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Abstract

We present structural properties of the complex associative algebra generated by the canonical
commutation relations in exponential form. In particular, we show it to be a central simple algebra
that lacks zero divisors and is not Noetherian on either side; in addition, we determine explicitly
its units and its automorphisms.
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Introduction

The Weyl algebra with generators py, ..., Pm, 41, - - - , ¢n Subject to the relations
[pi, g1 = &;j and [p;, p;] = [gi, q;] = 0 has been the recipient of much atten-
tion, not least because of its importance for the theory of enveloping algebras:
see [1]. Its importance for quantum theory is probably exceeded by that of the
“exponential” Weyl algebra, generated by the canonical commutation relations
in exponential form.

Our aim here is to present some fundamental structural properties of the
complex exponential Weyl algebra A(V, §2) associated to a real symplectic
vector space (V, €2). We show that it is a central simple algebra without zero
divisors and determine its group of units. We demonstrate that it is neither
Noetherian nor Artinian: indeed, it has strictly ascending chains of principal
left ideals and it has no minimal left ideals. We describe explicitly its full
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automorphism group: this turms out to be a semidirect product of the complex
character group of V and the additive symplectic group of (V, €2). Much of this
structure theory follows from convexity properties of interest in their own right.

We remark that certain finitely-generated analogues of A(V, ©2) have been
studied by a number of authors: see Jategaonkar [2] and McConnell and Pettit
[S]. We remark also that the C*-algebra completion of A(V, 2) relative to a
natural involution has been studied rather thoroughly: see Manuceau [3] and
Slawny [8]; see also [4].

The work presented here developed from a University of Florida preprint [6]
and was financially supported in part by the National Science Foundation.

1. The structure of A(V, Q)

Let (V, ©2) be a real symplectic vector space: the real vector space V might
be infinite dimensional; the skew bilinear form €2 is nonsingular in having trivial
kemel. For h = 2zh a fixed positive real number, define € from V x V to the
unit circle by

1
2ih

X,y € V:>8(x,y)=exp{ Q(x,y)}

and write w for the square of ¢.

The exponential Weyl algebra A(V, Q) is the associative complex algebra
of all finitely-supported maps V — C, the linear operations being defined
pointwise and the product being given by

@) = Y &(x, NSV ()
x+y=v

forg, ¥ € A(V,Q) and v € V. Thus: A(V, Q) is a twisted group algebra of
the additive group underlying V, the twist being provided by the cocycle ¢. For
convenience, we shall henceforth drop the adjective “exponential” and refer to
A(V, Q) simply as the Weyl algebra of (V, §2).

For v € V we denote by §, the element of A(V, 2) taking value 1 at v and 0
elsewhere. Note that

x,yeV= axay = &(x, y)0xyy

so that in particular &, is the multiplicative identity of A(V, €2) and §, is a unit
with inverse §_, for each v € V. Note also that {5, : v € V} is of course a basis
for A(V, Q) as a vector space.
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We point out that if ¢ € A(V, 2) and u, v € V then
(3u98, ) (v) = w(u, v)¢(v).

Though elementary, this commutation rule enables us to establish rather directly
that the algebra A(V, ) is central simple. Before embarking on the proof it
is convenient to introduce further notation: namely, X (¢) C V to denote the
(finite) support of ¢ € A(V, §2). Note that if # € V then multiplication on either
side by §, translates supports through u so that 2(8,,¢8u“) = ¥ (¢) whenever
¢ e A(V, Q).

We claim that the centre of A(V, Q) consists precisely of all scalar multiples
of 8y. To see this, let ¢ lie in the centre of A(V, 2). If v € V is nonzero then
there exists u € V with Q(u, v) ¢ hZ so that w(u, v) # 1; now

o (u, V)P (V) = (6.98,)(v) = $(v)

forces ¢ (v) = 0. It follows that £(¢) C {0} so that ¢ is indeed a scalar multiple
of §,. The simplicity of A(V, €2) is a consequence of the following result, itself
of independent interest,

THEOREM. Let J be an additive subgroup of A(V, Q) invariant under the
inner automorphism defined by 8, for each u € V. If J is nonzero then J
contains a unit.

