ON A THEOREM OF LI-BANGHE AND PETERSON ON IMMERSIONS OF MANIFOLDS

Tze-Beng Ng

Abstract

Let M^{n} and $N^{2 n-2}$ be smooth, connected manifolds of dimension n and $2 n-2$ respectively with $n \equiv 2 \bmod 4$ and $6 \leqslant n \leqslant 26$. Let $f: M^{n} \rightarrow N^{2 n-2}$ be a continuous map. Under certain suitable conditions on the stable normal bundle of f, we give a direct and simpler proof that f is homotopic to an immersion. For the case $6 \leqslant n \leqslant 26$ and $n \neq 18$, the result was proved by Li-Banghe and Peterson by using non-stable obstruction theory and their earlier result.

1. INTRODUCTION

Let M^{n} and $N^{2 n-2}$ be smooth, connected, manifolds of dimension n and $2 n-2$ respectively with $n \geqslant 6$. Let $f: M^{n} \rightarrow N^{2 n-2}$ be a continuous map. It is well known [1], that f is homotopic to an immersion if, and only if the stable bundle $\nu_{f}=f^{*}\left(\tau_{N}\right)+\nu_{M}$ has geometric dimension $\leqslant n-2$. Thomas $[7]$ has shown that, when $n \equiv 2 \bmod 4$ with $n \geqslant 6, M$ is orientable and $f^{*}\left(w_{1}(N)\right)=f^{*}\left(w_{2}(N)\right)=0$, then f is homotopic to an immersion if $\delta w_{n-2}\left(\nu_{f}\right)=0, w_{n}\left(\nu_{f}\right)=0$ and $w_{n-2}\left(\nu_{f}\right) \cdot w_{2}(M)=0$. Li-Banghe and Peterson [2] showed that $w_{n}\left(\nu_{f}\right)=0$. They proved (for $n \neq 18$):

Theorem 1.1. ([3, Theorem 2.3 and 2.4]) Let $f: M^{n} \rightarrow N^{2 n-2}$ be a continuous map.
(i) Suppose $\mathrm{n}=6$ or 10 and ν_{f} is a stable spin bundle. Then f is homotopic to an immersion.
(ii) Suppose $n=14,18,22$ or 26 and that ν_{f} admits a $B O\langle 8\rangle$ structure. Then f is homotopic to an immersion.

Their proof uses a theorem of [2] to lift the classifying map of ν_{f} to $B S p i n_{n-1}$ or $B O_{n-1}(8)$ and then show that the obstruction to lifting ν_{f} further to $B S p i n_{n-2}$ or $B O_{n-2}\langle 8\rangle$ is trivial. For $n=18$, there is a class $\theta \in H^{18}\left(B O_{n}\langle 8\rangle ; \mathbb{Z}_{2}\right)$ not in the image of i^{*} where $i: B O_{n}\langle 8\rangle \rightarrow B S O_{n}$ is the projection map of the bundle. Therefore their proof could not give the same conclusion when $n=18$.

In this note we shall show that by studying the n-Postnikov towers for the fibration $B S O_{n-2} \rightarrow B S O$ for $6 \leqslant n \leqslant 26$, we derive Theorem 1.1 directly without first lifting ν_{f} to $B S O_{n-1}$ and also prove an analogous result for the case $\mathrm{n}=18$. For completeness we have included this result in Theorem 1.1.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 $\$ \mathbf{A 2} .00+0.00$.
2. The Postnikov tower for $\pi: B S O_{n-2} \rightarrow B S O$..

According to Mahowald [4], the Postnikov tower of $\pi: B S O_{n-2} \rightarrow B S O$ for $n \equiv 2$ $\bmod 4$ and $n \geqslant 6$ is given as follows :

$$
\begin{aligned}
& k_{1}^{1}=\delta w_{n-2} \\
& k^{2}=\left(p_{1}^{*} w_{n}, k_{1}^{2}\right)
\end{aligned}
$$

where k_{1}^{2} is defined by the relation $k_{1}^{2}:\left(S q^{2}+w_{2}\right) \delta w_{n-2}=0$ and $p_{1}: E_{1} \rightarrow B S O$ is the principal fibration with classifying map $\delta w_{n-2}: B S O \rightarrow K(\mathbb{Z}, n-1)$.

Let $\eta: B S$ pin $\rightarrow B S O$ and $\eta: B O\langle 8\rangle$ to $B S O$ be the obvious inclusion map. Since $H^{*}(B S p i n ; \mathbb{Z})$ has only order 2 -torsion, δw_{4} and δw_{8} are trivial in $H^{*}(B S p i n ; \mathbb{Z})$, and $\delta w_{12}, \delta w_{16}, \delta w_{20}$ and δw_{24} are all trivial in $H^{*}(B O\langle 8\rangle ; \mathbb{Z})$ (this can be easily derived by looking at a truncated Poincare series for the $S q^{1}$-cohomology of $\left.H^{*}\left(B O\langle 8\rangle ; \mathbb{Z}_{2}\right)\right)$ the fibration η lifts to E_{1} for $\mathrm{n}=6$ or 10 and the fibration η lifts to E_{1} for $\mathrm{n}=14$, 18,22 or 26 .

3. Spin-Structure.

For $n=6$ or 10 let $l: B S$ pin $\rightarrow E_{1}$ be a lifting of $\eta: B S p i n \rightarrow B S O$.
Theorem 3.1. Let M^{n} be a manifold of dimension $n=6$ or 10 . Let ξ be a stable spin bundle over M with $w_{n}(\xi)=0$. Then the geometric dimension of $\xi \leqslant n-2$.

