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Abstract

We consider a local projection stabilization based on biorthogonal systems for
convection–diffusion–reaction differential equations with mixed boundary conditions.
The approach based on biorthogonal systems is numerically more efficient than other
existing approaches to obtain a uniform approximation for convection dominated
problems. We prove optimal a priori error estimates for the proposed numerical
technique. Numerical examples are presented to demonstrate the performance of the
approach.
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1. Introduction

Differential equations involving convection, diffusion and reaction are ubiquitous in
various physical and engineering applications. Since a standard finite element method
does not provide a stable approximation, as it yields a spurious approximate solution,
a stabilization technique should be used. There are a wide range of stabilization
techniques for advection-dominated problems [1, 3, 21, 24].

The main reason for such a behaviour is the presence of interior or boundary
layers in the solution. These boundary layers cause high gradients of the solution
in the neighbourhood of the layers. A wide range of stabilization methods have
been proposed to deal with these spurious modes caused by the boundary layers.
Some popular methods are streamline-diffusion methods, least squares methods,
residual-free bubbles, local projection schemes, continuous interior penalty methods
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and discontinuous Galerkin methods [13, 24]. As there is a vast amount of literature on
these stabilization approaches, we only focus on a few articles on the local projection
stabilization approach which are relevant to our current work.

The local projection stabilization approach [10, 16, 21, 24] is one of the most pop-
ular stabilization techniques for convection-dominated convection–diffusion–reaction
problems with boundary or interior layers. There are mainly two forms of the local
projection stabilization approach in the literature. One approach enriches the solution
space by using bubble functions and another approach uses two different finite element
grids to preserve the locality of the stabilization term [15, 21]. Working with bubble
functions, we need to increase an additional set of degrees of unknowns, whereas
working with two finite element grids, the discretization stencil increases and hence
the sparsity of the system matrix decreases. Thus, both approaches increase the
computational cost.

We introduce a new local projection stabilization technique based on a biorthogonal
system for convection-dominated convection–diffusion–reaction differential equa-
tions. Neither does our approach need to enrich the finite element space by bubble
functions, nor do we need two different finite element grids to achieve the locality
of the stabilization term. Since the projection is performed by using a biorthogonal
system, the locality is achieved as the biorthogonality condition yields a diagonal
matrix. A similar biorthogonal approach is applied to stabilize the Stokes problem [19].
However, approximation properties of the biorthogonal system and the error analysis
are different for the convection–diffusion–reaction problem compared with the Stokes
problem.

Another newly proposed local projection stabilization scheme [2, 7] also does not
require the bubble enrichment and two different grids, but our approach is easier to
extend to a higher order case. Moreover, the application of the biorthogonal system to
compute projection is more natural than the patch-wise local projection stabilization
proposed in [2, 7].

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with a polygonal or polyhedral
boundary ∂Ω, where the boundary ∂Ω is divided into two disjoint parts ΓD and ΓN .
We consider the convection–diffusion–reaction equation

−εΔu + b · ∇u + cu = f in Ω,
u = gD on ΓD,

ε
∂u
∂n
= gN on ΓN ,

where 0 < ε � 1 is a constant, and b ∈ [W1,∞(Ω)]d, c ∈ L∞(Ω) and f ∈ L2(Ω) are given
functions satisfying

σ = c − 1
2∇ · b ≥ σ0 > 0 (1.1)

for a constant σ0. Let V0 = {v ∈ H1(Ω) | v|ΓD = 0}. The weak formulation of (1.1) is to
find u ∈ VD = {v ∈ H1(Ω) | v|ΓD = gD} such that

https://doi.org/10.1017/S1446181123000019 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181123000019


[3] A local projection stabilization for convection–diffusion–reaction equations 207

a(u, v) = �(v), v ∈ V0, (1.2)

where

a(u, v) = ε
∫
Ω

∇u · ∇v dx +
∫
Ω

((b · ∇u) v + cuv) dx, �(v) =
∫
Ω

fv dx +
∫
ΓN

gNv ds.

Assuming that the inflow boundary is part of the Dirichlet boundary ΓD, that is,

{x ∈ ∂Ω | b · n < 0} ⊂ ΓD, (1.3)

the condition in (1.1) guarantees the coercivity of the bilinear form a(·, ·) on V0. Hence,
the boundary value problem (1.2) has a unique solution in VD by the Lax–Milgram
lemma [5, 11].

The paper is organized as follows. In the next section, we present our finite element
scheme. In Section 3, we prove that the formulation is well posed, and the finite
element approximation satisfies optimal a priori error estimates. In Section 4, we
introduce a posteriori error estimator that shows the direction of future works in the
area of an adaptive finite element method. In Section 5, we present some numerical
experiments to demonstrate the performance of our approach. Finally, we draw a
conclusion in Section 6.

