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MODULES OVER HEREDITARY NOETHERIAN 
PRIME RINGS 

SURJEET SINGH 

Quasi-injective and quasi-projective modules over hereditary noetherian 
prime rings ((hnp)-rings) were studied in [17]. In the present paper we give 
some applications of the results established in [17]. Kulikov, Kertesz, Prufer, 
Szele had made basic contributions to the problem of decomposability of 
abelian p-groups (Fuchs [4]). Kaplansky [9] studied analogous problems for 
modules over (commutative) Dedekind domains. Let R be an (hnp)-r'mg, 
which is not right primitive. Using the structure of an indecomposable infective 
torsion i^-module, established in [17, Theorem 4], some of the basic concepts 
and results on the decomposability of a torsion abelian group are generalized 
in Section 2, to modules over R. In particular, it is shown that any non-zero, 
torsion i^-module has a uniform direct summand, which can be chosen to be of 
finite length if M is not injective (Theorem 10). As a consequence we get that 
every divisible i^-module is injective (Corollary 4). This corollary is a special 
case of Levy [11, Theorem (3.4)]. Some of the analogous results for torsion 
modules over bounded Dedekind prime rings were established by Marubayashi 
[12; 13]. His techniques are quite different from those used in this paper. In 
Section 3, quasi-projective i^-modules are investigated. First of all the concept 
of primary, torsion i^-module and primary components of a torsion i^-module 
are introduced. The structure of quasi-projective torsion i^-modules is deter­
mined in Theorems 12 through 15. These theorems generalize the structure 
theorem of a torsion quasi-projective, abelian groups proved by Fuchs and 
Rangaswamy [5]. Finally non-torsion quasi-projective i?-modules are studied. 
It is shown in Theorem 16, that any such, reduced i^-module has a non-zero 
finitely generated projective, direct summand. A result of independent interest 
is Theorem 15, which states that any quasi-projective finitely generated right-
module over a prime, right Goldie ring S is projective, whenever it is not a 
torsion module. All rings considered here are with 1 ^ 0 and all modules are 
unital right modules. The notations and terminology are essentially the same 
as in [17] and will be used without comments. 
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Ohio University, for many stimulating discussions and to the referee for 
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2. Decomposable modules. Throughout R is an (hnp)-ring, which is not 
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right primitive. The following theorem is due to Eisenbud and Griffith 
[3, Corollary (3.2)]. 

THEOREM 1. Every factor ring of an hereditary noetherian prime ring is 
generalized uniserial. 

Since every finitely generated torsion i^-module M has s,nnR(M) 9e (0) 
[17, Lemma 2], M is a module over a generalized uniserial ring R/sninR(M) and 
hence M is a direct sum of finitely many uniserial modules [3, Proposition (1.1)]. 
So we obtain: 

LEMMA 1. Any finitely generated torsion R-module is a direct sum of finitely 
many uniserial modules. 

The following theorem was established in [17, Theorem 4]. 

THEOREM 2. Let E be an indecomposable, infective, torsion module over an 
(hnp)-ring R, which is not right primitive. Then in E, there exists an infinite 
properly ascending chain of submodules: 

(1) 0 = XoR < Xii? < < xnR < < E 

such that all xi+iR/XiR are simple modules: the members of the chain are the only 
submodules of E. Further either all the factor modules xi+iR/xtR are pairwise non-
isomorphic or there exists a positive integer n such that xi+iR/xfR ~ xj+iR/XjR if 
and only if i = j (mod n). If such an n exists, it is called the periodicity of E; 
otherwise E is said to be of periodicity zero. 

The series (1) is called the composition series of E. The following lemma 
is immediate from Theorem 2. 

LEMMA 2. (a) Any uniform torsion R-module is either of finite length and 
uniserial or is infective and of infinite length. 

(b) Let U and V be two uniform, torsion right R-modules, and fr(^0) £ U. If 
a : bR —» V is a non-zero R-homomorphism and length, d( U/bR) ^ d ( V/a (bR) ), 
then a can be extended to an R-homomorphism rj : U—>V and U/bR = rj(U)/rj (bR ). 

(c) Any non-zero homomorphic image of a uniform, tor sion R-module is uniform. 

