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Torsion topological groups
with minimal open sets

M.C. Thornton

Torsion topological groups with the additional property that the

intersection of open sets is open are considered and their

topological structure is determined:

1) the topology is uniquely determined by a normal subgroup;

2) each group is uniquely an extension of an indiscrete group

by a discrete group;

3) the topology may be changed within limits without changing

the dual group.

An 4-space is a topological space where the intersection of open sets

is open ([/], [5], [S]). For a point x in an /J-space X , U , the

minimal open set containing x , is the intersection of all open sets

containing x . Topological groups and semi-topological groups are defined

as in [3]. G will denote the component of the identity e .

LEMMA 1. Let G be an A-spaoe semi-topologioal group with

a, b 6 G . Then aU, = V . = V b .
b ab a

Proof. U b is open and contains ab so U, c V b . Also

U, c a" U , so aJU, c U . Thus U , = all, and likewise U , = V b .
b ab b ab ab b ab a

The next lemma is an extension of the results in [6].

LEMMA 2. Let G be a senti-topologioal torsion group with an
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A-spaae topology. Then U is an open and closed normal subgroup, has the

indiscrete topology induced on it, and is G . Further, G is a
Q

topological group whose minimal open sets are the aosets of U .

Proof. If g i U& then gU = U c U thus U U c U . But V U

is open so that U c U U and U U = U . Since g has finite order,
* e e e e e e

g is a power of g so g t U Therefore U is a subgroup. Since

U x = U = xU , xU x~ = U and so U is normal.
e x e e e e

Suppose K is a propel open subset of U containing g . Then

g~ V c U is an open subset of U containing e with g~ V + U . This

contradicts the minimality of U so V cannot exist and so U is

indiscrete. Since U is open it is also closed [2, 5.5]. Since U is

connected, [/ c C . But G - U is open since U is closed. Thus
e e e e e

the connectedness of G implies U = G . The homogeneity of G shows

the cosets of U are a base for the topology. By [2, 1+.5] G is a
6

topological group.

LEMMA 3. Let H be a normal subgroup of a group G . Define a

subset of G to be open iff it is a union of H-cosets. Then G is a

topologiaal group with an A-spaae topology and" G = H .

Proof. Since #-cosets are disjoint and exhaust G they form a base

for a topology. In this topology H is the component of the identity. E

with the induced topology is an indiscrete topological group. To show G

is a topological group we verify \i : G x G -*• G given by \i(g, k) = g k

is continuous. It suffices to show \i(u *£/,) = U = g~ kH since g kH
9 k g~h

i s the smallest open set containing g k . 'Let gh € gH - V . Then
9

iJ ^ ^H = g'hih'H) = g^kH = U .
9 k

https://doi.org/10.1017/S0004972700046876 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046876


Topological groups 57

Thus

g heH g~ k

From the above it is clear that any finite topological space X which

is homogeneous can carry a group structure making it a topological group.

For example if X has p minimal open sets with q points in each, then

X can be given the group structure of Z © Z or Z
p q pq

Lemmas 2 and 3 prove the following theorem which extends [2, i*.21 (b)]

to /4-spaces. It also gives information on the number of topologies

possible on a finite set, a problem considered in [4]. As in [6], the

corollary gives an exact answer to a special case of the problem considered

in [7].

THEOREM 4. There is a bijective correspondence between normal

subgroups of a torsion group G and the A-space topologies on G giving

a topological group.

COROLLARY 5. A finite topological group has exactly 2 open

subsets where r is the index of the largest connected subgroup.

Proof. A base for the topology is given by the r disjoint open

subsets which are the cosets of the largest connected subgroup, the

component of the identity. This result was implicit in [6].

Let G be an 4-space torsion topological group (not assumed

abelian). Let 5 denote the circle group with the usual topology. The

dual of G (or character group) is defined by

G* = Horn {G, S) = the set of continuous homomorphisms from G to S .

G* with the compact-open topology and the abelian group structure defined

by (f\+fl)g = fl(g)fl(g) i s a topological group ([3, Section M ] or

12, Section 23]). Note that here / : G •* S is continuous iff / is

constant on the cosets of G
e

THEOREM 6. Any A-space torsion topological group G can be

uniquely expressed as the extension of an indiscrete normal subgroup N by

a discrete group D . Furthermore if D is finitely generated, G* is

topologically isomorphic to D made abelian.

https://doi.org/10.1017/S0004972700046876 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046876


58 M.C. Thornton

Proof. Clearly N = G and D = G/G gives such an extension.

Conversely, if 1-+N-+G + D + 1 is exact and D is discrete, N must

be open. Thus G c N . If G + N then N is not indiscrete, so

G = A? .
e

The exactness of G -»• G -£-»• G/G •+ 1 gives the exactness of
e e

1 •* Horn [G/G , S) - 2 — • Horn (G, 5) -»• Horn (G , 5) where p* is a continuous

homomorphism. Since G is indiscrete, Horn [G , S) = 1 . Thus p* is a

continuous isomorphism. Since p is also a compact mapping, p* is an

open mapping and thus is a topological isomorphism. If D = G/G is
Q

finitely generated, Horn (D, S) is a discrete group topologically

isomorphic to Hom(D, S) . But since S is abelian,

Hom(D, S) ^ Hom(D/£>' , 5) ^ D/D' . Thus G* is topologically isomorphic

to D made abelian.

If G is a Hausdorff abelian topological group, the duality theorem

[2, 2U.8] shows G** is topologically isomorphic to G . This theorem is

seen not to be true if Hausdorff separation is not required. In fact the

following result shows how the topology on G can be changed without

changing G* . Examples showing that the condition G'H = G'K is not

necessary are easy to construct.

THEOREM 7. Let G\ and G^ be the tors-ion group G with the

A-space topology determined by the normal subgroups H and K

respectively. Then G'H = G1 K is a sufficient condition for G± to be

topologically isomorphic to G2 .

Proof. The natural projection p : D -*• D/D' gives a continuous

isomorphism p* : Horn (D/D' , S) •* Horn (0, S) . The function

q* : Horn (D, S) ->- Horn (D/D' , S) given by q*(f)(dD') = f(d) is well

defined and the inverse to p* . To show q* is continuous, consider the

open set in Horn (D/D' , S) , (W , V) = {h : D/D' -> S | h(KD') c V) where

V is open in S and KD' = {kD' \ k € K c D} is compact and hence a

finite set in D/D' . Then q*~'L(KD' , V) = (K, V) is a basic open set in
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Horn (D, S) . So q* is continuous and p* is a homeomorphism. Thus G*

and G$ are topologically isomorphic to Rom{G/HAG/H)', S) and

Horn[G/K/(G/K)', S) respectively. However as discrete groups

G/H1{G/H)' % G/H/G'H/H % G/G'H . So if G'K = G'H it follows that G* is

topologically isomorphic to G* .
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