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Abstract

A weighted graph G is a pair (V , E) containing vertex set V and edge set E , where each
edge e ∈ E is associated with a weight We. A subgraph of G is a forest if it has no cycles.
All forests on the graph G form a probability space, where the probability of each forest
is proportional to the product of the weights of its edges. This paper aims to simulate
forests exactly from the target distribution. Methods based on coupling from the past
(CFTP) and rejection sampling are presented. Comparisons of these methods are given
theoretically and via simulation.
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1. Introduction

A weighted graph G is a pair (V , E) containing vertex set V and edge set E , where each edge
e ∈ E is associated with a weight We. A subgraph of G is a forest, denoted by F , if it contains
all vertices and has no cycles. A forest is a tree, denoted by T , if all vertices are connected.
Figure 1 shows examples of a graph, a tree, and a forest.

Two probability spaces, the forest space and tree space, are particularly important. The
forest space is formed by all forests in the graph G, with forest probability distribution

P(F ) ∝ h(F ) =
∏
e∈F

We. (1)

The tree space is defined similarly, with tree probability distribution

P(T ) ∝ h(T ) =
∏
e∈T

We. (2)

The forest space and tree space on graphG are denoted byF (G) andT (G), respectively. We use
WF (G) := ∑

F∈F (G)

∏
e∈F We and WT (G) := ∑

T ∈T (G)

∏
e∈T We to denote the normalising

constants for distributions (1) and (2), respectively.
We are interested in the characteristics of the forest or tree distribution. For example, in

graphical models, where vertices denote random variables and edges denote the conditional
correlation of two variables given all other variables, we are interested in the edge inclusion
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Figure 1: Top: a graph with seven vertices; bottom-left: a tree on the graph; bottom-right: a forest on
the graph.

probability, P(e ∈ F), or the expected number of connected components in a forest. These
quantities are nontrivial to calculate explicitly. Markov chain Monte Carlo (MCMC) methods,
however, can be used to simulate forests or trees approximately from the above distributions
and then, based on the sampled realisations, estimates can be obtained. A potential weakness
of MCMC methods is that the simulated trajectory of a Markov chain will depend on its initial
state. A common practical recommendation is to ignore the early stages, the so-called burn-in
phase, before collecting realisations of the state of the chain. In practice, judgements about
convergence are often made by visual inspection of the realised chain or the application of
simple rules of thumb. Concerns about the quality of the sampled realisations of the simulated
Markov chains have motivated the search for Monte Carlo methods that can be guaranteed to
provide samples from the target distribution. This is usually referred to as perfect sampling.

Sampling a tree exactly from distribution (2) has been well studied in [1], [2], [4], [8], and
[14]. However, sampling forests from distribution (1) has received little attention. Although
distributions (1) and (2) are similar, perfect sampling for forests is much harder than perfect
sampling for trees. This is because rescaling the edge weights, We, does not change the
probability of a tree, since each spanning tree has the same number of edges, but it does change
the probability of a forest. For example, the simple graph G = (V , E), where V = {1, 2, 3}
and E = {{1, 2}, {1, 3}, {2, 3}}, induces seven spanning forests. If each edge has weight
We = 1 then each forest has probability P(F ) = 1

7 . But, if we rescale the weights by a constant
factor α �= 1, that is, We = α, then P(F ) = α2/(1 + 3α + 3α2) if F has two edges, and
P(F ) = α/(1 + 3α + 3α2) if F has one edge.

This paper aims to develop methods to draw samples exactly from distribution (1). We
propose new sampling methods based on coupling from the past and rejection sampling. The
paper is organised as follows. In Section 2 we introduce the notation and basic definitions. Then
in Section 3 we develop coupling-from-the-past methods for sampling forests. In Section 4 we
present rejection sampling methods. Comparisons of the two methods are provided in Section 5.
Discussions are given in Section 6.
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2. Preliminaries

An undirected graph G is a pair (V , E) consisting of a set of vertices V = {1, . . . , p} and a
set of edges E that join pairs of vertices. The edge e ∈ E that joins the vertices i and j is denoted
by e = {i, j}. Vertices i and j are neighbours if e = {i, j} ∈ E . A graph G1 = (V1, E1) is
called a subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. The degree of a vertex is the
number of vertices to which it is joined. A leaf in a tree or forest is a vertex of degree 0 or 1.
The boundary bd(A) of a subset A is the subset of vertices in V \ A that are neighbours of
vertices in A.

Let A be a subset of V . Then A is said to induce a subgraph GA = (A, EA), where EA is
the subset of E consisting of edges that join vertices in A. The size of a subgraph GA is equal
to the number of vertices in A.

A simple path between two vertices i and j is a sequence i = α1, . . . , αn = j of distinct
vertices such that {αk−1, αk} ∈ E for all k = 2, . . . , n. A closed path {α1, α2, . . . , αn, α1} is
called a cycle. Vertices i and j are connected if there is a path between them. A graph is said
to be connected if all pairs of vertices are connected. A graph G = (V , E) is said to have
components GA1 , . . . , GAk

if each subgraph GAi
is connected, A1, . . . , Ak is a partition of V ,

and bd(Ai) = ∅, i = 1, . . . , k.
A subgraph of G is a forest if it contains all vertices and has no cycles. A forest is a tree if

all vertices are connected. Forests and trees equipped with probability distributions (1) and (2)
are called random forests and random trees. Sampling a random forest or a random tree from
its distribution can be rephrased as sampling it from the weighted graph G.

3. Coupling from the past

3.1. Introduction of coupling from the past

Coupling from the past (CFTP) was introduced in the landmark paper of Propp and
Wilson [13], which showed how to provide perfect samples from the limiting distribution
of a Markov chain. The idea is to run all possible Markov chains simultaneously from the past
until all chains coalesce into a single chain, then keep running the coalesced chain and collect
a sample at time 0.

Let {Xt } be an ergodic Markov chain with state space X = {1, . . . , n}, where the probability
of going from i to j is pij and the stationary distribution is π . Suppose that we design an update
function φ(·, U), which satisfies P(φ(i, U) = j) = pij , where φ is a deterministic function
and U is a random variable. To simulate the next state Y of the Markov chain, currently in
state i, we draw a random variable U and let Y = φ(i, U). Let ft (i) = φ(i, Ut ), and define
the composition

F
t2
t1

= ft2−1 ◦ ft2−2 ◦ · · · ◦ ft1+1 ◦ ft1 for t1 < t2.

The coalescent idea of CFTP is that if F 0−M(X) has only one element denoted by X∗
0 then the

unique element X∗
0 is sampled from π .

Lemma 1. (From [13].) Assume that, with probability 1, there exists a time t = −T , the
backward coupling time, such that chains starting from any state in X = {1, . . . , n} at time
t = −T , and with the same sequence {Ut, t = −T , . . . , −1}, arrive at the same state X∗

0 .
Then it must follow that X∗

0 , defined with probability 1, comes from π .