Proof: Now $H^{6}\left(B \operatorname{Spin} ; \mathbb{Z}_{2}\right) \approx\left\langle w_{6}\right\rangle$ so that for $\mathbf{n}=6, l^{*}\left(k_{1}^{2}\right)=\alpha w_{6}$ for some $\alpha \in \mathbb{Z}_{2}$. Thus if ξ is a stable spin bundle over M^{6} with $w_{6}(\xi)=0,0 \in k^{2}(\xi)$. Also $H^{10}\left(B S p i n ; \mathbb{Z}_{2}\right) \approx\left\langle w_{10}, w_{4} \cdot w_{6}\right\rangle$. Assume now $\mathrm{n}=10$. An exact sequence of Thomas [8], shows that $\left(S q^{2}+w_{2} \cdot\right) k_{1}^{2} \in p_{1}^{*}\left(K e r \pi^{*}\right) \cap H^{12}\left(E_{1}\right)$.

Since $\left(S q^{2}+w_{2} \cdot\right) H^{10}\left(B S p i n ; Z_{2}\right) \cap \eta^{*}\left(K e r \pi^{*}\right)=\{0\}, l^{*}\left(S q^{2}+w_{2} \cdot\right) k_{1}^{2}=0$. Hence $l^{*} k_{1}^{2}=\alpha w_{10}$ for some $\alpha \in Z_{2}$. As before if ξ is a stable spin bundle with $w_{10}(\xi)=0,0 \in k^{2}(\xi)$.

4. $\mathrm{BO}\langle 8\rangle$-Structures.

For $14 \leqslant n \leqslant 26$, let $\tilde{l}: B O\langle 8\rangle \rightarrow E_{1}$ be a lifting of $\tilde{\eta}: B O\langle 8\rangle \rightarrow B S O$.
Theorem 4.1. Let ξ be a $B O\langle 8\rangle$-bundle over M^{n} of dimension $n \equiv 2(4)$ with $14 \leqslant n \leqslant 26$. Suppose $w_{n}(\xi)=0$. Then ξ has geometric dimension $\leqslant n-2$.

Proof: $H^{14}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right) \approx\left\langle w_{14}\right\rangle, H^{18}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right) \approx 0, H^{22}\left(B O\langle 8\rangle ; \mathbf{Z}_{2}\right) \approx$ $\left\langle w_{22}, w_{8} \cdot w_{14}\right\rangle$ and $H^{26}\left(B O\langle 8\rangle ; \mathbb{Z}_{2}\right) \approx\left\langle w_{26}, w_{12} \cdot w_{14}\right\rangle$. For $n=14$ and 26 , the proof is similar to that of Theorem 3.1. For $n=18$, it is trivial. Now w_{8} and w_{12} in $H^{*}\left(B O\langle 8\rangle ; \mathbb{Z}_{2}\right)$ are integral. That is there are classes $Q_{2} \in H^{8}(B O\langle 8\rangle ; Z)$ and $Q_{3} \in H^{12}(B O\langle 8\rangle ; \mathbb{Z})$ with $\rho_{2} Q_{2}=w_{8}$ and $\rho_{2} Q_{3}=w_{12}$ where ρ_{2} is reduction mod 2. Thus $\left(S q^{2}+w_{2} \cdot\right)\left(Q_{2} \cdot Q_{3}\right)=S q^{2}\left(Q_{2} \cdot Q_{3}\right)=S q^{2}\left(w_{8} \cdot w_{12}\right)=w_{8} \cdot w_{14}$ in $H^{*}\left(B O\langle 8) ; \mathbb{Z}_{2}\right)$. Thus for $n=22, w_{8} \cdot w_{14} \in \operatorname{Indet}{ }^{22}\left(k^{2}(\tilde{\eta}), B O\langle 8\rangle\right)$. Thus if $w_{22}(\xi)=0$ and $\mathrm{n}=22,0 \in k^{2}(\xi)$. Therefore ξ lifts to $B S O_{n-2}$ and so the geometric dimension of $\xi \leqslant n-2$.

5. Proof of Theorem 1.1.

Let $f: M^{n} \rightarrow N^{2 n-2}$ be a continuous map. Take $\xi=\nu_{f}$. Then part (i) follows from Theorem 3.1 and part (ii) follows from Theorem 4.1.

References

[1] M. Hirsch, 'Immersion of manifolds', Trans. Amer. Math. Soc. 83 (1959), 242-276.
[2] B.H. Li and F.P. Peterson, 'On immersions of k-manifolds in (2k-1)-manifolds"', Proc. Amer. Math. Soc. 83 (1981), 159-162.
[3] B.H. Li and F.P. Peterson, 'On immersions of n-manifolds in (2n-2)-manifolds"', Proc. Amer. Math. Soc. 87 (1986), 532-538.
[4] M. Mahowald, 'On obstruction theory in orientable fiber bundles', Trans. Amer. Math. Soc. 110 (1964), 315-349.
[5] Ng Tze-Beng, 'A note on the mod 2 cohomology of $B \widehat{S} O_{n}\langle 16\rangle$ ', Canad. J. Math. 37 (1985), 893-907.
[6] D. Quillen, 'The mod 2 cohomology rings of extra-special 2-groups and the spinor groups', Math. Ann. 194 (1971), 197-212.
[7] E. Thomas, 'On the existence of immersions and submersions', Trans. Amer. Math. Soc. 132 (1968), 387-394.
[8] E. Thomas, Seminar in fiber spaces: Lecture Notes in Math. No. 13 (Springer-Verlag, 1966).

[^1]
[^0]: Received 3 November 1987

[^1]: Department of Mathematics
 National University of Singapore
 Lower Kent Ridge Rd
 Singapore 0511