2. Finite element discretization

We consider a locally quasi-uniform shape regular triangulation Th of the polygonal
or polyhedral domain Ω, where Th consists of d-simplices, convex quadrilaterals or
hexahedra. Note that Th denotes the set of elements, which are d-simplices, convex
quadrilaterals or hexahedra. The diameter of an element T ∈ Th is denoted by hT , and
the mesh parameter h is the maximum diameter of all elements T ∈ Th.

Let T̂ be a reference simplex or square or cube, where the reference simplex is
defined as

T̂ =
{
x ∈ Rd | x̂i > 0, i = 1, . . . , d, and

d∑
i=1

x̂i < 1
}
,

and a reference square or cube T̂ = (−1, 1)d. The finite element space is defined by the
affine maps FT from a reference element T̂ to a physical element T ∈ Th. Let Q1(T̂)
be the space of linear polynomials in T̂ in the variables x̂1, . . . , x̂d if T̂ is the reference
simplex, and the space of bilinear or trilinear polynomials in T̂ of x̂1, . . . , x̂d if T̂ is the
reference square or cube. Let FT : T̂ → T be the element mapping from the reference
element T̂ to a physical element T ∈ Th. This mapping is affine if T is a simplex, or T
is a parallelotope. Then, the finite element space based on the mesh Th is defined as
the space of continuous functions whose restrictions to an element T are obtained by
the maps of given polynomial functions from the reference element [4–6, 23]:

Vh = {vh ∈ H1(Ω) | vh|T = v̂h ◦ F−1
T , v̂h ∈ Q1(T̂), T ∈ Th}, V0,h = Vh ∩ V0.
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Let gD,h be a finite element approximation of gD on ΓD, which will be discussed
later. The Galerkin formulation of (1.2) is to find uh ∈ Vh with uh|ΓD = gD,h such
that

a(uh, vh) = �(vh), vh ∈ V0,h, (2.1)

where the bilinear form a(·, ·) and the linear form �(·) are as defined in the last section.
We say that convection dominates diffusion if ε � ‖b‖L∞(Ω)h, and reaction dominates
diffusion if ε � σh2. The Galerkin finite element approximation of (1.2) normally
suffers from spurious oscillations if convection dominates diffusion, and/or reaction
dominates diffusion [24].

2.1. A local projection stabilization In this paper, we focus on analysing the finite
element method based on the local projection stabilization approach using a biorthog-
onal system. The existing local projection stabilizations either use a two-level approach
[1, 3] or enrichment of the approximation space [21]. The use of a biorthogonal
system is motivated by these two observations of the existing stabilization. Working
with a biorthogonal system, we neither need to use a two-level approach nor do we
need to enrich the approximation space. In the following, we limit our discussion
to the two-dimensional case, although an extension to the three-dimensional case is
straightforward.

Let B1 = {ϕ1, . . . ,ϕn} be the set of finite element basis functions of Vh with respect
to the mesh Th. We now construct another set B2 = {ξ1, . . . , ξn} ⊂ L2(Ω), which
is biorthogonal to B1, so that elements of B1 and B2 satisfy a condition of the
biorthogonality relation∫

Ω

ϕi ξj dx = cjδij, cj � 0, 1 ≤ i, j ≤ n,

where δij is the Kronecker symbol, and cj a scaling factor. This scaling factor cj can be
chosen as proportional to the area |suppξj|. We define another finite element space

Qh = span{B2},

and assume that the space Qh has the approximation property

inf
μh∈Qh

‖μ − μh‖0,Ω ≤ h‖μ‖1,Ω, μ ∈ H1(Ω).

The basis functions {ξ1, . . . , ξn} are constructed in a reference element, and they are
mapped to physical elements using a suitable affine transformation and combined
together to construct the global basis functions of Qh in the same way as the global
finite element basis functions of Vh are constructed. Here, we give the construction for
a reference triangle. Let

T̂ = {(x̂, ŷ) ∈ R2 | x̂ > 0, ŷ > 0, x̂ + ŷ < 1}
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be a reference triangle. The standard linear finite element basis functions for the
reference triangle are defined as

ϕ̂1 = 1 − x̂ − ŷ, ϕ̂2 = x̂ and ϕ̂3 = ŷ,

associated with the three vertices (0, 0), (1, 0) and (0, 1), respectively.
Then the basis functions {ξ̂1, ξ̂2, ξ̂3}, defined as

ξ̂1 = 3 − 4x̂ − 4ŷ, ξ̂2 = 4x̂ − 1 and ξ̂3 = 4ŷ − 1,

satisfy the biorthogonality relationship with the basis functions {ϕ̂1, ϕ̂2, ϕ̂3} with
respect to the standard L2-inner product. We refer to the papers [17, 18, 20] for the
construction of such a biorthogonal system for different finite element spaces.