If we run an ergodic Markov chain from time t = −∞ and with the sequence {Ut, t =
−T , . . . ,−1} after −T , the Markov chain will arrive at X∗

0 . Then X∗
0 comes exactly from π ,
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since it is collected at time 0 and the Markov chain started from −∞. Therefore, a CFTP
algorithm is that if (i) F 0−M(·) is a single point then output F 0−M(·), otherwise (ii) let M = 2M

and carry out step (i) again. Propp and Wilson [13] showed that the computational cost of the
algorithm can be reduced if there is a partial order for the state space X, which is preserved
by the update function φ. This is called monotone CFTP. Although monotone CFTP is easy to
perform, the requirement of monotonicity is very restrictive and finding a partial order preserved
by the Markov chains is a nontrivial task in many cases. An alternative improvement is CFTP
with bounding chains, such as that in [9] and [12]. If the bounding chains, which bound all
the Markov chains, coalesce then all Markov chains coalesce. Thus, if only several bounding
chains are required, the efficiency of the CFTP algorithm can be improved significantly.

3.2. MCMC algorithms

To use CFTP, we need to build an MCMC sampling algorithm. There is some previous work
on constructing MCMC samplers for more general graphs. For example, Jones [10] constructed
two samplers:

(a) Metropolis–Hastings where an edge to be updated is selected randomly, and

(b) Metropolis–Hastings where the choice of deleting or adding an edge is made first;

an edge is then selected at random either in the current graph or not, as appropriate. Propp
and Wilson [14] provided a Markov chain for moving among directed trees. It updates the
Markov chain by randomly selecting an edge not in the current directed tree and then deleting
an existing edge.

We will start by describing the MCMC sampler (a), as above, i.e. to pick the edge e uniformly
at random and then, with an appropriate probability, decide whether or not it should be added
or deleted in the forest.

We need to introduce some notation before giving the MCMC algorithm. We use {i, j} to
denote an undirected edge and (i, j) to denote a directed edge (an arrow), i → j . Given a
weighted graph G = (V , E) with weight Wi,j for edge e = {i, j}, we use (i, k) ∼ Unif{Ed} to
denote that the directed edge (i, k) is drawn by selecting an edge e uniformly from the edge set
E and the direction i → k is randomly assigned. We use i ↔ k|G and i � k|G to denote that
vertices i and k are connected and not connected in graph G, respectively.

The following algorithm provides a possible way of running a forest Markov chain.

Algorithm 1. (Forest Markov chain algorithm.)

UpdateForest((i, k), U, Ft , Ft+1)
# Inputs: (i, k) ∼ Unif{Ed },U ∼ Unif[0, 1], and Ft; output: Ft+1.
If e = {i, k} ∈ Ft or i � k|Ft 01

If U ≤ Wi,k/(1 + Wi,k) 02
Ft+1 = Ft ∪ e 03

Else 04
Ft+1 = Ft \ e 05

Else 06
Find the path from i to k, i → j �= k → · · · → k, in Ft 07
If U ≤ Wi,k/(Wi,j + Wi,k) 08

Ft+1 = Ft ∪ {i, k} \ {i, j} 09
Else 10

Ft+1 = Ft 11
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The algorithm samples an edge (i, k) uniformly from the edge set V and then decides whether
(i, k) should be added to the current forest Ft or removed from Ft . If (i, k) is in Ft or vertices
i and k are not connected in Ft then, by deleting {i, k} from Ft or adding {i, k} to Ft , the new
graph is still a forest. In such cases we update the forest Markov chain according to lines 01
to 05. If i and k are connected in the current forest then, by adding {i, k} to Ft , the new graph
will have a cycle. In this case we have to remove an edge from the cycle to guarantee that the
new graph is a forest. The edge to be removed is either {i, k} or some other edge {i, j}, which
is randomly chosen. If {i, k} is removed then the chain does not move (line 11); if {i, j} is
removed then Ft+1 = Ft ∪ {i, k} \ {i, j} (line 09). The Markov chain generated by repeating
Algorithm 1 is ergodic and we have the following result.

Proposition 1. The stationary distribution of the Markov chain generated by repeating Algo-
rithm 1 is P(F ) given in (1).

Proof. Algorithm 1 gives us a probability transition matrix R(F0, F1). Since

P(F1)R(F1, F0)

P(F0)R(F0, F1)
= 1,

the Markov chain has stationary distribution (1) by detailed balance.

3.3. CFTP with a lower chain

In this subsection we present a CFTP method where one bounding chain is involved.
A forest F is uniquely determined by its edge set E(F ). Therefore, we use {E(Ft )} to denote

the state of a forest Markov chain at time t . CFTP involves running individual Markov chains
simultaneously, starting from each possible initial forest. The chains are coupled so that when
two trajectories coincide they coalesce and continue as a single chain. The chains therefore
reduce in number as time goes on. At time t , let Ft be the set of forests that remain and let
∩E(Ft ) = ⋂

F∈Ft
E(F ) be the set of edges that are common to these remaining forests. Let

Lt be a subset of ∩E(Ft ).
Suppose that we could run all the Markov chains starting from −∞ and have a sequence

{Lt }, as described above. We call {Lt } the lower chain. Suppose that we record the graphical
structure of Lt at each step. If Lt becomes a spanning tree at time −τ then all the forest Markov
chains will have the same structure as Lt . This means that the forest Markov chains coalesce
at time −τ .

From the above observation we see that we should try to find updating rules for the chain {Lt }
such that if Lt ⊂ ∩E(Ft ) then Lt+1 ⊂ ∩E(Ft+1). Algorithm 2, below, provides an updating
approach for the lower chain Lt which guarantees that this condition is satisfied. Note that the
following notation is used in Algorithm 2. We use A and C to denote the set of neighbours of i

in G and Lt , respectively. We use {i, A} to denote the edge set of i in the graph G, and we use
{i, C} to denote the edge set of i in Lt . We define Wi,0 = 1.

Algorithm 2. (An updating approach for the lower chain.)

LowerCFTP((i, k), U, Lt , Lt+1)
# Inputs: (i, k) ∼ Unif{Ed },U ∼ Unif[0, 1], andLt; output: Lt+1.
Find vertex sets A and C 01
# Here A is the boundary of vertex i in G and C is the boundary
# of i in Lt.
If {i, k} ∈ Lt 02

If U ≤ Wi,k/(1 + Wi,k) then Lt+1 = Lt ∪ e 03
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Else then Lt+1 = Lt \ e 04
Else if i ↔ k|Lt 05

Find the path i → j (�= k) → · · · → k ∈ Lt 06
If U ≤ Wi,k/(Wi,j + Wi,k) then Lt+1 = Lt ∪ {{i, k}} \ {{i, j}} 07
Else then Lt+1 = Lt 08

Else 09
If U ≤ minj∈A∪{0} Wi,k/(Wi,j + Wi,k) 10

Lt+1 = Lt \ {i, C} ∪ {{i, k}} 11
Else 12

Find D = {j |j ∈ C, j �= k, U ≤ Wi,k/(Wi,k + Wi,j )} 13
Lt+1 = Lt \ {i, D} 14

The following proposition proves that Lt is always a subset of ∩E(Ft ).