Let M be a torsion J?-module. Given x G M, x is called a uniform element if 
the submodule xR is a non-zero uniform i^-module. A uniform element x in M 
is said to be of exponent t, (denoted by e(x)) if the length d(xR) = t; the 
supremum of all d(T/xR), where T is a uniform submodule of M containing x, 
is called the height of x, which is denoted by H(x). A torsion right i?-module M 
is said to be bounded if there exists a positive integer k such that H(x) ^ k for 
all uniform elements x of M. Since in an abelian ^-group G (p a prime number) 
any x(9£0) G G generates a finite cyclic subgroup which is uniform as Z-
module, the above definitions effectively generalize the concepts of exponent 
and height of an element in an abelian £-group [4, p. 16]. We now prove some 
lemmas which play central role in this paper. 
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LEMMA 3. Let M be a torsion R-module and Bif f?2, . . . , Bnj A\, A2, . . . , Am be 

finitely many finite length uniform submodules of M such that YA=\A % = © H7=\A t 

and ZU B, = © Z r = i At. Then: 

(i) Every Bj is isomorphic to a submodule of some A f under the natural projec­

tion. 
(ii) For any i, Ai is a homomorphic image of some Bj. 

Proof, (i) Since Bjd ®J2T=iAu intersection of kernels of all natural 
projections of Bj into various A t is zero. As by Lemma 2, Bj; is uniserial, one of 
the natural projections of Bj into an Ait will itself have its kernel zero. So (i) 
follows. 

(ii) Let pi : ®Y^?=i Ax —» At be the natural projection. Then 

Ai = ptiZjBj) = 2jpi(Bj) 

and the fact t ha t A t is uniserial, implies tha t A t — pi(Bj) for some j . 

LEMMA 4. Let be finitely many uniform elements of a torsion 
R-module M such that for some non-negative integer k, H(xt) ^ k for all i. Then 
for every uniform element x of M in 2^*i? , H(x) ^ k. 

Proof. By the hypothesis there exist uniserial submodules Tt of M containing 
Xi such tha t d{TJXiR) ^ k. Now by Lemma 1, £?=i Tt = 0 ^ Uj, for 
some uniserial i^-submodules U/s of M. Let x in 2*xzi? be uniform. Then 
x = 2 ^ ; yt £ x ^ . If for some i, yt 9^ 0, the definition of height yields t ha t 
H{yi) ^ H{Xi) ^ k. Let £., : © ^ Uj —> C/̂  be projections. Consider any non­
zero 3^. Suppose for some value / of j , ptiyù 9e 0. If pit is the restriction of £ , 
to 7^, then yt (? ker pit and hence ker pit < ytR, since Tt is uniserial. Hence 

7 ^ , 2 ? ^ pt(Ti)/pt(yi)R ç Ut/pt(yt)R 

yields d(Ut/pt(yi)R) è &, since d(Ti/yiR) ^ &. Now x = 2 ^ ; w;- G £/,. 
Then w; = ^ipj(yt) for all 7. If for some j , w, 7̂  0, then pj(yt) 9^ 0 for some i; 
then as Uj is uniserial, 2ipj(yi)R = pj(ys)R 7^ (0) for some s. Consequently 
Uj Ç Hipj(yi)R yields tha t d(Uj/UjR) ^ d(Uj/pj(ys)R) ^ &. Hence whenever 
w;- 7̂  0, z^ is a uniform element with i f (%) ^ k and d(Uj/UjR) ^ &. 

By Lemma 3, there exists / such tha t xR ~ utR under the correspondence 
xr <r+utr; r £ R. Then for each j , the mapping <J j : utR-+UjR given by 
<Tj(utr) — Ujr is a well defined i^-epimorphism. Since d(Ut/utR) ^ &,wecanfind 
some vt G £/*such tha t d(vtR/utR) = k. If for some j , Uj 9e 0, asd(Uj/UjR) ^ 
&, by Lemma 2, 0^ can be extended to an i^-homomorphism rjj : vtR —> £/, and 
vtR/utR = 7]j(vt)R/UjR. P u t z/, = yj(vt). Consider 3/ = zx + s2 + . . . + zm 

such tha t for any j , s ; = Vj if w; 7̂  0 and Zj = 0 if Uj = 0. Then yR =vtR 
under the natural correspondence. Now ut = vta for some a £ R. Then the 
construction yields Uj = Vja for all Uj 5* 0. Hence x = j d ^ yR. Hence yR is a 
uniserial submodule of M such tha t d(yR/xR) = d(vtR/utR) = &. Hence 
i f (x) ^ &. This proves the lemma. 
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For any torsion i^-module M and for any non-negative integer ft, let Hk(M) 
be the submodule of i f generated by all those uniform elements of M, which are 
of height ^ft. The lemma above shows that every uniform element x in Hk{M) 
is of height at least ft. 