For the finite element convergence, we introduce the following two quasi-projection
operators: Πh : L2(Ω)→ Vh and Π∗h : L2(Ω)→ Qh defined by∫

Ω

Πhvψh dx =
∫
Ω

vψh dx, v ∈ L2(Ω),ψh ∈ Qh,

and ∫
Ω

Π∗hv vh dx =
∫
Ω

vvh dx, v ∈ L2(Ω), vh ∈ Vh.

In the following, we use a generic constant C, which will take different values at
different places but always will be independent of the mesh-size h. For an element
K ∈ Th, let ω(K) be the union of support of all basis functions associated with K, and
hω(K) be the local mesh-size associated with ω(K). Hence, hK ≤ hω(K), where hK is the
mesh-size of the element K. We now list some main properties of Πh in the following
lemma. We refer to the work of Kim et al. [14] and Lamichhane [17] for a proof of this
lemma, where Πh is introduced as the mortar projection operator.

LEMMA 2.1. Let K ∈ Th. Here, Πh and Π∗h have the following properties.

(1) Stability in L2-norm:

‖Πhv‖0,K ≤ C‖v‖0,ω(K), ‖Π∗hv‖0,K ≤ C‖v‖0,ω(K), v ∈ L2(ω(K)),

and

‖Πhv‖0,Ω ≤ C‖v‖0,Ω, ‖Π∗hv‖0,Ω ≤ C‖v‖0,Ω, v ∈ L2(Ω).

(2) Stability in H1-norm:

|Πhv|1,K ≤ C|v|1,ω(K), v ∈ H1(ω(K)) and |Πhv|1,Ω ≤ C|v|1,Ω, v ∈ H1(Ω).

(3) Approximation in L2-norm: if v ∈ H2(ω(K)) and w ∈ H1(ω(K)) for K ∈ Th,

‖Πhv − v‖0,K ≤ Ch2‖v‖2,ω(K) and ‖Π∗hw − w‖0,K ≤ Ch‖w‖1,ω(K).
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Thus, for v ∈ H2(Ω) and w ∈ H1(Ω),

‖Πhv − v‖0,Ω ≤ Ch2‖v‖2,Ω and ‖Π∗hw − w‖0,Ω ≤ Ch‖w‖1,Ω.

(4) Approximation in H1-norm: if v ∈ H2(ω(K)), for K ∈ Th,

‖Πhv − v‖1,K ≤ Ch‖v‖2,ω(K).

Thus, for v ∈ H2(Ω),

‖Πhv − v‖1,Ω ≤ Ch‖v‖2,Ω.

We now introduce the stabilization of the Galerkin finite element equation (2.1)
using the fluctuation operator

κh = I − Π∗h,

where I : L2(Ω)→ L2(Ω) is the identity operator. Adding the stabilization term

S(uh, vh) =
∑
T∈Th

∫
T

hTκh(b · ∇uh) κh(b · ∇vh) dx

to the Galerkin formulation of the problem, we arrive at the problem of finding uh ∈ Vh

with uh|ΓD = gD,h such that

ε

∫
Ω

∇uh · ∇vh dx +
∫
Ω

((b · ∇uh) + cuh)vh dx + S(uh, vh) = �(vh), vh ∈ V0,h.

Defining the bilinear form A(·, ·) by

A(uh, vh) = ε
∫
Ω

∇uh · ∇vh dx +
∫
Ω

((b · ∇uh) + cuh)vh dx + S(uh, vh),

our problem is to find uh ∈ Vh with uh|ΓD = gD,h such that

A(uh, vh) = �(vh), vh ∈ V0,h. (2.2)

3. A priori error estimate

We perform the error analysis using the following mesh-dependent norm for
vh ∈ Vh:

‖vh‖LP =

(
ε|vh|21,Ω + σ0‖vh‖20,Ω + S(vh, vh) +

1
2

∑
e∈ΓN

h

∫
e
|b · n|v2

h ds
)1/2

,

where ΓN
h is the set of all edges on the boundary ΓN of Ω. With suitable approximation

properties of the local projection, the error analysis is similar to the error analysis of
the standard local projection stabilization approach [21]. For simplicity, we let

B(v) =
1
2

∑
e∈ΓN

h

∫
e
|b · n|v2 ds.
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The coercivity of the bilinear form A(·, ·) with respect to the norm ‖ · ‖LP follows by
using conditions (1.1) and (1.3). We refer to the work of Matthies et al. [21] for a proof
of the following lemma.

LEMMA 3.1. There exists a constant C > 0 independent of the mesh-size h such that

A(vh, vh) ≥ C‖vh‖2LP, vh ∈ V0,h.

The estimate for the consistency error is given in the next lemma.

LEMMA 3.2. Let u ∈ Hk+1(Ω) and uh ∈ Vh be the solutions of (1.2) and (2.2),
respectively. Then,

A(u − uh, wh) = S(u, wh), wh ∈ Vh,0.

Moreover,

|S(u, vh)| ≤ C
( ∑

K∈Th

h3
ω(K)‖u‖

2
2,ω(K)

)1/2
‖vh‖LP.