Proposition 2. With Algorithm 2, if Lt ⊂ ∩E(Ft ) then Lt+1 ⊂ ∩E(Ft+1).

Proof. See Appendix A.

Here we only provide a simple explanation for the algorithm. In Algorithm 2, lines 02 to 08
update the lower chain according to the updating rules of the MCMC algorithm (Algorithm 1).
They guarantee Proposition 2 since only a subtree in Lt is involved and this subtree must be in
any F, F ∈ Ft .

When i � k|Lt , lines 10 to 14 of Algorithm 2 will be performed. The edge {i, k} will
be added in Lt , if it should be added in all forests, and some edges are removed from Lt to
guarantee Proposition 2.

Finally, we use Algorithm 3, below, to sample a forest from the target distribution.

Algorithm 3. (CFTP with a lower chain.)

FLAG = 0, t = −M and Lt = ∅ 01
Generate Ut ∼ Unif[0, 1] and (i, k)t ∼ Unif{Ed } : t = −∞, . . . , −1 02
Repeat FLAG= 1 and t = 0 03

If FLAG= 0 04
LowerCFTP((i, k)t , Ut , Lt , Lt+1) 05

Else 06
UpdateForest((i, k)t , Ut , Lt , Lt+1) 07

If FLAG= 0 and Lt+1 is a spanning tree 08
FLAG= 1 09

t = t + 1 10
If FLAG= 0 and t = 0 11

M = 2M, t = −M and Lt = ∅ 12

Proposition 3. Algorithm 3 returns a forest with probability distribution (1).

Proof. This follows since all the Markov chains coalesce.

The running time of this CFTP algorithm is at least equal to the waiting time that the lower
chain becomes a tree (see the complexity analysis in later sections). Therefore, when the graph
is not strongly connected (different parts of the graph are connected via edges with very small
weights), coupling takes a long time. To improve the coupling, we add an upper chain to the
algorithm, as described in the next subsection.
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3.4. CFTP with bounding chains

We follow the notation of Section 3.3 and we define, at time t , Ut to be a superset of the
union of the edges in all the edges in the remaining forests, that is,

Ut ⊃ ∪E(Ft ) =
⋃

F∈Ft

E(F ).

The sequence {Ut }0−∞ can be viewed as an upper chain. We run {Lt } and {Ut } simultaneously.
When Lt = Ut , all the forest Markov chains are squeezed into Lt . This means coalescence.
Therefore, we only need to set up the updating rules for Lt and Ut such that, for any Ft , at any
time t , we have Lt ⊂ E(Ft ) ⊂ Ut . Algorithm 4 and Algorithm 5, below, together provide us
with a way of doing this.

Algorithm 4. (An updating approach for the bounding chains.)

LowerUpperCFTP((i, k), U, Lt , Ut , Lt+1, Ut+1)
# Inputs: (i, k) ∼ Unif{Ed },U ∼ Unif[0, 1],Lt, andUt;
# outputs: Lt+1 andUt+1.
If {i, k} ∈ Lt 01

If U ≤ Wi,k/(1 + Wi,k) 02
Lt+1 = Lt, Ut+1 = Ut 03

Else then Lt+1 = Lt \ {i, k}, Ut+1 = Ut \ {i, k} 04
Else if i ↔ k|Lt 05

Find the path i → j (�= k) → · · · → k ∈ Lt 06
If U ≤ Wi,k/(Wi,j + Wi,k) 07

Lt+1 = Lt \ {i, j} ∪ {i, k}, Ut+1 = Ut \ {i, j} ∪ {i, k} 08
Else then Lt+1 = Lt , Ut+1 = Ut 09

Else 10
UPDATE((i, k), U, Lt , Ut , Lt+1, Ut+1) 11

Algorithm 5. (The subroutine of Algorithm 4.)

UPDATE ((i, k), U, Lt , Ut , Lt+1, Ut+1)
# Inputs: (i, k) ∼ Unif{Ed },U ∼ Unif[0, 1],Lt, andUt;
# Outputs: Lt+1 andUt+1.
Find the set B = {j |j �= i, i → j → · · · → k ∈ Ut } 01
If B = φ or B = {k} 02

If U ≤ Wik/(Wik + 1) 03
Ut+1 = Ut ∪ {i, k} and Lt+1 = Lt ∪ {i, k} 04

Else then Ut+1 = Ut \ {i, k} and Lt+1 = Lt \ {i, k} 05
Else 06

Find 07
C = {j |j �= k, j �= i, {i, j} ∈ Lt }
D = {j |j ∈ C, j �= k, U ≤ Wik/(Wik + Wij )}
A = B ∪ {0} \ {k}

If U ≤ minj∈A{Wi,k/(Wi,j + Wi,k)} 08
Find E = {l|l �= k and k ↔ l|Lt } 09
Lt+1 = (Lt \ {i, C}) ∪ {i, k} and Ut+1 = (Ut \ {i, E}) ∪ {i, k} 10

Else if U ≥ maxj∈A{Wi,k/(Wi,j + Wi,k)} 11
Ut+1 = Ut \ {i, k} and Lt+1 = Lt \ {i, k} 12

Else then Ut+1 = Ut ∪ {i, k} and Lt+1 = Lt \ {i, D} 13
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In Algorithm 5, B = φ or B = {k} means that i � k|Ut or i and k are connected only via
edge {i, k}. The vertex sets C and D are defined similarly to those in Algorithm 2.

The following proposition proves that Lt and Ut governed by Algorithm 4 and Algorithm 5
bound all the edge sets, E(F ), for F ∈ Ft .

Proposition 4. Given Ut ⊃ ∪E(Ft ) and ∩E(Ft ) ⊃ Lt , Algorithm 4 and Algorithm 5 guaran-
tee that Ut+1 ⊃ ∪E(Ft+1) and ∩E(Ft+1) ⊃ Lt+1.

Proof. See Appendix B.

Here we only provide a simple explanation for the algorithms. In Algorithm 4, lines 01
to 09 update Lt and Ut according to the MCMC algorithm (Algorithm 1). When i � k|Lt

(line 10), it will call the subroutine UPDATE, given by Algorithm 5. In Algorithm 5, lines 02
to 05 update Ut and Lt according to the MCMC algorithm and they guarantee Proposition 4
since i and k can be connected only through the edge {i, k}. Lines 08 to 10 of Algorithm 5 add
edge {i, k} to Lt and Ut , delete all edges where possible from Lt , and delete all edges {i, l},
which conflict with i ↔ k ↔ l|Ut , from Ut . Lines 11 to 12 delete {i, k} from both Lt and
Ut . Line 13 adds {i, k} to Ut and deletes {i, k} from Lt .

Finally, we have Algorithm 6, below, the CFTP algorithm with two bounding chains, which
returns a forest from the target distribution.

Algorithm 6. (CFTP with bounding chains.)