PROOF. Let ¢ be a nonzero element of J for which the cardinality #X (¢) is
minimal. We claim that in fact #3(¢) = 1, so that ¢ is a scalar multiple of some
4, and hence a unit. For a contradiction, suppose X (¢) to contain distinct points
x and y. Choose u € V such that Q(u, x) € hZ and Q(u, y) ¢ hZ. Observe
that J contains the element ¥ = §,¢6; ! — ¢ and that Z(¥) C X(¢). On the
one hand,

d(x) =(wu,x) — gx) =0
so that X () # X(¢); on the other hand,

Y(y) = (wu,y) - D¢(y) #0

so that ¥ # 0. Thus: the nonzero ¥ € J has #X(y¥) < #X(¢) and so
contradicts our choice of ¢.

As promised, we now have the central simplicity of the Weyl algebra.
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THEOREM. The Weyl algebra A(V, Q2) is central simple.

PROOF. We know already that the centre of A(V, ) comprises all scalar
multiples of the identity. Any ideal of A(V, 2) is certainly an additive subgroup
invariant under all inner automorphisms; if it contains a unit then it is all of
AV, Q).

This result has the usual consequences: for example, a nonzero homomorph-
ism from A(V, 2) is automatically injective: in particular, a nonzero represent-
ation of A(V, Q) is automatically faithful.

Further structural properties of the Weyl algebra follow from a convexity
analysis of the supports of its elements. The foundation of this analysis is the
following.

THEOREM. If ¢, v € A(V, Q) are nonzero then

(oY) C Z(p) + Z(¥)
and both sides have the same convex hull in V.

PROOF. The stated inclusion is plain from the definition of multiplication in
AV, ). In order to complete the proof, it suffices to establish that every
extreme point of X (¢) + X () lies in X (¢y); for this, it is enough to show that
each such extreme point is uniquely a sum of elements from X (¢) and X ().
To thisend, let x, x’ € X(¢) and y, ¥y’ € T () withx + y = x" + y’ an extreme
point of X(¢) + X (¥); then

1 4 1 ’
x+y=§(x+y)+§(x +y)

is a convex combination of two elements in X (¢) + X (i) which are distinct
unless x = x"and y = y'.

Denote by e(¢) the number of extreme points in the (finite) support X (¢) of
¢ € A(V, Q). Of course, e(¢p) = 0iff ¢ = 0 and e(¢p) = 1 iff ¢ is a nonzero
scalar multiple of 8, for some v € V. In terms of this notation, the preceding
theorem has the following numerical consequence for support convexity e.

THEOREM. If ¢, Y € A(V, Q) are nonzero then e(Ppyr) = e(@) Vv e(y).
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PROOF. We must show that e(¢) > e(¢) and e(¢py) > e(y); by symmetry
it is enough to show that e(¢pyr) > e(¢). Let x be an extreme point of X (¢)
and choose a linear functional f € V* such that f(x) > f(&) forall £ € X(¢)
except £ = x. Among all points in £(y) at which f is maximized, select y
to be an extreme point of X (). We claim that x + y is an extreme point of
X(¢) + Z(¥). To see this, let x’, x” € X(¢), let y', vy’ € Z(y), let ', 1" be
positive real numbers with sum unity and assume

X +y — )\./(x/+y/) +)\.U(X//+y”).
In the resulting equation
FE) =N =AfE) =N+ O~ f()

the left side is nonnegative whilst the right side is nonpositive, whence both sides
vanish. From our choice of f we see that x’ = x” = x sothat y = 1A'y’ + A"y”
and therefore y’ = y” = y by extremity. Thus: to each extreme point x € X (¢)
there corresponds an extreme point x + y of £(¢) + X () with y € Z(¥).
This correspondence is necessarily injective: if xo € X(¢) and y, € X () with
X+ y = xo + yo then

fx) = f(xo) = fyo) — fO);

as before both sides vanish, so that x = xy and y = y,. Our proof is now
complete.

As the first algebraic inference from our analysis of support convexity, the
Weyl algebra lacks zero divisors and so of course lacks nontrivial idempotents.
Indeed, if ¢, ¥ € A(V, Q) are nonzero then from e(¢pyr) > e(¢) Vv e(Y) it
follows at once that ¢y is nonzero.

THEOREM. A(V, 2) has no zero divisors.