PROOF. From (1.2), we get for wh ∈ V0,h,

ε

∫
Ω

∇u · ∇wh dx +
∫
Ω

[(b · ∇u) + cu]wh dx =
∫
Ω

fwh dx +
∫
ΓN

gNwh ds.

Subtracting (2.2) from this equation, we obtain

ε

∫
Ω

∇(u − uh) · ∇wh dx +
∫
Ω

[(b · ∇(u − uh)) + c(u − uh)]wh dx + S(uh, wh) = 0.

The first equation now follows by using the definition of A(·, ·). Applying the
Cauchy–Schwarz inequality to

S(uh, vh) =
∑
T∈Th

∫
T

hTκh(b · ∇uh) κh(b · ∇vh) dx,

we obtain

|S(u, vh)| ≤
√

S(u, u)
√

S(vh, vh).

Now we use the approximation property of Π∗h and the fact that b ∈ [W1,∞(Ω)]d to
obtain the result

|S(u, vh)| ≤ C
( ∑

K∈Th

h3
ω(K)‖u‖

2
2,ω(K)

)1/2
‖vh‖LP . �

The following approximation property holds for the projected function Πhu in the
LP-norm.
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LEMMA 3.3. We have the following estimate for u ∈ H2(Ω):

‖u − Πhu‖LP ≤ C
( ∑

K∈Th

(ε + σ0h2
ω(K) + hω(K))h2

ω(K)‖u‖22,ω(K)

)1/2
.

PROOF. First, we note that

‖u − Πhu‖LP = (ε|u − Πhu|21,Ω + σ0‖u − Πhu‖20,Ω

+ S(u − Πhu, u − Πhu) + B(u − Πhu))1/2.

Let e ⊂ K be an edge of a triangle or quadrilateral K ∈ Th. Using the following trace
estimate:

‖v‖0,e ≤ C[h1/2
K |v|1,K + h−1/2

K ‖v‖0,K],

we get

‖u − Πhu‖0,e ≤ C[h1/2
K |u − Πhu|1,K + h−1/2

K ‖u − Πhu‖0,K].

We use the approximation property of Πh to get

‖u − Πhu‖0,e ≤ Ch3/2
ω(K)‖u‖2,ω(K). (3.1)

Hence,

B(u − Πhu) =
1
2

∑
e∈ΓN

h

∫
e
|b · n|(u − Πhu)2 ds

≤ C
∑
e∈ΓN

h

‖u − Πhu‖20,e ≤ C
∑
K∈Th

h3
ω(K)‖u‖

2
2,ω(K).

We now consider the stabilization term in the estimate

S(u − Πhu, u − Πhu) =
∑
T∈Th

∫
T

hT (κh(b · ∇(u − Πhu)2 dx.

Using the L2-stability of Π∗h and the approximation property of Πh combined with the
fact that b ∈ [W1,∞(Ω)]d, we get

S(u − Πhu, u − Πhu) ≤ 2
∑
T∈Th

hT‖b · ∇(u − Πhu‖20,T ≤ 2
∑
T∈Th

h3
ω(T)‖u‖

2
2,ω(T). �

LEMMA 3.4. Let u ∈ H2(Ω). Then for vh ∈ Vh,0, we have

|S(Πhu − u, vh)| ≤ C
( ∑

K∈Th

h3
ω(K)‖u‖

2
2,ω(K)

)1/2
‖vh‖LP.

PROOF. We start with the Cauchy–Schwarz inequality to write

|S(Πhu − u, vh)| ≤ S(Πhu − u,Πhu − u)1/2S(vh, vh)1/2.

The rest of the proof follows as in the last part of Lemma 3.3. �
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THEOREM 3.5. Let u ∈ H2(Ω) and uh ∈ Vh be the solutions of (1.2) and (2.2),
respectively. Then there exists a constant C independent of the mesh-size h such that
the following a priori error estimate holds:

‖u − uh‖LP ≤ C
( ∑

K∈Th

(ε + hω(K))h2
ω(K)‖u‖

2
2,ω(K)

)1/2
.

PROOF. We first use the triangle inequality to write

‖u − uh‖LP ≤ ‖u − Πhu‖LP + ‖Πhu − uh‖LP. (3.2)

The approximation of the first term on the right-hand side of (3.2) is given in
Lemma 3.3. We now turn our attention on estimating the second term on the right-hand
side of (3.2). We first use the coercivity of A(·, ·) to write

C‖Πhu − uh‖2LP ≤ A(Πhu − uh,Πhu − uh)

= a(Πhu − uh,Πhu − uh) + S(Πhu − uh,Πhu − uh).

For brevity, we let wh = Πhu − uh. Then,

C‖Πhu − uh‖2LP ≤ a(Πhu − u, wh) + a(u − uh, wh) + S(Πhu − u, wh) + S(u − uh, wh).