FLAG = 0, t = −M, Ut = E(G) and Lt = ∅ 01
Generate Ut ∼ Unif[0, 1] and (i, k)t ∼ Unif{Ed }: t = −∞, . . . , 0 02
Repeat until FLAG= 1 and t = 0 03

If FLAG= 0 04
LowerUpperCFTP((i, k)t , Ut , Lt , Ut , Lt+1, Ut+1) 05

Else 06
UpdateForest((i, k)t , Ut , Lt , Lt+1) 07

If FLAG= 0, and Lt+1 = Ut+1 or Lt+1 is a spanning tree 08
FLAG= 1 09

t = t + 1 10
If FLAG= 0 and t = 0 11

M = 2M, t = −M, Ut = E(G) and Lt = ∅ 12

Proposition 5. Algorithm 6 returns a forest with probability distribution (1).

Proof. This follows since, when the upper chain and the lower chain become the same, all
the Markov chains coalesce.

Algorithm 6 is more efficient than Algorithm 3. This is because we have two bounding
chains: the upper chain and the lower chain. The upper chain will remove the edges which
have tiny weights. Then the graph is divided into several parts. Thus, the large graph will
be divided into several small graphs which have edges with large weights. The lower chain
will deal with these small graphs. So, if the upper chain and lower chain work together, the
coalescence will be achieved rapidly.

Note that finding the vertex sets A, B, C, D, and E in Algorithm 4 is not difficult. Vertex
sets C or D can be found in polynomial time, since it is equivalent to finding some neighbour
set of i in Lt . Vertex set E is the connectivity set of k in Lt . It needs at most time complexity
O(p2), the complexity of visiting all edges. Finding vertex set B needs a running time of at
most pO(ω), where ω is the complexity of finding a path from i to k in Ut . So B can be found
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in polynomial time since finding a path from i to k is easier than finding the connectivity set
of i. It then follows that A can be found in polynomial time.

4. Rejection sampling methods

4.1. Rejection sampler with Bernoulli sampling

In this subsection we present a naive sampling algorithm.

Algorithm 7. (Bernoulli rejection sampler.)

# Inputs: G andWe, e ∈ E = {e1, . . . , em}; output: F.
g = ∅ 01
Repeat i = 1, · · · , m 02

U ∼ Unif[0, 1] 03
If U ≤ Wei

/(1 + Wei
) 04

g = g ∪ ei 05
If g is not a forest 06

Return to line 02 and g = ∅ 07
F = g 08

Algorithm 7 samples edges one by one according to the probability We/(1 + We). The
result graph is accepted if it is a forest, otherwise it is rejected. It can easily be proved that
Algorithm 7 returns a forest from the target distribution. The algorithm will be efficient if the
graph G is a sparse graph and no cycle in G is made of heavily weighted edges. If there is a
cycle in which all edge weights are large then the Bernoulli sampler is likely to return a graph
g with this cycle and g will be rejected.

4.2. Rejection method based on tree sampling

Given a graph G, we may add a new vertex 0 and edges {0, i}, i = 1, . . . , p, to the graph
and obtain G̃. Then we can sample a random tree T̃ from G̃ by using any existing tree sampling
methods given in [1], [4], [8], or [14]. Then delete the edges of vertex 0 from T̃ and obtain a
forest F ∗.

Proposition 6. If a forest F ∗ is sampled by the above approach then F ∗ has probability P̂(F ∗)
given by

P̂(F ∗) ∝ ĥ(F ∗) = c(F ∗)
∏

e∈E(F ∗)
We,

where

c(F ∗) =
k∏

i=1

si,

k is the number of components in F ∗, and si is the size of the ith component.

Proof. If we delete vertex 0 and its edges in T̃ , sampled from G̃, then we obtain a forest F ∗.
Each F ∗ may correspond to several different trees, T̃ . This is illustrated in Figure 2. Let
A = A(F ∗) = {T̃ : such that F can be derived from T̃ }. Therefore,

P̂(F ∗) =
∑

T̃ ∈A

∏
e∈E(T̃ )

We∑
T̃ ∈T (G̃)

∏
e∈E(T̃ )

We

.
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Figure 2: Rejection sampler. (a) Original graph G; (b) graph G̃;
(c) the sampled forest; (d) and (e) two trees sampled from G̃.

Obviously, all the T̃ s in A have the same probability. Then it follows that

P̂(F ∗) = c(F ∗)
∏

e∈E(F ∗) We∑
F ∗∈F (G) c(F ∗)

∏
e∈E(F ∗) We

,

where c(F ∗) denotes the number of trees that correspond to the same forest F ∗. We may also
write P̂(F ∗) ∝ ĥ(F ∗) = c(F ∗)

∏
e∈E(F ∗) We.

Suppose that F ∗ has k components and that the ith component has size si . Then the ith
component of F ∗ is a subtree with si vertices. This subtree can be derived from si different
subtrees in G̃ by deleting vertex 0 and its edges. Therefore, the total number of T̃ s in A is
c(F ∗) = ∏k

i=1 si .

We have h(F ) ≤ ĥ(F ), according to c(F ) ≥ 1. We can then use rejection sampling to sample
F from P(F ), since we can sample from ĥ(F ), by using Proposition 6. Therefore, summarising
the above, we have the following algorithm which returns a forest with probability distribution
given by (1).

Algorithm 8. (Rejection sampler based on tree sampling.)

# Inputs: G andWe, e ∈ E; output: F.
Sample a tree T from G̃ and U from Unif[0, 1] 01
Delete vertex 0 and its edges in T̃ and achieve an undirected
forest F ∗ 02
# F ∗ has the probability P̂(F ∗).
If U ≤ P(F ∗)/P̂(F ∗) then accept and output F ∗; 03
else reject F ∗ and go back to step 01. 04

The acceptance probability of the algorithm is WF (G)/WT (G̃)
. Therefore, the efficiency of

the algorithm depends on the graph structure. In Section 5 we will provide a detailed complexity
analysis for the algorithm.
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There are various tree sampling algorithms. The methods in [4] and [8] are based on the
matrix tree theorem (see Appendix D) and matrix determinant calculation, therefore, they are
called determinant-based tree sampling algorithms. The methods in [1] and [14] are based on
running random walks on the graphs, therefore, they are called random-walk tree sampling
algorithms. According to different tree sampling methods, we categorise rejection sampling
based on tree sampling (Algorithm 8) as determinant rejection sampling and random-walk
rejection sampling.

5. Complexity analysis for special graphs

All existing tree sampling algorithms [1], [4], [8], [14] are polynomial-time algorithms with
complexity O(p3) (determinant-based tree sampling algorithms) or O(p log(p)) (random-walk
tree sampling algorithms). However, sampling forests is more complex than sampling trees.
When we sample a random forest from a weighted graph, analysing the complexity of the
algorithms in Sections 3 and 4 is nontrivial. But it is possible to derive complexity results for
simple graphs, such as complete graphs and square lattices with weight 1 for each edge.

Definition 1. A square lattice Ln = (V , E) is a graph having vertex set

V = {1, . . . , n} × {1, . . . , n},
with the two vertices (i, j) and (i′, j ′) being adjacent if |i − i′| + |j − j ′| = 1.

