
Canad. Math. Bull. Vol. 24 (1), 1981 

T O P O L O G I C A L L E F T A M E N A B I L I T Y 
O F S E M I D I R E C T P R O D U C T S 

BY 

H. D . J U N G H E N N 

ABSTRACT. Let S and T be locally compact topological semi
groups and S(x)T a semidirect product. Conditions are determined 
under which topological left amenability of S and T implies that of 
S®T, and conversely. The results are used to show that for a large 
class of semigroups which are neither compact nor groups, various 
notions of topological left amenability coincide. 

1. Introduction. Let S and T be locally compact topological semigroups 
with identities (each denoted by 1) and T:TXS->S a jointly continuous 
mapping such that r(t, ss') = r(t, s)r(t, s'), r(ttf, s) = r(t, r(t', s)), r(t, 1) = 1, and 
T ( 1 , 5) = 5(5, s'eS] t, f'e T). If multiplication on S x T is defined by 

(s,t)(s',t') = (sT(t,s'),tt'), 

then SxT, with the usual product topology, becomes a locally compact 
topological semigroup with identity (1, 1), called the semidirect product of S 
and T and denoted by S © T. The purpose of this paper is to determine when 
topological left amenability of S and T implies that of S©T. Positive results 
are obtained if, for example, T is a group and S is either compact or a group. 
More general results can be gotten by using a stronger amenability condition. 
The converse problem of determining topological left amenability of S and T 
from that of S © T is also considered, and an application to topological wreath 
products is given in the final section. 

2. Preliminaries. Let S be a locally compact topological semigroup (jointly 
continuous multiplication), C(S) the Banach algebra of all bounded real-valued 
continuous functions on S (with the usual supremum norm), C0(S) the sub-
algebra of functions which vanish at infinity, and M=M(S) the dual of C0(S). 
We shall, as usual, identify M with the space of bounded regular Borel 
measures on S (see, for example, [6]). M is a Banach algebra under convolu
tion defined by 

0* *„)(/) = 
s 

f(st) d,x(s) dv{t) ( / e C0(S); y,,veM) 
S 
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The subset P = P(S) of probability measures is a multiplicative subsemigroup 
of M, and the set Pc of probability measures with compact support is norm 
dense in P and spans a dense subspace of M 

A mean on M*, the dual of M, is a positive linear functional T such that 
r ( l ) = 1, where l e M * is defined by l(/x) = JUL(S) (jit G M). The set Q(PC), where 
Q : M —> M** denotes the canonical isometry, can be shown to be weak* dense 
in the set of all means on M. A topological left invariant mean (abbreviated 
TLIM) is a mean T on M* such that T(F */*,) = T(F) for all F e M* and /x G P, 
where F * yue M* is defined by (F * JU)(^) = F(/x * v). If a TLIM exists then S 
is said to be topologically left amenable. 

Wong [13] noted that if S is a (locally compact topological) group with left 
Haar measure A, then S is topologically left amenable if and only if L^iS, A) 
has a TLIM (as defined, for example, in [5]). This is also a consequence of the 
following more general result (recalling that L*(S, A) may be identified with the 
ideal in M of measures absolutely continuous with respect to A): 

PROPOSITION 2.1. Let S be a locally compact topological semigroup, M1 any 
closed ideal of M which contains non-zero positive members. Then M* has a 
TLIM if and only if M* has a TLIM. (The notions of mean and TLIM on M* 
are defined as for M*.) 

Proof. Assume I \ G M** is a TLIM. Let R:M*->M* denote the restriction 
operator and T the mean r i ° R G M * * . Choose any vGMIDP. Then 
R(F)*(IL * v) = R(F* jx) * v for all /LLGP, FeM*, and therefore T(F*IA) = 

T^RiF * /*)) = I\GR(F */*)*!/) = r i( i^(F) * fa * i,)) = r i ( « ( F ) ) = T(F). 
Conversely, let T be a TLIM on M*, and let (fxn) be a net in P such that 

r = weak* - limn Q(jO- We may assume that (jLLn)<=M1 (otherwise choose any 
v G M1H P and replace JLLH by i> * jutn, noting that T(F) = T(F *v) = limn Q(iuLn) 
F * v) = limn Q(v * J O ( F ) ( F G M*)). Let Qx : Mx -> M** denote the canonical 
injection, and let (fim) be a subnet such that Q i ( / 0 weak* converges to some 
mean I \ on M*. Given F1eM*, choose FeM* such that R(F) = Fx. Then for 
any v e M ^ P , ^ ( F x * i/) = limmF1(i/* fjim) = r ( F * i/) = r (F) = l immF(^m) = 
T^Fi), so r x is a TLIM on M*. 