From Lemma 3.2, we have

a(u − uh, wh) + S(u − uh, wh) = S(u, wh),

and hence

C‖Πhu − uh‖2LP ≤ a(Πhu − u, wh) + S(Πhu − u, wh) + S(u, wh).

We now let

I1 = a(Πhu − u, wh), I2 = S(Πhu − u, wh) and I3 = S(u, wh),

so that

C‖Πhu − uh‖2LP ≤ I1 + I2 + I3.

Since

I2 + I3 ≤ C
( ∑

K∈Th

h3
ω(K)‖u‖

2
2,ω(K)

)1/2
‖wh‖LP (3.3)

from Lemmas 3.2 and 3.4, we need to estimate I1 only. We have

I1 = a(Πhu − u, wh)

= ε

∫
Ω

∇(Πhu − u) · ∇wh dx +
∫
Ω

((b · ∇(Πhu − u) + c(Πhu − u))wh dx.
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Thus, we have, from the approximation property of Πh,

|a(Πhu − u, wh)| ≤ C
( ∑

K∈Th

(ε + hω(K))hω(K)‖u‖2,ω(K)

)
‖wh‖LP

+

∣∣∣∣∣
∫
Ω

(b · ∇(Πhu − u)wh dx
∣∣∣∣∣. (3.4)

We integrate by parts the advection term and get∫
Ω

(b · ∇(Πhu − u)wh dx = −
∫
Ω

(Πhu − u)(b · ∇wh + wh∇ · b) dx

+
∑
e∈ΓN

h

∫
e
(b · n)(Πhu − u)wh ds.

Let

A1 =

∫
Ω

(Πhu − u)b · ∇wh dx +
∫
Ω

(Πhu − u)wh∇ · b dx,

A2 =
∑
e∈ΓN

h

∫
e
(b · n)(Πhu − u)wh ds.

We first consider the first term in A1. By using the definition of Πh, we have∫
Ω

(Πhu − u)b · ∇wh dx =
∫
Ω

(Πhu − u)b · ∇wh dx −
∫
Ω

(Πhu − u)Π∗h(b · ∇wh) dx.

Thus, we get∫
Ω

(Πhu − u)b · ∇wh dx =
∫
Ω

(Πhu − u)κh(b · ∇wh) dx

=
∑
K∈Th

∫
K

h−1/2
K (Πhu − u)h1/2

K κh(b · ∇wh) dx.

Hence, an application of the approximation property of Πh yields∫
Ω

(Πhu − u)b · ∇wh dx ≤ C
∑
K∈Th

h3/2
ω(K)‖u‖2,ω(K)

√∑
K∈Th

∫
K

hKκh(b · ∇wh)2 dx.

For the second term in A1, we use an approximation property of Πh to obtain∫
Ω

(Πhu − u)wh∇ · b dx ≤ C
∑
K∈Th

h2
ω(K)‖u‖2,ω(K)‖wh‖0,K .

An application of the Cauchy–Schwarz inequality yields

A2 =
∑
e∈ΓN

h

∫
e
(b · n)(Πhu − u)wh ds ≤ C

∑
e∈ΓN

h

‖|b · n|1/2(Πhu − u)‖0,e‖|b · n|1/2wh‖0,e.
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We now use the estimation (3.1) to write

A2 =
∑
e∈ΓN

h

∫
e
(b · n)(Πhu − u)wh ds ≤ C

∑
K∈Th

h3/2
ω(K)‖u‖2,ω(K)‖wh‖LP.

Combining the estimates for A1, A2 and (3.4), we have

I1 ≤ |a(Πhu − u, wh)| ≤ C
( ∑

K∈Th

[(ε + hω(K))hω(K) + h3/2
ω(K)]‖u‖2,ω(K)

)
‖wh‖LP.

The proof now follows by using the estimate of I2 + I3 from (3.3). �

3.1. Biquadratic finite element approach We now briefly outline the biquadratic
finite element approach using a biorthogonal system. The finite element space based
on the mesh Th is defined as

Wh = {vh ∈ H1(Ω) | vh|T = v̂h ◦ F−1
T , v̂h ∈ Q2(T̂), T ∈ Th}, W0,h = Wh ∩ V0,

where Q2(T̂) is the space of the biquadratic finite element space on the element T.
In this case, we need a better approximation property for the space Qh. While both
projectors Πh and Π∗h are stable in L2- and H1-norms, they should satisfy the following
properties.

(1) Approximation in L2-norm: if v ∈ H3(ω(K)) and w ∈ H2(ω(K)) for K ∈ Th, then

‖Πhv − v‖0,K ≤ Ch3‖v‖3,ω(K) and ‖Π∗hw − w‖0,K ≤ Ch2‖w‖2,ω(K).

Thus for v ∈ H3(Ω) and w ∈ H2(Ω),

‖Πhv − v‖0,Ω ≤ Ch3‖v‖3,Ω and ‖Π∗hw − w‖0,Ω ≤ Ch2‖w‖2,Ω.