5.1. Complexity analysis of CFTP algorithms

When we sample a forest from a uniformly weighted square lattice with Algorithm 3, we
can show that the running time of the algorithm grows exponentially, as the number of vertices
increases. Algorithm 2 can be simplified to Algorithm 9, below, for a lattice graph where each
edge has weight 1.

Algorithm 9. (A lower chain for a square lattice.)

LowerUniformCFTP((i, k), U, Lt , Lt+1)
# Inputs: (i, k) ∼ Unif{Ed },U ∼ Unif[0, 1], andLt; output: Lt+1.
If {i, k} ∈ Lt 01

If U ≤ 0.5 then Lt+1 = Lt 02
Else then Lt+1 = Lt \ {i, k} 03

Else if i ↔ k|Lt 04
Find the path i → j �= k → · · · → k ∈ Lt 05
If U ≤ 0.5 then Lt+1 = Lt \ {i, j} ∪ {i, k} 06
Else Lt+1 = Lt 07

Else 08
If U ≤ 0.5 then Lt+1 = Lt \ {i, C} ∪ {i, k} 09
Else Lt+1 = Lt 10

Proposition 7. Given that G is a uniformly weighted square lattice, if we start Lt from the
empty forest and update it with Algorithm 9, then it takes an exponential time to become a
spanning tree.

Proof. See Appendix C.

When we sample from a square lattice, Algorithm 6 is more efficient than Algorithm 3,
since Algorithm 6 uses two bounding chains and the amount of coalescent time is always less
than the amount of time required by CFTP with a lower chain. But it is nontrivial to analyse
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theoretically the complexity of Algorithm 6 for sampling from a square lattice. We therefore
leave this as future research work.

5.2. Complexity analysis for Algorithm 8

Algorithm 8 is a polynomial-time algorithm when sampling from a complete graph with
weight 1 on each edge, but it is an exponential-time algorithm when sampling from a square
lattice.

Proposition 8. The running time of Algorithm 8 for the complete graph with weight 1 on each
edge is O((p + 1)γ ), where γ is the running time of sampling a tree from the graph G̃.

Proof. For a complete graph with weight 1 on each edge, the normalising constant WF (G)

or WT (G) is the number of forests or trees in G. Therefore, the running time of the rejection
sampler (Algorithm 8) is the running time of sampling T̃ from G̃ (γ = O((p + 1) log(p + 1))

for random-walk tree sampling methods and γ = O((p + 1)3) for determinant tree sampling
methods) divided by the acceptance probability, WF (G)/WT (G̃)

.
It is well known that the number of trees in a complete graph is pp−2. According to [15],

we know that in a complete graph WF (G)/WT (G), the ratio of the number of forests and the
number of spanning trees, is approximately

√
e when p is large. We then have

WF (G)

WT (G̃)

≈
√

epp−2

(p + 1)p−1 = 1/(p + 1)√
e

for large p.

Therefore, Algorithm 8 is a polynomial-time algorithm when sampling from complete graphs.

Proposition 9. Algorithm 8 is an exponential-time algorithm when we sample a forest from a
uniformly weighted square lattice, i.e. a square lattice with We = 1 for each edge.

Proof. From Lemmas 2 and 3, we have

WT (G̃n)

WF (Gn)

≥ 4.2655(n−1)(n−2)

3.741 01n2 ,

which increases exponentially with n2. This means that the acceptance probability decreases
to 0 exponentially with n2. Therefore, Algorithm 8 needs an exponential running time when
sampling from a square lattice.

Lemma 2. (From [3].) Let Gn be an n × n square lattice Ln. Then

3.644 97 ≤ lim
n→∞[WF (Gn)]1/n2 ≤ 3.741 01.

Lemma 3. Let G̃n be the graph derived from the n × n square lattice by Algorithm 8. The
number of spanning trees in G̃n satisfies WT (G̃n)

> 4.2655(n−1)(n−2).

Proof. See Appendix D.

5.3. Method comparisons via simulation

We compare the running times of various forest sampling algorithms for uniformly weighted
complete graphs and lattices. We consider Bernoulli rejection sampling, CFTP with bounding
chains, and random-walk rejection sampling. We ignore CFTP with a lower chain and deter-
minant rejection sampling since, for complete graphs and lattices, they are always less efficient
than CFTP with bounding chains and random-walk rejection sampling, respectively.
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Table 1: Running time (in seconds) comparisons for forest sampling on a square lattice, where
the last row gives the mean number of trees required for each forest in random-walk rejection

sampling.

Number of nodes 16 25 36
Bernoulli rejection

sampling <1 1 3
CFTP 14 66 234
Random-walk

rejection sampling 8 149 4120
Mean number of trees 55 443 4590

Table 2: Running time (in seconds) comparisons for sampling on uniformly weighted complete graphs,
where the last row gives the mean number of trees required for each forest in random-walk rejection

sampling.

Number of nodes 15 25 35
Bernoulli rejection

sampling – – –
CFTP 1.2 × 103 2.8 × 104 7.9 ×105

Random-walk
rejection sampling 2.5 10 36

Mean number of trees 19 32 50

The results are shown in Table 1 and Table 2. For sampling from the square lattices, random-
walk rejection sampling performs very poorly because the acceptance probability decreases to 0
exponentially; CFTP performs much better than random-walk rejection sampling, but worse
than Bernoulli rejection sampling.

Now we consider sampling forests from complete graphs where each edge has weight 1.
Random-walk rejection sampling uses polynomial running time; for example, for a graph
with 35 nodes, it only needs 36 seconds to obtain 1000 forests. Bernoulli rejection sampling
continues indefinitely and fails to obtain an output in realistic time, and CFTP takes a long time
to couple, because the upper chain, started from the whole graph, and the lower chain, started
from the empty graph, are far from each other.

Bernoulli rejection sampling is the best method for sampling from a lattice. But if the lattice
has loops made of heavily weighted edges, Bernoulli rejection sampling will be very inefficient.
For example, for the graph given in Figure 3, Bernoulli rejection sampling takes 30 minutes and
random-walk rejection sampling takes about 90 minutes, while CFTP only needs 6 minutes. In
this case CFTP is the best.

We conclude that perfect sampling for random forests is more difficult than perfect sampling
for random trees. Among the methods introduced in this paper, no method is uniformly the
best. For complete graphs where each edge has weight 1, Algorithm 8 is very efficient and we
recommend this algorithm for almost uniformly weighted graphs. The algorithm also works
well for some heterogeneously weighted graphs, but the acceptance probability depends on the
underlying graphical structure.

CFTP algorithms are very inefficient for uniformly weighted complete graphs, but for square
lattices with loops made of heavily weighted edges, we recommend using the CFTP with
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Figure 3: Lattice with unequal weights. The thin lines have weight 1 and the thick lines have weight 20.

bounding chains algorithm (Algorithm 6). For sparse graphs without heavily weighted loops,
we recommend using Bernoulli rejection sampling (Algorithm 7).