Our analysis of support convexity also allows us to identify the units of the
Weyl algebra. In fact, let ¢ and  in A(V, Q) satisfy ¢ = §,. From

1 =e(d) = e(@Y) > e(@) Ve(y)

we infer that e(¢) = e(yy) = 1 and therefore that ¢ and ¢ are scalar multiples
of elements in {8, : v € V}.
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THEOREM. The units in A(V, Q) are precisely the elements {15, : 0 # A € C,
v € V} having point support.

We are now in a position to address the issue of whether or not the Weyl
algebra is Noetherian. For 0 # u € V and for n € Z let J, denote the principal
left ideal of A(V, 2) generated by ¢, = 3¢ — 8,> and write ¥, = 8¢ + 8, 2r.
In view of the factorization ¥,¢, = ¢,_, it is clear that (J,)32, is increasing.
Further, ¢, ¢ J,_; since A(V, Q) lacks zero divisors and v, is not a unit;
thus (J,):2, increases strictly. Consequently, the Weyl algebra is neither left

Noetherian nor (by symmetry) right Noetherian.

THEOREM. A(V, 2) is not (left or right) Noetherian: indeed, it contains
strictly ascending chains of principal (left, right) ideals.

Failing to be Noetherian, the Weyl algebra a fortiori fails to be Artinian.
More is true: the Weyl algebra lacks minimal one-sided ideals. To see this, let
J be a nonzero left ideal in A(V, 2) and write e(J) to denote the minimum
Ne) : 0 # ¢ € J}. If we choose ¢ € J to satisfy e(¢p) > e(J) then the left
ideal J - ¢ satisfies

e(J-¢) = e(p) > e(J)

and is therefore properly included in J.

THEOREM. A(V, Q) is not Artinian: indeed, it has no minimal one-sided
ideals.

Knowing all the units of the Weyl algebra, we can actually determine its
full automorphism group. To this end, let T be an algebra automorphism of
A(V, Q). Since T must map units to units, it determines maps F V — V and
f V — C* such that

veV = T((Sv) = f(v)&F(,,);
of course, since T is bijective sois F. If x, y € V then

T(BX)T(ay) = f(x)f(y)s(Fx’ Fy)st—i—Fy
T(axay) = e(x, )?)f(x + y)aF(x+y)-

Consequently, if x, y € V then we have the following two relations:

Fx+y)=Fx)+ F(y)
ex, ) fx+y)=fx)f(e(Fx, Fy).
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The first of these relations tells us that F is an automorphism of the additive
group V; equivalently, F is an automorphism of V as a rational vector space.
As a result, F acts on the cohomology groups of V; in particular, those with
coefficients in the trivial V-module C*. The second of our relations tells us that
the cohomology class [¢] € H?(V; C®) is fixed under F. In fact, we can say
more: F actually fixes €2; we see this as follows.

Interchanging x, y € V in the equation

fax+y) _ eFx, Fy)
fx)fy) e(x,y)

fixes the left side and inverts the right. It follows that if x, y € V then
e(Fx, Fy)/e(x, y) has value £-1; equivalently,

x,yeV = Q(Fx, Fy) — Q(x,y) € hZ.

If Q(Fx, Fy) # Q(x, y) for some x, y € V then the QQ-linearity of F forces
Q(F(gx), Fy) — Q(gx,y) ¢ hZ for sufficiently small nonzero g € Q. Thus:
if x, y e Vthen Q(Fx, Fy) = Q(x,y)andso f(x +y) = f(x)f(y). We
record our findings in the following form.

THEOREM. The algebra automorphisms of A(V, Q) are precisely those self-
maps T given by
veV =>T(6,) = fWrw

where f is a complex character of the additive group V and F is an additive
automorphism of V fixing Q2.

Thus: the automorphism group of A(V, Q) is the semidirect product of the
group Sp, (V, ) of additive automorphisms of (V, €2) by its natural action on
the complex character group Ch(V) of V: there is a canonically split short
exact sequence

1 - Ch(V) —» AutA(V,Q) - Sp (V,Q) — 1.