(2) Approximation in H1-norm: if v ∈ H3(ω(K)) for K ∈ Th, then

‖Πhv − v‖1,K ≤ Ch2‖v‖3,ω(K).

Thus for v ∈ H3(Ω),

‖Πhv − v‖1,Ω ≤ Ch2‖v‖3,Ω.

As it is standard to have these approximation properties for Πh, approximation
properties of Π∗h follow from the fact that the space Qh contains the bilinear finite
element space [4, 5, 17]. Working with the biquadratic finite element method, we have
the following approximation property of the discrete solution.

THEOREM 3.6. Let u ∈ H3(Ω) and uh ∈ Wh be the solutions of (1.2) and (2.2),
respectively. Then, there exists a constant C independent of the mesh-size h such that
the following a priori error estimate holds true:

‖u − uh‖LP ≤ C
( ∑

K∈Th

(ε + hω(K))h4
ω(K)‖u‖23,ω(K)

)1/2
.
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3.2. Weak boundary condition formulation The formulation (1.2) uses the
Dirichlet boundary as a strong condition. Imposing the Dirichlet boundary condition
weakly is a way to alleviate the instability in the boundary layer [8]. We thus include
the weak boundary condition using the Nitsche technique [8, 12] in our stabilization
method.

Let Γ− ⊂ ΓD be defined as Γ− = {x ∈ ΓD | b · n < 0} and let β be a positive penalty
parameter. We define the bilinear form Bw(·, ·) and linear functional F(·) by

Bw(u, v) = −〈b · nu, v〉Γ− − 〈ε∇u · n, v〉ΓD + 〈u, ε∇v · n〉ΓD + β〈u, εv〉−1,h,ΓD ,
F(v) = −〈b · ng, v〉Γ− + 〈g, ε∇v · n〉ΓD + β〈g, εv〉−1,h,ΓD ,

where

〈uh, vh〉ΓD =
∑
e⊂ΓD

∫
e

uhvh ds,

〈uh, vh〉−1,h,ΓD =
∑
e⊂ΓD

h−1
e

∫
e

uhvh ds.

This lets us reformulate the discrete problem to include the weak boundary
condition as follows: find uh ∈ Vh such that

Ã(uh, vh) = �̃(vh), vh ∈ Vh,

where

Ã(uh, vh) = A(uh, vh) + Bw(uh, vh),

�̃(vh) = �(vh) + F(vh).

The a priori error estimate presented in Theorem 3.6 extends easily to the formulation
with the weak boundary condition [7, 8, 12].

4. A posteriori error estimator

While not the main focus of this paper, we will briefly discuss a candidate for an a
posteriori error estimator which can be used with the adaptive finite element method.
When using an adaptive finite element scheme, an a posteriori error estimator and
a marking scheme are used to determine which elements are to be refined at each
iteration. The local error estimate

ηT (T ; v) =
(
hT

∫
T
(�b · ∇v − Π∗h�b · ∇v)2dx

)1/2
(4.1)

is calculated for each element, and is used for calculating the global error estimator
as well as selecting elements to be refined with the marking scheme. The global error
estimator,
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η(T ; v) =
(∑

T∈T
ηT (T ; v)2

)1/2
=
√

S(v, v), (4.2)

is also used by the marking scheme. The Dörfler marking scheme is a popular marking
scheme used in adaptive finite element which selects a setM, which is a subset of the
collection of all elements T , such that the cardinality ofM is minimized, while also
satisfying

θη(T ; v)2 ≤
∑
T∈M

ηT (T ; v)2 (4.3)

for some user defined variable θ ∈ (0, 1]. In other words, if any element is removed
from M, then (4.3) would not be satisfied. Note that if θ = 0, then no elements
are marked for refinement, and if θ = 1, then all elements, except for those where
ηT (T ; v) = 0, are marked for refinement, which is equivalent to using uniform
refinement scheme.

5. Numerical results

In this section, we present five examples, the first four of which act as numerical
verification for the effectiveness of the stabilization method using our biorthogonal
projection. The last example will demonstrate the ability of the stabilization method to
be used in an adaptive finite element context. Examples 5.2, 5.3 and 5.4 are taken from
[7] and Example 5.5 is taken from [10]. For each example, we present the numerical
convergence rates achieved when using the proposed stabilization on the standard
linear triangular element, as well as the standard bilinear and biquadratic quadrilateral
elements shown in Figure 1.

REMARK 5.1. Working with general quadrilaterals, the reference element mapping FT

is not affine. In the linear finite element method, this mapping can be approximated by
an affine mapping by evaluating FT at the centroid of the element T.

From this point onwards, we will refer to the standard linear triangular element
as TRIA3, the standard bilinear quadrilateral element as QUAD4 and the standard
biquadratic quadrilateral element as QUAD9.

The numerical results demonstrate the effectiveness of the biorthogonal stabiliza-
tion method when using weak (Nitsche) boundary conditions, and also when using
strong (Dirichlet) boundary conditions.