Using standard results from the theory of topological vector spaces it can be 
shown that S is topologically left amenable if and only if the following 
condition holds: (A) There exists a net (ju,n) in Pc (or, equivalently, in P) such 
that \\v * i±n - jnn|| —• 0 for each v e Pc. (See [3] or [5], where the proof is given 
for the case S a group.) A related condition is the following: (B) There exists a 
net (jiLn) in Pc such that \\8(s) * /Lxn - jLLn||->0 uniformly in s on each compact 
subset of S. Here 6 ( S ) G P C denotes Dirac measure at s. Clearly (B) implies (A), 
and if S is a group then the two conditions are equivalent [3]. Furthermore, if S 
is compact then (A) and (B) are each equivalent to the existence of a right zero 
in the semigroup P(S). It is not known to the author if properties (A) and (B) 
are equivalent in general. 
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The space LUC(S) of left uniformly continuous functions on S is defined by 
LUC(S) = {fe C(S) : s —> L(s)f is norm continuous}, where L(s) denotes the left 
translation operator on C(S). LUC(S) is easily seen to be a closed translation 
invariant subalgebra of C(S) which contains the constant function 1 and which 
coincides with C(S) if S is compact or discrete. (See [1, 9] for other properties 
of LUC(S).) A mean on LUC(S) is a positive linear functional /UL on LUC(S) 
such that JU(1) = 1. If for each /eLUC(S) and s e S, fi(L(s)f) = /LL(/), then /x is 
a left invariant mean (LIM) and LUC(S) is said to be left amenable. If S is a 
group then LUC(S) is the space UCr(S) defined in [5]. In this case S is 
topologically left amenable if and only if LUC(S) is left amenable [5 ; Theorem 
2.3.2]. The same is true if S is compact. 

3. Main results. Throughout this section S and T denote locally compact 
topological semigroups with identities and X = S © T a semi-direct product of 
S and T, as defined in section 1. 

THEOREM 3.1. If S and T have property (B) and T is a group, then X has 
property (B). 

Proof. Let (Aj)c: pc(S) and ( ^ ) c P c ( T ) be nets such that \\8(s) * A4 —AJH and 
||S(0 * Vj — Vj\\ tend to zero uniformly on compact subsets of S and T respec
tively. For each i and / define /x£/ e P(X) by 

*/ ( / ) = f f /((I, 0(5, D) dv^t) dkM, (/€ C0(X)). 

Let R(x) and L(x) denote, respectively, the right and left translation operators 
(by xeX) on C(X), and define W : C ( X ) ^ C ( T ) by (W/)(f) = / ( l , 0- For any 
s'e S, t'eT, and fe C0(X) we have 

8(s\0 **,(/) = } / ( (s ' , r ' ) ( l ,0(s , l ))d^(0dAi(s) 

[WL(s', l)R(s, l)/](f', 0 <ty.(f) dA£(s) 

[WL(s\ l)K(s, l) /](0 ^ ( 0 dAf(s) + a a / , s', t\f) 

| /(s'r(r, s), t) d\i(s) dvi(t) + a(Uj, s', t',f) (1) 

where \a(i, j , s\ t\ f)\<^S{t') * v] - ^|| ||/||. Let Kj denote the support of vp and 
for each t e T define gteC(S) by gt(s) = f(r(t, s), t). The double integral in (1) 
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may then be written 

gt(r(r\ s')s) dAt(s) dv}(t) = I [8(T(rVs')) * AJ(&) dVj(t) 

= f [S(T(r1 ,s ' ))*A i-A i](6)di/ J . (f)+f AKgJd^-W- (2) 

Note that the second integral on the right in (2) is JU^(/). 

Now let C and K be compact subsets of S and T respectively. Given e > 0 , 
choose j such that ||8(f')* ^ - ^ | | < 8 for all f ' e K Since T C K ^ X C ) is compact 
in S we may choose i such that | |ô(T(r \ s')) * A4 —À£||< e for all teKj and 
s ' e C It follows from (1) and (2) that |5(s', 0 * /xiJ-(/)-/xiJ.(/)|<2e||/|| for all 
s ' eC, f ' eK a n d / e C 0 ( X ) . 