6. Discussion

It is a very challenging problem to simulate forests from a graph. This paper provides
practical solutions. When sampling from square lattices, we provide the complexity of CFTP
with a lower chain (Algorithm 2). But, for the same problem, the complexity of CFTP with
bounding chains (Algorithm 6) is still unknown. This is left as future research work.

The proposed methods can be applied to Gaussian graphical models where we are interested
in the selection of a conditional correlation structure for multivariate random variables. The
correlation structure is usually represented as a graph where the vertices denote the random
variables and the edges denote the conditional correlation of two variables given all other
variables. We may assume that the unknown graph structure is a forest. With some standard
Bayesian approaches [6], [7], [10], the posterior distribution of the forests has the form of (1).
We can use the presented perfect sampling methods introduced in Sections 3 and 4 to sample
realisations from the posterior and then make inference on the characteristics of the forest
posterior distribution. More application results can be found in [5].

Appendix A. Proof of Proposition 2

Algorithm 2 updates the lower chain Lt through three cases:

1. the randomly selected edge, {i, k} ∈ Lt ,

2. {i, k} /∈ Lt and i ↔ k|Lt ,

3. i � k|Lt .

We now prove that, under each case, Proposition 2 is true, i.e. if Lt ⊂ ∩E(Ft ) then Lt+1 ⊂
∩E(Ft+1).
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Case 1. If {i, k} ∈ Lt then {i, k} ∈ E(Ft ) for any Ft ∈ Ft . According to Algorithms 1
and 2, if U ≤ Wi,k/(1 + Wi,k) then E(Ft+1) = E(Ft ), Ft ∈ Ft , and Lt+1 = Lt . So we have

Lt+1 = Lt ⊂ ∩E(Ft ) = ∩E(Ft+1).

On the other hand, we also know that if U > Wi,k/(1 +Wi,k) then E(Ft+1) = E(Ft ) \ {i, k}
and Lt+1 = Lt \ {i, k}. So

Lt+1 = Lt \ {i, k} ⊂ [∩E(Ft )] \ {i, k} = ∩[E(Ft ) \ {i, k}] = ∩E(Ft+1).

Case 2. {i, k} /∈ Lt and i → j → · · · → k ∈ E(Ft ), j �= k, Ft ∈ Ft . According
to Algorithm 1, if U ≤ Wi,k/(Wi,j + Wi,k) then E(Ft+1) = E(Ft ) \ {i, j} ∪ {i, k}; otherwise
E(Ft+1) = E(Ft ). Furthermore, according to lines 05 to 08 ofAlgorithm 2, ifU ≤ Wi,k/(Wi,j+
Wi,k) then Lt+1 = Lt \ {i, j}∪ {i, k}; otherwise Lt+1 = Lt . Obviously, if U ≤ Wi,k/(Wi,j +
Wi,k) and Lt ⊂ ∩E(Ft ) then Lt+1 ⊂ ∩E(Ft+1).

Case 3. If i � k|Lt then vertices i and k are in different subtrees of Lt . So there may
exist different paths from i to k in different forest Markov chains, say i → jFt → · · · → k ∈
E(Ft ), Ft ∈ Ft . Note that if i and k are not connected in Ft or they are neighbours, we define
jFt = 0.

Remember the definition of A in Algorithm 2. If U ≤ minj∈A∪{0} Wi,k/(Wi,j + Wi,k) then
E(Ft+1) = E(Ft ) \ {i, jFt } ∪ {i, k}, according to the updating rules of the forest Markov chain.
Line 11 of Algorithm 2 also tells us that Lt+1 = Lt \ {i, C} ∪ {i, k} = Lt \ {i, A} ∪ {i, k}.
So

Lt+1 = Lt \ {i, A} ∪ {i, k} ⊂ ∩(E(Ft ) \ {i, jFt } ∪ {i, k}) = ∩E(Ft+1).

If U > minj∈A∪{0} Wi,k/(Wi,j + Wi,k), we have to introduce extra notation to simplify
the proof. For simplicity, we use F ∗

t to denote Ft if jFt = 0. When jFt �= 0, if U >

Wi,k/(Wi,k + Wi,jFt
), we use F̃t to denote Ft ; otherwise we use F̄t . With this notation, we

divide all the forests Ft into three groups: F ∗
t , F̃t , and F̄t . According to D = {j |j ∈ C, j �=

k, U ≤ Wi,k/(Wi,k + Wi,j )} in line 13 of Algorithm 2, we have
⋃

F̄t
{i, jF̄t

} ∪ {i, k} ⊃ {i, D}.
Therefore,

Lt+1 = Lt \ {i, D}
= Lt \

[⋃
F̄t

{i, jF̄t
} ∪ {i, k}

]

⊂
[⋂

F̃t

E(F̃t )

]
∩

[⋂
F ∗

t

E(F ∗
t )

]
∩

[⋂
F̄t

E(F̄t )

]
\

[⋃
F̄t

{i, jF̄t
} ∪ {i, k}

]

⊂
[⋂

F̃t

E(F̃t )

]
∩

[⋂
F ∗

t

E(F ∗
t ) \ {i, k}

]
∩

[⋂
F̄t

E(F̄t ) \
⋃
F̄t

{i, jF̄t
}
]

=
[⋂

F̃t

E(F̃t )

]
∩

[⋂
F ∗

t

E(F ∗
t ) \ {i, k}

]
∩

[⋂
F̄t

(E(F̄t ) \ {i, jF̄t
})

]

⊂
[⋂

F̃t

E(F̃t+1)

]
∩

[⋂
F ∗

t

E(F ∗
t+1)

]
∩

[⋂
F̄t

E(F̄t+1)

]
(3)

= ∩E(Ft+1).
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Note that we should prove that the relation ‘⊂’ in (3) is correct. According to Algorithm 1
(a) if jFt �= 0 then E(Ft+1) = E(Ft ) \ {i, jFt } ∪ {i, k} given U ≤ Wi,k/(Wi,k + Wi,jFt

), which
implies that E(F̄t ) \ {i, jF̄t

} ⊂ E(F̄t+1), (b) if jFt �= 0 then E(Ft+1) = E(Ft ) given U >

Wi,k/(Wi,k + Wi,jFt
), which implies that E(F̃t+1) = E(F̃t ). On the other hand, if jFt = 0

then E(Ft+1) = E(Ft ) ∪ {i, k} given U ≤ Wi,k/(Wi,k + 1) and E(Ft+1) = E(Ft ) \ {i, k} given
U > Wi,k/(Wi,k + 1). So (c) if jFt = 0 then E(Ft ) \ {i, k} ⊂ E(Ft+1).

Therefore, the relation ‘⊂’ in (3) is correct.

Appendix B. Proof of Proposition 4

Algorithm 4 updates the upper chain and lower chain through three cases:

1. the randomly selected edge, {i, k} ∈ Lt ,

2. {i, k} /∈ Lt and i ↔ k|Lt ,

3. i � k|Lt .

Under cases 1 and 2, the proposition follows from the proof of Proposition 2. In case 3
Algorithm 4 calls Algorithm 5. So we only need to prove that Algorithm 5 guarantees the
proposition under i � k|Lt .

