ON A THEOREM OF LI-BANGHE AND PETERSON ON IMMERSIONS OF MANIFOLDS

TZE-BENG NG

Let M^n and N^{2n-2} be smooth, connected manifolds of dimension n and 2n-2 respectively with $n \equiv 2 \mod 4$ and $6 \leq n \leq 26$. Let $f: M^n \to N^{2n-2}$ be a continuous map. Under certain suitable conditions on the stable normal bundle of f, we give a direct and simpler proof that f is homotopic to an immersion. For the case $6 \leq n \leq 26$ and $n \neq 18$, the result was proved by Li-Banghe and Peterson by using non-stable obstruction theory and their earlier result.

1. INTRODUCTION

Let M^n and N^{2n-2} be smooth, connected, manifolds of dimension n and 2n-2 respectively with $n \ge 6$. Let $f: M^n \to N^{2n-2}$ be a continuous map. It is well known [1], that f is homotopic to an immersion if, and only if the stable bundle $\nu_f = f^*(\tau_N) + \nu_M$ has geometric dimension $\le n-2$. Thomas [7] has shown that, when $n \equiv 2 \mod 4$ with $n \ge 6$, M is orientable and $f^*(w_1(N)) = f^*(w_2(N)) = 0$, then f is homotopic to an immersion if $\delta w_{n-2}(\nu_f) = 0, w_n(\nu_f) = 0$ and $w_{n-2}(\nu_f) \cdot w_2(M) = 0$. Li-Banghe and Peterson [2] showed that $w_n(\nu_f) = 0$. They proved (for $n \ne 18$):

THEOREM 1.1. ([3, Theorem 2.3 and 2.4]) Let $f: M^n \to N^{2n-2}$ be a continuous map.

- (i) Suppose n = 6 or 10 and ν_f is a stable spin bundle. Then f is homotopic to an immersion.
- (ii) Suppose n = 14, 18, 22 or 26 and that ν_f admits a $BO\langle 8 \rangle$ structure. Then f is homotopic to an immersion.

Their proof uses a theorem of [2] to lift the classifying map of ν_f to $BSpin_{n-1}$ or $BO_{n-1}\langle 8 \rangle$ and then show that the obstruction to lifting ν_f further to $BSpin_{n-2}$ or $BO_{n-2}\langle 8 \rangle$ is trivial. For n = 18, there is a class $\theta \in H^{18}(BO_n\langle 8 \rangle; \mathbb{Z}_2)$ not in the image of i^* where $i: BO_n\langle 8 \rangle \to BSO_n$ is the projection map of the bundle. Therefore their proof could not give the same conclusion when n = 18.

In this note we shall show that by studying the n-Postnikov towers for the fibration $BSO_{n-2} \rightarrow BSO$ for $6 \le n \le 26$, we derive Theorem 1.1 directly without first lifting ν_f to BSO_{n-1} and also prove an analogous result for the case n = 18. For completeness we have included this result in Theorem 1.1.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

[2]

2. The Postnikov tower for $\pi: BSO_{n-2} \rightarrow BSO$..

According to Mahowald [4], the Postnikov tower of $\pi : BSO_{n-2} \to BSO$ for $n \equiv 2 \mod 4$ and $n \ge 6$ is given as follows :

$$egin{aligned} k_1^1 &= \delta w_{n-2}, \ k^2 &= \left(p_1^* w_n, k_1^2
ight) \end{aligned}$$

where k_1^2 is defined by the relation $k_1^2 : (Sq^2 + w_2) \delta w_{n-2} = 0$ and $p_1 : E_1 \to BSO$ is the principal fibration with classifying map $\delta w_{n-2} : BSO \to K(\mathbb{Z}, n-1)$.

Let $\eta: BSpin \to BSO$ and $\tilde{\eta}: BO\langle 8 \rangle to BSO$ be the obvious inclusion map. Since $H^*(BSpin; \mathbb{Z})$ has only order 2-torsion, δw_4 and δw_8 are trivial in $H^*(BSpin; \mathbb{Z})$, and $\delta w_{12}, \delta w_{16}, \delta w_{20}$ and δw_{24} are all trivial in $H^*(BO\langle 8 \rangle; \mathbb{Z})$ (this can be easily derived by looking at a truncated Poincaré series for the Sq^1 -cohomology of $H^*(BO\langle 8 \rangle; \mathbb{Z}_2)$) the fibration η lifts to E_1 for n = 6 or 10 and the fibration $\tilde{\eta}$ lifts to E_1 for n = 14, 18, 22 or 26.

3. Spin-Structure.

For n = 6 or 10 let $l: BSpin \to E_1$ be a lifting of $\eta: BSpin \to BSO$.

THEOREM 3.1. Let M^n be a manifold of dimension n = 6 or 10. Let ξ be a stable spin bundle over M with $w_n(\xi) = 0$. Then the geometric dimension of $\xi \leq n-2$.