Let the linear space E = M(X) S x T have the topology of uniform convergence 
on compact subsets of S*T, where M(X) carries the norm topology. For each 
i and j define V^ e E by Viy(s, f) = 8(s, 0 * ^ - iLtj. The above argument shows 
that 0 is in the closure in E of the set A ={ViJ : i, /} , hence there exists a net 
(Vn) in A which converges to 0. The corresponding net of measures (fin) then 
has the required properties. 

REMARKS. Theorem 3.1 holds for the direct product case even if T is not a 
group, as an examination of the proof (which simplifies) reveals. In general, 
however, the theorem fails if T is not a group. As an example, let S and G be 
compact topological groups and let T = G U {0}, where 0 is an isolated zero of 
T. Define T : T X S - > S as follows: T (G, S) = {S}, T ( 0 , S ) = 1 . Then if S is 
non-trivial, S©T has at least two left zeros and therefore cannot be topologi-
cally left amenable. 

It is not known to the author if the property (A)-analog of Theorem 3.1 holds 
(except, of course, in the trivial cases S compact or S a group). However, one 
can show the following: If S and T have property (A) and T is a group, then 
there exists a net (fin)czPc(X) such that ||(A®v) * fxn-/u,n||—»0 for every 
\eP(S) and veP(T) (where A®^ denotes the product measure). 

The converse of Theorem 3.1 holds even if T is not a group. In fact, we have 
the following result: 

PROPOSITION 3.2. Let X satisfy condition (A) (respectively, (B)). Then S and T 
satisfy condition (A) (respectively, (B)). 

Proof, We prove only that if X satisfies (A) then so does S. Let (/xn) be a net 
in PC(X) such that ||JU, * jun - fin\\ -» 0 for all JJL <E P(X). Define a net AJ in PC(S) 
by An(g) = JSxTg(s)djLtn(s,0,(geCo(S)), or, equivalently, \n(A) = ixn(A x T) 
(A a Borel subset of S). Given AePc(S) define /xeP c(X) by /UL(/) = 

J s / (5, l)dA(5),( /eC0(X)) . Let geC0(S) and define feC(X) by f(s,t) = g(s). 
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Then, 

g ( s sVA(s )=f [K(s\ l ) / ] (s , l )dA(s) 

= f [R(s\ l)fl(s, r) dnis, t) 
JSxT 

= I f(sr(t, s'), 0 dpis, f), 
JsxT 

SO 

(A * An)(g) = [ f /(5r(r, sO, 0 d/iU 0 dAn(s') 
•>S •'SxT 

= f f /(ST«,s'),0d/t(s,0 d/̂ .(s', O 
J s x T •'SxT 

= f [ f(sr(t, s'), tt') dn(s, t) dnn(s', 0 
J SxT JSxT 

fdti* iin. 
SxT 

Since An(g) = JSxT/djULri it follows that ||A * An-Aj<| | f i , * ftn-/xn | | and hence 
||A * A n -A n | | -»0 . The proofs of the remaining statements are similar. 

If S and T are both groups then Theorem 3.1 follows from the remark at the 
end of section 2, and the next result, which is of some independent interest. 

THEOREM 3.3. (a) / / LUC(S) and LUC(T) are left amenable and if the set 
D-{te T:T(t, S) is dense in S} is dense in T (which is trivially the case if T is a 
group), then LUC(X) is left amenable, (b) If LUC(X) is left amenable and S is 
compact then LUC(S) and LUC(T) are left amenable. 

Proof. Let À and v be LIM's on LUC(S) and LUC(T), respectively, and 
define bounded linear operators V:LUC(X)-*LUC(S) and W:LUC(X)-> 
LUC(T) by (V/)(s) = / ( s , l ) ; (Wf)(t) = A(VL(1, t)f, (SES, te T,feLUC(X)). 
We shall show that the mean /x = v ° W is a LIM on LUC(X). 

Note first the following identities: VL(s, l) = L(s)V, WL(1, t) = L(t)W, and 
WL(s, 1) = W. The first two are easily established. To verify the third, let t e D, 
seS and / eLUC(X) . Then A(VL(r(f, s), r)/) = A(VL(s, 1)L(1, t)f) = 
A(L(s)VL(l, 0/) = A(VL(1, t)f). From the definition of D and the fact that D 
is dense in T it follows that A(VL(s, t)f) = A(VL(1, t)f) for all seS,teT, and 
this establishes the identity. 