Algorithm 5 updates the upper and lower chains through two cases: (a) B = φ or B = {k},
(b) B �= φ and B �= {k}.

If B = φ or B = {k} then i and k are either neighbours or not connected in Ft , Ft ∈ Ft . So
given U ≤ Wik/(Wik + 1) or not, the upper chain and the lower chain should be updated in the
same way. In this case the proposition follows from the proof of Proposition 2.

If B �= φ and B �= {k} then i and k may be connected through different paths. If
U ≤ minj∈A{Wi,k/(Wi,j + Wi,k)} then we can prove that Lt+1 ⊂ ∩E(Ft+1), as in the proof of
Proposition 2. Remember the definition of the vertex set E in Algorithm 5, which is the connec-
tivity set of k in Lt . Therefore, E will also be part of the connectivity set of k in Lt+1. In Lt+1, i
and k are neighbours. Obviously, in Lt+1 there is a path between i and any vertex in E via k. So,
if j ∈ E then {i, j} /∈ E(Ft+1), and, furthermore, {i, E} /∈ ∪E(Ft+1). In addition, given U ≤
minj∈A{Wi,k/(Wi,j + Wi,k)}, we have E(Ft+1) = E(Ft ) \ {i, jFt } ∪ {i, k} ⊂ E(Ft ) ∪ {i, k}.
Therefore,

Ut+1 = [Ut \ {i, E}] ∪ {i, k}
⊃ [∪E(Ft ) ∪ {i, k}] \ {i, E}
⊃ ∪E(Ft+1) \ {i, E}
= ∪E(Ft+1).

When U ≥ maxj∈A{Wi,k/(Wi,j + Wi,k)}, {i, k} will be deleted from all Ft . We have
E(Ft+1) = E(Ft ) \ {i, k}. So

Ut+1 = Ut \ {i, k} ⊃ ∪E(Ft ) \ {i, k}
= ∪E(Ft+1)

⊃ ∩E(Ft+1)

= ∩[E(Ft ) \ {i, k}]
⊃ Lt \ {i, k}
= Lt+1.
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If minj∈A{Wi,k/(Wi,j +Wi,k)} ≤ U ≤ maxj∈A{Wi,k/(Wi,j +Wi,k)} then, for some Ft ∈ Ft ,
E(Ft+1) = E(Ft ), for some Ft , E(Ft+1) = E(Ft ) \ {i, k}, and for the other Ft , E(Ft+1) =
E(Ft ) \ {i, jFt } ∪ {i, k}. Obviously, we have

Ut+1 = Ut ∪ {i, k} ⊃ ∪E(Ft ) ∪ {i, k} ⊃ ∪E(Ft+1).

We can prove that ∩E(Ft+1) ⊃ Lt+1, by arguments similar to the proof of Proposition 2.
Therefore, the proposition is proved.

Appendix C. Proof of Proposition 7

Before proving this proposition, we introduce some necessary definitions and notation. Let
Gn = (V , E) be the n × n square lattice, let St be the largest subtree in Lt , and let |St | be the
number of edges of St . Let Gn \ St be the graph induced by V \ VSt , the vertices in Gn not in
St . Let ξt = n2 − 1 − |St |. Note that ξt = 0 implies that ξt+1 = 0. Assume that 1 > α ≥ 1

2 .
Let σt = {Lt : α(n2 + 1) < |St | < n2 − 1}. We define the edge sets

A1 = {(i, j) | i, j ∈ Gn \ St },
A2 = {(i, j) | i, j ∈ St } ∩ {(i, j) | (i, j) /∈ St },
A3 = {(i, j) | (i, j) ∈ St },
A4 = {(i, j) | i ∈ Gn \ St } ∩ {(i, j) | j ∈ St },
A5 = {(i, j) | i ∈ St } ∩ {(i, j) | j ∈ Gn \ St }.

As when running the lower chain inAlgorithm 9, we randomly choose a directed edge e = (i, j)

in each step and then update Lt . Obviously, each set Ai, i ∈ {1, . . . , 5}, consists of all the
possible choices of e = (i, j). For simplicity, we use Ai to denote the event e ∈ Ai . Let
P(Ai | σt ) = αi, i = 1, . . . , 5. Note that αi depends on σt and

∑5
i=1 αi = 1.

Examples of the five kinds of events A1, . . . , A5 are provided in Figure 4. Figure 4(a) is an
example of event A1, where vertices i and j do not belong to the largest subtree St . Figure 4(b)
is an example of event A2, where both i and j belong to St , but the edge {i, j} does not belong
to St . In Figure 4(c), {i, j} belongs to St , therefore it is event A3. Figure 4(d) is event A4,
where j belongs to St but i does not. Figure 4(e) is event A5.

The following lemma is also necessary for proving Proposition 7.

Lemma 4. With the previous definitions and notation, α4 = α5 and α3 ≥ 1
3 (α4 + α5).

Proof. Let |VSt | be the number of vertices in St . Therefore, given a large value of n and
|VSt | > αn2, St has at least three vertices which are not leaves (vertices with degree 1), since
a lattice has maximum vertex degree 4. Then we can find three vertices which have at most
two neighbours not in St , since it has at most four neighbours, of which at least two are in St .
Similarly, each of the other vertices has at most three neighbours not in St .

We have α4 = α5 and α4 + α5 is the probability that (i, j) has one end in St and the other
end not in St . Then, given σt and a large value of n, we have α4 + α5 ≤ 3(|VSt | − 3)/|E | +
(2)(3)/|E | = 3(|VSt | − 1)/|E |, where |E | is the number of edges in the square lattice.

We also have α3 = |St |/|E | = (|VSt | − 1)/|E |, so that α3 ≥ 1
3 (α4 + α5).

Proof of Proposition 7. Assume that we run Lt from time 0 to ∞. The coalescence time
is T = min{t; |St | = n2 − 1} = min{t; ξt = 0}. Note that ξ0 = n2 − 1. For some δ > 1, we
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(a) (b) (c)

(d) (e)
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Figure 4: The events {e ∈ Ai}, i = 1, . . . , 5. (a) A1, (b) A2, (c) A3, (d) A4, and (e) A5.

immediately attain the following inequality:

P(T ≤ t | ξ0) = P(ξt = 0 | ξ0)

= P(δ−ξt = 1 | ξ0)

≤ E(δ−ξt | ξ0).

Given A1 = {(i, j) | i, j ∈ Gn \ St }, we have P(|St+1| = |St | | A1, σt ) = 1, since, accord-
ing toAlgorithm 9, given e ∈ A1, the choice of e has no effect on |St+1|. So EA1(δ

|St+1|−|St | | σt )

= α1.
Similarly, given A2 = {(i, j) | i, j ∈ St } ∩ {(i, j) | (i, j) /∈ St }, we have P(|St+1| =

|St | | A2, σt ) = 1. So EA2(δ
|St+1|−|St | | σt ) = α2.

