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Einstein's fundamental equations of the gravitational field are
G"" - igi"G + Xg"' = -KT"\ (/*, v = 1, . . . , 4) (1)

where T>™ are the components of the energy tensor and A is the
cosmical constant. In empty space these equations become

G»* - igi»G + Xgi" = 0, • (2)

which may be reduced-to
G"-v = \tf (3)

since G = 4A, by contraction of (2).
Eddington1 has shown (§ 60, p. 138) that when the cosmical term
in (2) is neglected these equations may be derived by Hamiltonian
differentiation with respect to (/^ of G, viz.

, — = — {G^ — \g"vG) = 0- (4)

Distinguishing Eddington's equations and paragraphs by the letter E
we have, by (E 35.3)

V -~g = W~=g g^Sg^, (5)

so that (2) may be obtained by variation of the integral

i.e. by replacing G in (4) by

K = G-2X. (6.1)

The spherically symmetrical solution of (3) may be written in the
form (E 45.3)

ds2 = -y-ldr* — r W - r2 sin2 dd</>* + ydl2

' with y = 1 - 2m/r - jAr2 ' 7^

where m is a constant of integration. When A = 0 (7) reduces to the
Schwarzschild solution for which

y = l - 2m/r. (7.1)

Now Eddington has suggested (E § 62, p. 141) that instead of (4)

https://doi.org/10.1017/S0013091500024846 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024846


•90 H . A . BUCHDAHL

the equations

^ =0 (8)

might have been used, K being some fundamental invariant other
than G. In particular he considers

K' = QJZ" = g^g-g^g-B^B,^, (9.1)

#"= B^B^' = Wyg^Bp^Ba^, (9.2)

as being the simplest alternative invariants; but on these grounds, we
should also consider the square of the scalar curvature

V»> — Qi —O^vo<77> a/3.,<?7rJJ ft in Q,

-"• — Kr •— y y y y •cvvo-p-t'a/sen- i " - 0 )

Eddington shows that the Schwarzschild solution (7.1) is also a
solution of the alternative equations

-and it is easily seen also to be a solution of

$^=0. (10.3)

The author now considers these and other alternative field laws and
shows, amongst other results, that in 4-space every, solution of (3) is
also a solution of (10.1) and (10.3), and that those solutions of (3)
which represent spaces of constant Riemannian curvature are also
solutions of (10.2). In particular it is verified that (7) (with A replaced
by a constant of integration a) is not only a solution of (10.1) and (10.3)
but also of (10.2), although the space is not of constant Riemannian
curvature unless m = 0.
.(a) Consider a small variation of K'.

hK' = SiG^O"-) = G^W" + G^G^.
If

G> = agw>

where a is a constant, then

hK' = a(g^8G"" + g^SG^)

= a(8G - G^Sg^ + 8G - G^g"")

= 2a8G - aHcr'Sg^ + vStf"") •

- 2a8<3.
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Hence SK' = 8^/ZTgK') = V ^ S i T + K'hy/ZTjj

= 2 a V ' ^ 80

i.e. 6K'

Hence the condition [ SK'CZT = 0 leads to the condition

0, (11.2)

-which is satisfied in virtue of the fact that equation (11) is equivalent
to equation (11.2). Consequently
every solution of (11) is a solution of the alternative equations (10.1),
where a is to be.regarded as a constant of integration.

It is of interest to note that when a =j= 0 this result does not hold
when the dimensional number is other than four. Thus in a space of

dimensions we have as before 8K' = 2a8G;

but now 8K' = y'^ZTg'bK' + K'h V -~g

- 68 V^
= 2a8K — (n — 4)a2 5 V~,

where the K in (6.1) is now replaced by K — G — (n — 2)a.

Hence, if SK dr = 0 it follows that

f fv
/^^T, (11.3)

which will in general fail to vanish.
As a particular case of the general result above we shall verify

that (7), with . y = 1 — 2m/r - ar2/3, (12)

(both m and a being constants of integration) is a solution of (10.1).
To conform with Eddington's notation we write

e-A = e- = y = 1 - 2m/r — ar2/3 (12.1)

where now, of course, a does not denote the cosmical constant.
Using the form of the G^ given by (E 38.61-5) we find

•*{' = e-'' + i"{2riQi + 2r (v' -\')Q+ \ (3v'2 - 2v'X + 3A'2)
+ 2 (e;- - 1) (A'-v')lr + 2 (eA - l)2/r2}. (13)

