc(β). We have presented a nontrivial example to show how
everything fits together.

Appendix A. Compound sums of power tails

Proposition 1. Let X1, X2, . . . be i.i.d. PT with index α, and let N ≥ 0 be an independent
integer-valued RV, with SN = X1 + X2 + · · · + XN . Then SN is also PT with index α provided
that E[N ] < ∞ for 0 < α ≤ 2 and E[Nα/2] < ∞ for α ≥ 2.

Proof. That E[Sγ

N ] < ∞ for γ < α follows immediately from Theorem 5.1 of [7, p. 20].
Now look at γ > α. Choose n ≥ 1 with Pr[N ≥ n] > 0. Then

E[Sγ

N ] ≥ Pr[N ≥ n] E[E[Sγ

N | N ≥ n]]
≥ Pr[N ≥ n] E[E[Sγ

n | N ≥ n]]
= Pr[N ≥ n] E[Sγ

n ]
≥ Pr[N ≥ n] E[Xγ

1 ]
= ∞,

completing the proof.
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