Given A3 = {(i, j) | (i, j) ∈ St }, then

P(|St+1| = |St | | A3, σt ) = P(|St+1| − |St | ≤ −1 | A3, σt ) = 1
2 .

This is because, when (i, j) ∈ St , the edge (i, j) has probability 1
2 of being removed from St

and probability 1
2 of not being removed. If (i, j) is removed then the number of edges of the

largest subtree in Lt will decrease by at least 1. Thus, EA3(δ
|St+1|−|St | | σt ) ≤ α3(

1
2 + 1

2δ−1).
Recall that A4 = {(i, j) | i ∈ Gn \ St } ∩ {(i, j) | j ∈ St }. In this case, edge (i, j) has

probability 1
2 of being added to St and probability 1

2 of not being added. Then

P(|St+1| = |St | | A4, σt ) = P(|St+1| = |St | + 1 | A4, σt ) = 1
2 .

So EA4(δ
|St+1|−|St | | σt ) = α4(

1
2 + 1

2δ).
Remember that A5 = {(i, j) | i ∈ St } ∩ {(i, j)|j ∈ G \ St }. Similar to the case of A3, we

have P(|St+1| = |St | | A5, σt ) = 1
2 and P(|St+1| − |St | ≤ −1 | A5, σt ) = 1

2 . Therefore,
EA5(δ

|St+1|−|St | | σt ) ≤ α5(
1
2 + 1

2δ−1).
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With all the previous illustration and Lemma 4, given δ ≤ 5
3 , we have

E(δ|St+1|−|St | | α(n2 + 1) < |St | < n2 − 1)

=
5∑

i=1

EAi
(δ|St+1|−|St | | σt )

≤ α1 + α2 + α3
( 1

2 + 1
2δ−1) + α4

( 1
2 + 1

2δ
) + α5

( 1
2 + 1

2δ−1)
= 1 + 1

2 ((α3 + α5)(δ
−1 − 1) + α4(δ − 1))

≤ 1 + 1
2

(( 5
3α5

)
(δ−1 − 1) + α5(δ − 1)

)
≤ 1. (4)

From (4) we have

E(δ−ξt+1 | ξt )

≤ E(δ−ξt+1 | 0 < ξt ≤ (1 − α)(n2 − 1) − 2α)

+ E(δ−ξt+1 | (1 − α)(n2 − 1) − 2α < ξt < n2 − 1)

≤ δ−ξt E(δ−(ξt+1−ξt ) | 0 < ξt ≤ (1 − α)(n2 − 1) − 2α) + δ−[(1−α)(n2−1)−2α]

= δ−ξt E(δ|St+1|−|St | | α(n2 + 1) < |Ft | < (n2 − 1)) + δ−[(1−α)(n−1)−2α]

≤ δ−ξt + δ−[(1−α)(n−1)−2α].

Therefore,
P(T ≤ t | ξ0) ≤ E(δ−ξt | ξ0)

= E(E(δ−ξt | ξt−1) | ξ0)

≤ E(δ−ξt−1 | ξ0) + δ−[(1−α)(n2−1)−2α]

≤ δ−ξ0 + tδ−[(1−α)(n2−1)−2α].

Therefore, given t1 = �(1 − δ−ξ0)δ[(1−α)(n2−1)−2α]�,

E(T | ξ0) =
∑
t≥0

P(T ≥ t | ξ0)

≥
∑
t≥0

max{0, 1 − δ−ξ0 − tδ−[(1−α)(n2−1)−2α]}

=
∑

0≤t≤t1

(1 − δ−ξ0 − tδ−[(1−α)(n2−1)−2α])

= O(t1).

This means that we need exponential coupling time, since t1 increases exponentially with n2.
The largest value of δ available is 5

3 . Given δ = 5
3 and α = 1

2 , we have t1 = O(( 5
3 )(n

2−3)/2).
This means that the expected running time is at least O(( 5

3 )(n
2−3)/2).

Appendix D. Matrix tree theorem and the proof of Lemma 3

Lemma 5. (Matrix tree theorem.) The normalising constant WT is equal to any cofactor of
the weighted degree matrix of G minus the weighted adjacency matrix of G.
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The weighted degree matrix of G is a diagonal matrix with the ith diagonal entry equal to∑
j �=i Wij , where the summation is for all neighbours of i. The weighted adjacency matrix of

G is A = (aij ), where aii = 0 and aij = Wij , i �= j , for all i, j . See, for example, [11] for a
proof of Lemma 5.

Proof of Lemma 3. Assume that Gn is an n × n uniformly weighted square lattice and that
G̃n is the graph formed by adding an extra vertex 0 and extra edges {i, 0} into Gn.

According to the matrix tree theorem, we have

WT (G̃n)
= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A − I −I 0 · · · 0 0
−I A −I · · · 0 0
0 −I A · · · 0 0
...

. . .
. . .

. . .
. . .

. . .

0 0 0 · · · A −I

0 0 0 · · · −I A − I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

which is a determinant of an n2 × n2 partitioned tridiagonal matrix. In (5), I is the n × n

identity matrix and A is an n × n tridiagonal matrix given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 · · · 0 0
−1 5 −1 · · · 0 0
0 −1 5 · · · 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0 · · · 5 −1
0 0 0 · · · −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let Jn be the determinant of an n × n tridiagonal matrix with 4.5 in the diagonal entries
and −1 in the subdiagonal and superdiagonal entries. We have the recursive formula Jn =
4.5Jn−1 − Jn−2. It is easy to have Jn = α̃ãn

1 + β̃ãn
2 , where

α̃ = 36.5 + 9
√

16.25

32.5 + 9
√

16.25
> 0 and β̃ = 36.5 − 9

√
16.25

32.5 − 9
√

16.25
< 0.

Therefore, ∣∣∣∣A − I

2

∣∣∣∣ ≥ 3.52Jn−2 − 7Jn−3 + Jn−4 ≥ 10.5Jn−2 ≥ ãn−1
1 , (6)

since Jn−1/Jn ≤ 2/(4.5 + √
16.25) ≤ 0.25 and Jn ≥ ãn

1 .
From

det

(
A B

C D

)
= det(A) det(D − CA−1B),

we have WT (G̃n)
= ∏n

i=1 det(Ãi ), where Ãi = A − Ã−1
i−1, i = 1, . . . , n − 1, Ã0 = I , and

Ãn = A − I − Ã−1
n−1.

Denote the eigenvalues of A by λl for l = 1, . . . , n. Obviously, for all l, λl > 3.
Thus, we have det(Ã2) = det(A − (A − I )−1) = ∏n

l=1(λl − (λl − 1)−1), which is larger than∏n
l=1(λl − 1

2 ) = det(A − I/2). Similarly, for all i = 1, . . . , n − 1, det(Ãi ) > det(A − I/2).
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With the results det(Ã1) > 1, det(Ãn) > 1, and (6), we have

WT (G̃n)
=

n∏
i=1

det(Ãi )

> det

(
A − I

2

)n−2

>

(
4.5 + √

16.25

2

)(n−1)(n−2)

> 4.2655(n−1)(n−2).
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