Here Q. = \v"- \X'v' + \v'2(= gi4Bil4i), a dash denotes differentiation
with respect to r, and we have set 6 = 77/2 since it is not necessary
to consider variations from the symmetrical condition.
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Using (12.1) after the various partial differentiations have been
performed, we find, following some straightforward but tedious
algebraic work, that

2e~

t/K'

a A'
_ _ g — 3A + i

(A'- v')/r + 2 (eA- l)/r2 | = 4a-6a2r2,\

-{ - Q (rV + 2r) + \rv' (X' - v') + (3A' - v')

+ 2 {ex— l)/r\ = 4ar — 6am - 2a2r3,

(13.1)

= c

( 2 (2v' - A') + 2r] + r („' - A') ( / - ^X')

4- (3i/'~ A') - 2 (e;- - l ) / r l = _ 4ar -f- 2am + L»aV,

f '̂ = c- 3X + *•"•• 2r2Q. + r{v' - A')} = - 2ar2 + 4amr + f a2r4.
5i/ I )

If these values are substituted in the expressions for the Lagrange-
derivatives

3A' + dr2 8X"'

d

they will be found to vanish identical^.
(b) Unfortunately it does not appear possible to deal with K" in the
manner above by using equation (11). But a somewhat more specialised
result may be obtained by considering spaces of constant Riemannian
curvature2. We therefore replace (11) by the equation

Contracting for a and p, we see that (11) is satisfied. Then

8K" = B^SB"^ + B^"SB^P

= 1 1 (g,,g*P - 9^g,p) SB""- + {g^g-p - <r<r) 8 BM. J

= | U&Q -

s i n c e (gMvgap - g^gvp) B>""» = g^g + g^pB'"» = 2G,
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being anti-symmetrical in v and a. As it isalso anti-symmetricaL
in fi and p we get

SK" = £ (48C - 4fl^"8^ - 4(

Hence 8K" = V ^ + +

Hence SK" = -|a§K. (15>
T h e r e f o r e , a s in t h e c a s e of (11.1) w e c o n c l u d e t h a t any solution of (11}
defining tfye line-element of a space of constant Riemannian curvature is
also a solution of the alternative equations (10.2).

Now (7) reduces to the de Sitter line-element (E 70.1) when
m = 0, and the latter defines a space of constant Riemannian curva-
ture. Hence we know now that (10.2) is satisfied by the two particular
solutions ' '
.. • • y = ] — 2m/r and y = 1 — ^ar2.
It is natural to enquire therefore whether (12) as it stands may not
perhaps also be a solution of (10.2). By direct substitution in the
equations following (E 62.6) this may be verified to be actually the
case. Thus using (12.1) again we find

tW 16m 8a 72m2
 A „ „ \

dU" 8m , 8ar 24m2 4aV
— - 4 a m - _ . ,

8K"

3 /

9/ '

= 0,

24m2

8m
r2

8m
r

f 3 '

8ar 40m2 20am 20a2rs

3 r3 h 3 ' 9 '

4ar2 16m2
 ( 16amr 4a2r4

3 ' r2 ' 3 9

(16)

With these values we find that the Lagrange derivatives [K"]; and

[K"]v vanish identically. Hence

(12) is also a solution of the alternative equations (10.2).

Comparing (13.1) and (16) we notice that when m = 0
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as is required by (11.1) and (15), viz.

^ = 4 (16.1)
8K' 7 v ;

As in the case of K' the result established above (for a ^ O ) again
requires the space to be four-dimensional. The equation analogous
to (11.3) is

\ ^ ^ ) \ (17)

(c) It is scarcely necessary to consider the case (10.3) in detail. It
will be sufficient to quote the result that, assuming G = na,

UW'dr = na2 {n - 4 ) | S V / ^ O ! T . • (17.1)

Hence when n = 4 the results staled for K' apply here also.
It may be remarked that K"' is identical with Weyl's action

density (E § 90. p. 209) in the absence of electromagnetic fields,
(d) The three alternative fundamental invariants which have been
considered so far have in common the property of being quadratic in
the second derivatives of the g^. It is of interest to examine whether
the results established would also follow for more complex invariants.
Consider for example the mth power of the scalar curvature in
4-dimensional space. Let

%(»» = Gm. (18)

Then Si<L<m> = mOm- ]S£ = TO (4a)m

= m(4ap

=*= m(4a)
m *

Hence STi(m)dT = 0 is consistent with (11.2) only if m = 2, i.e. in the

case dealt with above. In particular we conclude that (12), (a =j= 0),
is not a solution of [Jf <»»>];, = \KSm\ = o, except in that case. The
-author has considered various other invariants involving 3rd, 4th,...
powers of the second derivatives of the g^, and these yielded similar
jesults.
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