Torsion topological groups with minimal open sets

M.C. Thornton

Torsion topological groups with the additional property that the intersection of open sets is open are considered and their topological structure is determined:

- 1) the topology is uniquely determined by a normal subgroup;
- each group is uniquely an extension of an indiscrete group by a discrete group;
- the topology may be changed within limits without changing the dual group.

An A-space is a topological space where the intersection of open sets is open ([1], [5], [8]). For a point x in an A-space X, U_x , the minimal open set containing x, is the intersection of all open sets containing x. Topological groups and semi-topological groups are defined as in [3]. G_{a} will denote the component of the identity e.

LEMMA 1. Let G be an A-space semi-topological group with $a, b \in G$. Then $aU_b = U_{ab} = U_b$.

Proof. U_a^b is open and contains ab so $U_{ab} \subset U_a^b$. Also $U_b \subset a^{-1}U_{ab}$ so $aU_b \subset U_{ab}$. Thus $U_{ab} = aU_b$ and likewise $U_{ab} = U_a^b$. The next lemma is an extension of the results in [6]. LEMMA 2. Let G be a semi-topological torsion group with an

Received 5 January 1971.

55

A-space topology. Then U_e is an open and closed normal subgroup, has the indiscrete topology induced on it, and is G_e . Further, G is a topological group whose minimal open sets are the cosets of U_e .

Proof. If $g \in U_e$ then $gU_e = U_g \subset U_e$ thus $U_eU_e \subset U_e$. But U_eU_e is open so that $U_e \subset U_eU_e$ and $U_eU_e = U_e$. Since g has finite order, g^{-1} is a power of g so $g^{-1} \in U_e$. Therefore U_e is a subgroup. Since $U_ex = U_x = xU_e$, $xU_ex^{-1} = U_e$ and so U_e is normal.

Suppose V is a proper open subset of U_e containing g. Then $g^{-1}V \subset U_e$ is an open subset of U_e containing e with $g^{-1}V \neq U_e$. This contradicts the minimality of U_e so V cannot exist and so U_e is indiscrete. Since U_e is open it is also closed [2, 5.5]. Since U_e is connected, $U_e \subset G_e$. But $G_e - U_e$ is open since U_e is closed. Thus the connectedness of G_e implies $U_e = G_e$. The homogeneity of G shows the cosets of U_e are a base for the topology. By [2, 4.5] G is a topological group.

LEMMA 3. Let H be a normal subgroup of a group G. Define a subset of G to be open iff it is a union of H-cosets. Then G is a topological group with an A-space topology and $G_{\rho} = H$.

Proof. Since *H*-cosets are disjoint and exhaust *G* they form a base for a topology. In this topology *H* is the component of the identity. *H* with the induced topology is an indiscrete topological group. To show *G* is a topological group we verify $\mu : G \times G \rightarrow G$ given by $\mu(g, k) = g^{-1}k$ is continuous. It suffices to show $\mu(U_g \times U_k) = U_{g^{-1}k} = g^{-1}kH$ since $g^{-1}kH$

is the smallest open set containing $g^{-1}k$. Let $gh \in gH = U_g$. Then

$$\mu(gh \times U_k) = (gh)^{-1}U_k = h^{-1}g^{-1}(kH) = g^{-1}k(h'H) = g^{-1}kH = U_{g^{-1}k}$$

Thus

$$\mu(U_{g} \times U_{k}) = \mu(gH \times U_{k}) = \bigcup_{h \in H} \mu(gh \times U_{k}) = U_{g}^{-1}$$

From the above it is clear that any finite topological space X which is homogeneous can carry a group structure making it a topological group. For example if X has p minimal open sets with q points in each, then X can be given the group structure of $Z_p \oplus Z_q$ or Z_{pq} .

Lemmas 2 and 3 prove the following theorem which extends [2, 4.21 (b)] to A-spaces. It also gives information on the number of topologies possible on a finite set, a problem considered in [4]. As in [6], the corollary gives an exact answer to a special case of the problem considered in [7].

THEOREM 4. There is a bijective correspondence between normal subgroups of a torsion group G and the A-space topologies on G giving a topological group.

COROLLARY 5. A finite topological group has exactly 2^r open subsets where r is the index of the largest connected subgroup.

Proof. A base for the topology is given by the r disjoint open subsets which are the cosets of the largest connected subgroup, the component of the identity. This result was implicit in [6].

Let G be an A-space torsion topological group (not assumed abelian). Let S denote the circle group with the usual topology. The dual of G (or character group) is defined by

 $G^{\star} = \operatorname{Hom}_{\mathcal{A}}(G, S) =$ the set of continuous homomorphisms from G to S.