PROOF: Now $H^6(BSpin; \mathbb{Z}_2) \approx \langle w_6 \rangle$ so that for n = 6, $l^*(k_1^2) = \alpha w_6$ for some $\alpha \in \mathbb{Z}_2$. Thus if ξ is a stable spin bundle over M^6 with $w_6(\xi) = 0, 0 \in k^2(\xi)$. Also $H^{10}(BSpin; \mathbb{Z}_2) \approx \langle w_{10}, w_4 \cdot w_6 \rangle$. Assume now n = 10. An exact sequence of Thomas [8], shows that $(Sq^2 + w_2 \cdot)k_1^2 \in p_1^*(Ker \pi^*) \cap H^{12}(E_1)$.

Since $(Sq^2 + w_2 \cdot) H^{10}(BSpin; \mathbb{Z}_2) \cap \eta^*(Ker \pi^*) = \{0\}, l^*(Sq^2 + w_2 \cdot)k_1^2 = 0.$ Hence $l^*k_1^2 = \alpha w_{10}$ for some $\alpha \in \mathbb{Z}_2$. As before if ξ is a stable spin bundle with $w_{10}(\xi) = 0, 0 \in k^2(\xi).$

 $\mathbf{204}$

4. BO $\langle 8 \rangle$ -Structures.

[3]

For $14 \leq n \leq 26$, let $\tilde{l}: BO(8) \to E_1$ be a lifting of $\tilde{\eta}: BO(8) \to BSO$.

THEOREM 4.1. Let ξ be a BO(8) - bundle over M^n of dimension $n \equiv 2(4)$ with $14 \leq n \leq 26$. Suppose $w_n(\xi) = 0$. Then ξ has geometric dimension $\leq n - 2$.

PROOF: $H^{14}(BO\langle 8\rangle; \mathbb{Z}_2) \approx \langle w_{14} \rangle, H^{18}(BO\langle 8\rangle; \mathbb{Z}_2) \approx 0, H^{22}(BO\langle 8\rangle; \mathbb{Z}_2) \approx \langle w_{22}, w_8 \cdot w_{14} \rangle$ and $H^{26}(BO\langle 8\rangle; \mathbb{Z}_2) \approx \langle w_{26}, w_{12} \cdot w_{14} \rangle$. For n = 14 and 26, the proof is similar to that of Theorem 3.1. For n = 18, it is trivial. Now w_8 and w_{12} in $H^*(BO\langle 8\rangle; \mathbb{Z}_2)$ are integral. That is there are classes $Q_2 \in H^8(BO\langle 8\rangle; \mathbb{Z})$ and $Q_3 \in H^{12}(BO\langle 8\rangle; \mathbb{Z})$ with $\rho_2 Q_2 = w_8$ and $\rho_2 Q_3 = w_{12}$ where ρ_2 is reduction mod 2. Thus $(Sq^2 + w_2 \cdot)(Q_2 \cdot Q_3) = Sq^2(Q_2 \cdot Q_3) = Sq^2(w_8 \cdot w_{12}) = w_8 \cdot w_{14}$ in $H^*(BO\langle 8\rangle; \mathbb{Z}_2)$. Thus for $n = 22, w_8 \cdot w_{14} \in Indet^{22}(k^2(\tilde{\eta}), BO\langle 8\rangle)$. Thus if $w_{22}(\xi) = 0$ and $n = 22, 0 \in k^2(\xi)$. Therefore ξ lifts to BSO_{n-2} and so the geometric dimension of $\xi \leq n-2$.

5. Proof of Theorem 1.1.

Let $f: M^n \to N^{2n-2}$ be a continuous map. Take $\xi = \nu_f$. Then part (i) follows from Theorem 3.1 and part (ii) follows from Theorem 4.1.

References

- [1] M. Hirsch, 'Immersion of manifolds', Trans. Amer. Math. Soc. 93 (1959), 242-276.
- [2] B.H. Li and F.P. Peterson, 'On immersions of k-manifolds in (2k-1)-manifolds"', Proc. Amer. Math. Soc. 83 (1981), 159-162.
- [3] B.H. Li and F.P. Peterson, 'On immersions of n-manifolds in (2n-2)-manifolds", Proc. Amer. Math. Soc. 97 (1986), 532-538.
- [4] M. Mahowald, 'On obstruction theory in orientable fiber bundles', Trans. Amer. Math. Soc. 110 (1964), 315-349.
- [5] Ng Tze-Beng, 'A note on the mod 2 cohomology of $B\widehat{S}O_n(16)$ ', Canad. J. Math. 37 (1985), 893-907.
- [6] D. Quillen, 'The mod 2 cohomology rings of extra-special 2-groups and the spinor groups', Math. Ann. 194 (1971), 197-212.
- [7] E. Thomas, 'On the existence of immersions and submersions', Trans. Amer. Math. Soc. 132 (1968), 387-394.
- [8] E. Thomas, Seminar in fiber spaces: Lecture Notes in Math. No. 13 (Springer-Verlag, 1966).

Department of Mathematics National University of Singapore Lower Kent Ridge Rd Singapore 0511 205