EXAMPLE 5.2. We consider the partial differential equation (PDE) (1.1) with parame-
ters ε = 10−8, b = (2, 3), c = 1, and where Ω = (0, 1)2, ΓD = ∂Ω, ΓN = ∅ for which the
exact solution is

u(x, y) = x3(1 − x)y(1 − y4).
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(a) Triangular order 1

(TRIA3)

(b) Quadrilateral order 1

(QUAD4)

(c) Quadrilateral order 2

(QUAD9)

FIGURE 1. The standard elements, where the dots represent the degree of freedom points.

(a) Initial triangular mesh (b) Initial quadrilateral mesh

FIGURE 2. Initial mesh for Example 5.2.

This problem, taken from [7], has a smooth solution with no discontinuities on
the domain, demonstrating how well the stabilization using the biorthogonal method
works on simple problems. For the numerical testing, the initial mesh used for the
triangular and quadrilateral elements are shown in Figure 2.

The norm error of the solutions generated by solving the weak boundary formula-
tion achieve the expected rates of convergence. The three graphs in Figure 3 represent
the solutions obtained using TRIA3, QUAD4 and QUAD9 elements. For each element,
the L2, H1 and LP norms achieve or exceed the expected rate of convergence after the
third iteration of the method.

EXAMPLE 5.3. This example considers the PDE (1.1) with coefficients ε = 10−8,
b = (1, 1), c = 1, and where Ω = (0, 1)2, ΓD = ∂Ω, ΓN = ∅ for which the exact solution
is (see Figure 4a)

u(x, y) =
(exp((x − 1)/ε) − 1

exp(−1/ε) − 1
+ (x − 1)

)(exp((y − 1)/ε) − 1
exp(−1/ε) − 1

+ (y − 1)
)
.

For this example from [7], the error term of the solution taken over the entire domain
is known to converge suboptimally for the L2 and H1 norms [7, 16, 22]. This is due
to the exponential layer near the x = 1 and y = 1 boundaries, where the layer is much
smaller than the mesh size h. However, when the solution is analysed in a subdomain
that does not contain the exponential layer, such as the subdomain [0, 3/4]2 used in
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FIGURE 3. The L2, H1 and LP error convergence using our method with the weak boundary condition
formulation plotted against the number of degrees of freedom.

(a) (b)

(c) (d)

FIGURE 4. Linear finite element solutions generated for Example 5.3 with mesh size h = 0.0055. (a)
Exact solution. (b) Solution using non-stabilized formulation. (c) Solution using stabilized formulation
with strong boundary condition. (d) Stabilized formulation with weak boundary condition.
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FIGURE 5. The L2, H1 and LP error convergence using our method with the weak boundary condition
formulation over the subdomain [0, 3/4]2 plotted against the number of degrees of freedom for
Example 5.3.

[16, 22], the approximation is as expected when using the biorthogonal stabilization
with weak boundary condition. This is shown for all three element types in Figure 5.

As displayed in Figure 4(b), if stabilization is not employed, the approximate
solution has spurious oscillations. When stabilization is employed, the solutions
improve vastly, as displayed in Figures 4(c) and 4(d), which employ stabilization with
the strong and weak boundary conditions, respectively. This result is true not only for
the TRIA3 case but also for the QUAD4 and QUAD9 elements.

EXAMPLE 5.4. Here, we consider the PDE (1.1) with coefficients ε = 10−8, b = (2, 3),
c = 2, and where Ω = (0, 1)2, ΓD = ∂Ω, ΓN = ∅ for which the exact solution is

u(x, y) = 16x(1 − x)y(1 − y)
(1
2
+

tan−1(200(1/42 − (x − 1/2)2 − (y − 1/2)2))
π

)
.

For this example from [7], there is a transition layer imposed by the solution, much
similar to that in Example 5.3. However, unlike Example 5.3, the transition layer is not
located close to the boundary. In this problem, the transition layer lies on a circle in
the domain with radius 0.25 and centre (0.5, 0.5). A different issue emerges than that
in Example 5.3, since here the transition layer encompasses a large proportion of the
domain.

The results indicate that the transition layer causes the convergence rate to be below
the theoretical expected rate in the early few steps of refinement, as shown in Figure 6.
The discrepancy is eventually corrected when the mesh-size becomes smaller.

The transition layer is the main source of error for the solutions generated, as shown
in Figure 7. These graphs numerically demonstrate that most of the error occurs in the
immediate neighbourhood of the transition layer.

EXAMPLE 5.5. In this example, we consider the PDE (1.1) with coefficients
ε = 10−8, b = (2, 3), c = 1, and where Ω = (0, 1)2, ΓD = ∂Ω, ΓN = ∅ for which the
exact solution is

u(x, y) = xy2 − y2 exp
(2(x − 1)

ε

)
− x exp

(3(y − 1)
ε

)
+ exp

(2(x − 1) + 3(y − 1)
ε

)
.
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FIGURE 6. The L2, H1 and LP error convergence using our method with the weak boundary condition
formulation plotted against the number of degrees of freedom for Example 5.4.