 G^* with the compact-open topology and the abelian group structure defined by $(f_1+f_2)g = f_1(g)f_2(g)$ is a topological group ([3, Section 44] or [2, Section 23]). Note that here $f: G \to S$ is continuous iff f is constant on the cosets of G_{ρ} .

THEOREM 6. Any A-space torsion topological group G can be uniquely expressed as the extension of an indiscrete normal subgroup N by a discrete group D. Furthermore if D is finitely generated, G^* is topologically isomorphic to D made abelian. Proof. Clearly $N = G_e$ and $D = G/G_e$ gives such an extension. Conversely, if $1 \rightarrow N \rightarrow G \rightarrow D \rightarrow 1$ is exact and D is discrete, N must be open. Thus $G_e \subset N$. If $G_e \neq N$ then N is not indiscrete, so $G_e = N$.

The exactness of $G_e + G \xrightarrow{p} G/G_e + 1$ gives the exactness of $1 + \operatorname{Hom}_c(G/G_e, S) \xrightarrow{p^*} \operatorname{Hom}_c(G, S) + \operatorname{Hom}_c(G_e, S)$ where p^* is a continuous homomorphism. Since G_e is indiscrete, $\operatorname{Hom}_c(G_e, S) = 1$. Thus p^* is a continuous isomorphism. Since p is also a compact mapping, p^* is an open mapping and thus is a topological isomorphism. If $D = G/G_e$ is finitely generated, $\operatorname{Hom}_c(D, S)$ is a discrete group topologically isomorphic to $\operatorname{Hom}(D, S)$. But since S is abelian, $\operatorname{Hom}(D, S) \xrightarrow{q} \operatorname{Hom}(D/D', S) \xrightarrow{q} D/D'$. Thus G^* is topologically isomorphic to D made abelian.

If G is a Hausdorff abelian topological group, the duality theorem [2, 24.8] shows G^{**} is topologically isomorphic to G. This theorem is seen not to be true if Hausdorff separation is not required. In fact the following result shows how the topology on G can be changed without changing G^* . Examples showing that the condition G'H = G'K is not necessary are easy to construct.

THEOREM 7. Let G_1 and G_2 be the torsion group G with the A-space topology determined by the normal subgroups H and K respectively. Then G'H = G'K is a sufficient condition for G_1^* to be topologically isomorphic to G_2^* .

Proof. The natural projection $p: D \to D/D'$ gives a continuous isomorphism $p^*: \operatorname{Hom}_{\mathcal{C}}(D/D', S) \to \operatorname{Hom}_{\mathcal{C}}(D, S)$. The function $q^*: \operatorname{Hom}_{\mathcal{C}}(D, S) \to \operatorname{Hom}_{\mathcal{C}}(D/D', S)$ given by $q^*(f)(dD') = f(d)$ is well defined and the inverse to p^* . To show q^* is continuous, consider the open set in $\operatorname{Hom}_{\mathcal{C}}(D/D', S)$, $(KD', V) = \{h: D/D' \to S \mid h(KD') \subset V\}$ where V is open in S and $KD' = \{kD' \mid k \in K \subset D\}$ is compact and hence a finite set in D/D'. Then $q^{*-1}(KD', V) = (K, V)$ is a basic open set in Hom_c(D, S). So q^* is continuous and p^* is a homeomorphism. Thus G_1^* and G_2^* are topologically isomorphic to $\operatorname{Hom}(G/H/(G/H)', S)$ and $\operatorname{Hom}(G/K/(G/K)', S)$ respectively. However as discrete groups $G/H/(G/H)' \approx G/H/G'H/H \approx G/G'H$. So if G'K = G'H it follows that G_1^* is topologically isomorphic to G_2^* .

References

- [1] P. Alexandroff, "Diskrete Räume", Rec. Math. Moscou (N.S.) 2 (1937), 501-518.
- [2] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. I
 (Die Grundlehren der mathematischen Wissenschaften, Band 115; Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- [3] Taqdir Husain, Introduction to topological groups (W.B. Saunders, Philadelphia, London, 1966).
- [4] V. Krishnamurthy, "On the number of topologies on a finite set", Amer. Math. Monthly 73 (1966), 154-157.
- [5] Michael C. McCord, "Singular homology groups and homotopy groups of finite topological spaces", Duke Math. J. 33 (1966), 465-474.
- [6] Sidney A. Morris and H.B. Thompson, "Topologies on finite groups", Bull. Austral. Math. Soc. 1 (1969), 315-317.
- [7] D. Stephen, "Topology on finite sets", Amer. Math. Monthly 75 (1968), 739-741.
- [8] R.E. Stong, "Finite topological spaces", Trans. Amer. Math. Soc. 123 (1966), 325-340.

University of Nebraska, Lincoln, Nebraska, USA.