The proof that IJL is a LIM follows easily from the above identities: For each 
seS,teT and /€LUC(X) we have n(L(s, *)/) = v(WL(l, t)L(s, 1)/) = 
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KL(f )WL( S , l ) / )=v (W/ )=^ ( / ) . 
For the converse, assume S is compact and {x is a LIM on LUC(X). Given 

/ G L U C ( S ) = C(S) define f'e C(X) by /'(s, f) = /(s). The compactness of S and 
the joint continuity of T imply that f e L U C ( X ) . Define À(/) = JLL(/'). Then the 
identity (L(s)f)' = L(s, 1)/' implies that À is a lim. A similar argument shows 
that LUC(T) is left amenable. 

REMARKS. Theorem 3.3(a) is valid if S and T are merely topological semi
groups, not necessarily locally compact, and LUC(X) is replaced by any 
translation invariant left introverted (see [2, p. 540] for definition) subspace F 
of C(X) containing the constant functions, provided LUC(S) and LUC(T) are 
replaced by the spaces {/(•, l ) : / e F } and {/(l, *):feF}, respectively. 

If S and T are discrete then part (a) of Theorem 3.3 reduces to a result of M. 
Klawe [7, Prop. 3.4], whose proof, quite different from ours, is based on Day's 
fixed point theorem. 

The example given after Theorem 3.1 shows that Theorem 3.3(a) fails in 
general if D is not dense in T. Note that if T is a group then D=T. 

4. Wreath Products. The wreath product construction may be used to 
produce non-trivial examples of locally compact topological semigroups which 
are neither compact nor groups but for which conditions (A) and (B) of section 
2 are equivalent. 

Let T be a discrete group which acts on the right on the phase space Y. For 
example, we could take Y= T, and right multiplication as the action. Let U be 
a compact topological semigroup with identity and S the product space UY 

with the product topology and coordinate multiplication. Define T:TXS-+S 

by r(t, s)(y) = s(yt), where yt denotes the action of t on y. The semidirect 
product S©T is called the (abstract) wreath product of U and T and is 
denoted by UwrT. (A survey of the algebraic theory of wreath products of 
semigroups and their applications may be found in [12]. See also [4, 8], where 
topological questions are considered.) Note that if U is not a group and T is 
not finite, then UwrT is neither compact nor a group. 

THEOREM 4.1. The following are equivalent: 
(a) UwrT has property (A). 
(b) UwrT has property (B). 
(c) LUC( UwrT) is left amenable. 
(d) LUC(U) (= C(U)) and LUC(T) (= C(T)) are left amenable. 

Proof. Since S is compact and T is a group, properties (A) and (B) are 
equivalent for each of these semigroups (see section 2). It follows from 
Theorem 3.1 and Proposition 3.2 that (a) and (b) are equivalent. A similar 
application of Theorem 3.3 shows that (a) and (c) are equivalent. 
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To show that (c) and (d) are equivalent it suffices, by Theorem 3.3, to prove 
that C(U) is left amenable if and only if C(S) is left amenable. Since U is a 
continuous homomorphic image of S, the sufficiency follows from a result of 
Day [2, p. 540]. An interesting proof of the necessity uses the structure theory 
of compact topological semigroups, according to which each such semigroup R 
has minimal right ideals and a smallest two-ideal K(R), and the minimal right 
ideals are precisely of the form ejR, where e2= eeK(R) [10]. A result of Rosen 
relates this structure theory to the existence of a LIM on C(R) : C(R) has a 
LIM if and only if JR has exactly one minimal right ideal [11]. Applying this to 
the present setting it thus suffices to show that if U has exactly one minimal 
right ideal then the same is true for S. For each y e Y let Py : S -» U denote the 
projection mapping s —> s (y). Since Py(S) = 17 it follows easily that Py(K(S)) = 
K(U). In particular, if e2 = eeK(S) then e(y) is an idempotent in K(U) and 
hence e(y)U is a minimal right ideal of U. Therefore, for any pair of 
idempotents e1,e2sK(S), c1(y)[7= e2(y)U for all ye Y, and so e1S = e2S. 

REMARK. Using similar techniques one can show that properties (A) and (B) 
are equivalent to a third amenability property: There exists a net ( /O in 
Pc(UwrT) such that \\8(x) * fin- f iJ | ->0 for each xeUwrT. 
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