Of course, the inner automorphisms of A(V, Q) constitute a subgroup of Ch(V)
isomorphic to V and comprising those T for which F = I and f = w(u, -) for
some u € V.,

In fact, the arguments leading to our determination of the automorphisms of
the Weyl algebra can be pressed a littler further. Let (V’, Q') be another real
symplectic vector space and let 7 be an algebra isomorphism from A(V, Q)
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to A(V', ). Arguing as for the theorem, there exist a complex character
fV — C° and an additive isomorphism F (V,Q) — (V’, ') such that
T(6,) = f(v)brw for all v € V. Now, if V is finite dimensional and § is a
symplectic basis for (V, §2) then F(S) is a symplectic basis for (V’, Q) so that
dim V' = dim V. Thus the (finite) dimension of V is an algebraic invariant of
A(V, Q2); see [7] for an alternative proof of this fact based on a study of maximal
abelian subalgebras of A(V, Q).

It is of some interest consider invariance properties of numerical quantities at-
tached to elements of the Weyl algebra. Support cardinality is of course invariant
under each automorphism of the Weyl algebra: if T € AutA(V, 2) determines
F e Sp.(V, ) then (T (¢)) = F(X(¢)) and therefore #X(T¢) = #X(¢)
for all ¢ € A(V, Q). Support convexity is invariant under those automorph-
isms T of A(V, 2) for which the corresponding symplectic automorphism F is
R-linear: if ¢ € A(V, Q) then e(T ¢) = e(¢) forsuch T.

Recall that support convexity e is rather well-behaved relative to multiplica-
tion; in contrast, support cardinality #X is quite badly behaved. It is natural to
ask whether we can attach to elements of the Weyl algebra a numerical quantity
combining the good behaviour of support cardinality under automorphisms and
the good behaviour of support convexity under multiplication. In fact, such a
numerical quantity can be defined as follows.

For¢ € A(V, Q) we denote by e, (¢) the number of rationally extreme points
in its (finite) support X (¢). Of course, e, dominates e; furthermore, the value of
e, can be arbitrarily large for a fixed value of e greater than one. Since additive
automorphisms of V are rationally linear, e, is certainly invariant under the full
automorphism group of A(V, Q). Though it is not quite obvious, e, is well
behaved relative to multiplication; a proof of this fact runs as follows.

Regard V as a rational vector space and extend to real scalars; denote the
resulting realification by VR,

We claim that any chosen rationally extreme point of £(¢) C V is also a
real extreme point of X(¢) C VR In order to verify this, we may (rationally)
translate so as to arrange that the chosen point is 0. It is enough to show that
if 0 is a real convex combination from X(¢) — {0} then O is actually a rational
convex combination from X(¢) — {0}. Thus: let 0 = Agxo + --- + A,x, be
a shortest possible expression for 0 as a real convex combination of nonzero
vectors Xg, ..., X, in X(¢) C VR with positive real coefficients g, ..., A,
having sum unity. Let {xy, ..., x,} have rational span X C V and real span
X® < VR; note that the rational dimension of X and the real dimension of
XR agree. In fact, this common dimension is n: otherwise, the Carathéodory
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lemma would yield a shorter expression for 0 as a real convex combination from
X (¢) — {0}

Identify X C X® with Q" ¢ R”" for notational convenience. The rational
matrix X with columns xo, ..., x, has rank n and so has nullity 1, over either Q
or R. The equations X - A = 0and Ao + --- + A, = 1 now force Ag, ..., A, to
be rational.

Our claim is vindicated: rationally extreme points of X(¢) C V are really
extreme points of £(¢) C V. The validity of our claim justifies passing from
rational scalars to real scalars in the argument that follows.

Let ¢, ¥ € A(V,2) be nonzero. Let x be a rationally extreme point of
E(¢) C V; from above, x is then a real extreme point of X (¢) C V. Choose a
real-linear functional f on VR with f(x) > f(&) forallé € Z(¢) excepté = x
and choose a real extreme point y of X(¢) C VR at which f is maximized.
The point x + y is then real extreme for X(¢) + X(¥) C VR and therefore
rationally extreme for X (¢) + X () C V; further, the assignment of x + y to x
is necessarily injective. In this way, we arrive at the following promised result.

THEOREM. If ¢, ¥ € A(V, Q2) are nonzero then e, () > e, (¢) V e, (¥).
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