(a) (b)

(c)

FIGURE 7. Linear finite element solutions generated for Example 5.4 with mesh-size h = 0.0055. (a)
Exact solution. (b) Stabilized formulation with weak boundary condition. (c) Magnitude of the error
between exact solution and numerical solution with the weak boundary condition.
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FIGURE 8. The L2, H1 and LP error convergence using our method with the weak boundary condition
formulation over the subdomain [0, 3/4]2 plotted against the number of degrees of freedom for
Example 5.5.
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FIGURE 9. L2, H1 and LP error using TRIA3 element for Example 5.6, which has the non-constant b in
the PDE formulation. (a) Graph presenting the errors over the entire domain. (b) Graph presenting the
errors over the subdomain that does not include elements that cross the transition layer.

In this problem from [10], transition layers are again lying close to the x = 1 and
y = 1 boundary. The error rates for this problem also perform poorly when taken to be
over the entire domain for each respective element type. However, when evaluated over
a subdomain that excludes the transition layers, the error rates perform as expected,
which agrees with the observation made for the same phenomenon in Example 5.3.
This is shown in Figure 8, where the expected rates of convergence are achieved or
exceeded within the first iterations of the method for first-order elements and requires
additional iterations for the second-order element.

EXAMPLE 5.6. To demonstrate how the stabilization performs with a non-constant
convection term b, we consider the PDE (1.1) with coefficients ε = 10−8, b = (1 + x,
1 + y), c = 2, and where Ω = (0, 1)2, ΓD = ∂Ω, ΓN = ∅ for which the exact solution is

u(x, y) = 16x(1 − x)y(1 − y)
(1
2
+

tan−1(200(1/42 − (x − 1/2)2 − (y − 1/2)2))
π

)
.

As noticed in Figure 9(a), the L2 and H1 errors converge with the orders of O(h1.5) and
O(h), respectively. The convergence rate for the LP errors are also noticed to achieve
better than O(h1.5) convergence, which is consistent with the theory presented.
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FIGURE 10. The L2, H1 and LP error convergence comparing the results from Example 5.4, denoted by
the uniform refinement having the red line, with the adaptive finite element scheme using three different
refinement schemes. The RG refinement is denoted by the green line, the RGB refinement is denoted by
the blue line and the newest-vertex-bisection is denoted by the magenta line. The adaptive results are
achieved using the Dörfler marking scheme with θ = 0.5. (Colour available online.)

We now examine the errors in part of the domain Ω that does not include the
transition layer. The results in Figure 9(b) demonstrate that the L2 and LP errors
converge with order O(h2) or better. The H1 error appears to converge slightly lower
than O(h).

EXAMPLE 5.7. For this example, we use the same problem presented in Example 5.4,
except, here we extend the stabilization formulation to an adaptive finite element
setting to demonstrate how the local stabilization term can be used to compute an a
posteriori error estimator to reduce error. To this end, we use three standard refinement
schemes, which are Red–Green (RG) refinement, Red–Green–Blue (RGB) refinement
and newest-vertex-bisection (NVB) refinement on the TRIA3 elements [9]. The local
a posteriori error estimator (4.1) is used with the Dörfler marking scheme (4.3), where
θ = 0.5, to select which elements to refine. The results in Figure 10 show that for all
error measures used, the results presented in Example 5.4, denoted by the red line,
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FIGURE 11. The randomly generated unstructured grid and the error convergence when using the TRIA3
elements.

can be further improved upon when the same stabilization term is used in conjunction
with the adaptive finite element method. This is due to the marking scheme selecting
the elements along the boundary layer for refinement, because they contribute a larger
amount of the error as measured by the a posteriori error estimator (4.2).

This selection preference is revealed when comparing Figure 7(c), which shows
the grid when using uniform refinement, with Figure 10(d), which uses RG adaptive
refinement.

EXAMPLE 5.8. The final example is the same problem presented in Example 5.4,
however, this time, it is calculated on an unstructured grid. Here, we create an
unstructured grid initially with random points, as shown in Figure 11(a), then use Red
refinement on all elements to get the next refined grid for each iteration. This tests our
stabilization method for an initial unstructured grid. From Figure 11(b), we see that the
L2 and H1 convergence rates are of order O(h1.5) and O(h), respectively. The LP error
convergence rate also achieves the optimal rate of O(h1.5) as expected.

6. Conclusion

In this paper, we have proven an optimal a priori error estimate for a biorthogonal
system based local projection stabilization for a convection-dominated PDE. We have
also demonstrated the performance of the stabilization with numerical examples.
Finally, we have presented a direction of possible future works by extending the
approach to an adaptive finite element method for increased efficiency, when dealing
with cases involving internal boundary layers.
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