LEMMA 5. If M = Ui © . . . © Un is a torsion R-module, where each Ut is 
uniserial, then for any uniform element x of M, H(x) ^ max(d(£/\)) — 1 and 
e(x) S max(d(Ui)). 

Proof. Since for any uniform element y of M, yR is isomorphic to a submodule 
of some Uj, we have d(yR) ^ max(rf([/ j)), and for any x(^y 0) Ç yR, 
d(yR/xR) ^ max(d(Uj)) — 1. Hence the lemma follows. 

LEMMA 6. Let M = A + B,be a torsion R-module and A, B be its submodules. 
Then for any non-negative integer ft, Hk(M) = Hk(A) + Hk(B). 

Proof. Since HQ(M) = M the result holds for ft = 0. To apply induction on ft, 
let ft > 0 and the result hold for ft - 1. Thus#*_i(M) = Hk-i(A) + Hk^(B). 
Let T be a submodule of Hk-i (if) such that Hk-\ (M)/Ta. completely reducible. 
Suppose Hk(M) <£ T. By Lemma 1, every non-zero element of i f is a sum of 
finitely many uniform elements. So there exists a uniform element x £ Hk(M) 
such that x d T. As xR is uniserial, xR H T = yR with d(xR/yR) ^ 1. Since 
H(x) ^ ft ^ 1, there exists a uniform element z with if(s) ^ ft — 1, and 
xR < zR. In that case zR Pi T = yJ?, d(zR/yR) ^ 2 and zi?/yJ? is uniserial. 
This contradicts the fact that Hk^i(M)/T is completely reducible. Hence 
Hk(M) C r . It can be seen on similar lines that Hk-i(M)/Hk(M) itself is 
completely reducible. Now 

being a homomorphic image of Hk-i(A)/Hk(A) 0 Hk-\(B)/Hk(B)y is com­
pletely reducible. Consequently Hk(M) C Hk(A) + Hk(B). Obviousl vif* (.4) 
+ Hk(B) C Hk(M). Hence tf*(if) = Hk(A) + Hk(B). 

We now prove the following generalization of Kulikov's Theorem [4, 
Theorem (11.1)]. It may be noticed that the proof given below has similarity 
with the corresponding proof in [4, Theorem (11.1)]. 

THEOREM 3. Let M be a torsion right module over an (hnp)-ring R, which is not 
right primitive. M is a direct sum of uniserial R-submodule s (hence cyclic) if and 
only if M is a union of an ascending sequence Mn, (n = 1,2, ) of 
submodules such that for each n, there exists a positive integer kn, with the property: 
H(x) S Kfor all uniform elements x of Mn. 

Proof. Sufficiency: For each n, let Pn be the socle of Mn. Then the socle P of 
M is \JnPn. Lemma 1 yields that P is an essential submodule of M and that 
every non-zero element of i f is a sum of finitely many uniform elements. We 
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construct a maximal independent subset 5 of uniform elements of P as follows. 
Select in P\ C\ Hkl (M) a maximal independent set of uniform elements and 
expand it in turn with uniform elements of 

P^H^M), ,Ho(M)r\Px = Pi, 

to an independent set Si, which is at each step maximal. Si is a maximal indepen­
dent subset of uniform elements of Pi. Extend Si in P 2 P\ Hk2(M), then in 
Pi C\ Hk2-i(M), . . . , P2 , so that the independent set obtained after each step 
is maximal. This gives a maximal independent subset S2 of P2 . Repeat this 
process with S2 and P3 to obtain S3 etc. Then Snj (n = 1,2, ) is an in­
creasing sequence of independent subsets of P and S = UnSn is a maximal 
independent subset of P . Let S = {c\\X £ Aj. Since each C\ is in some Mn, and 
C\ is uniform with H(c\) ^ kn, we can find a uniform element a\ in AT such that 
C\ G &xP and d(a\R/c\R) = W\ = #(cx) = K- Since Sx^xP is direct, we also 
have M' — 2\d\R = ®2a\R. Each a\P is uniserial by Lemma 1. If we show 
that M = AT, the result follows. 

On the contrary let M ^ AT'. Using Lemma 1, we can find a uniform element 
g in M such that g $ M' and the exponent e(g) = k, is minimal among all such 
elements. Naturally k > 1, since otherwise g £ P C AP. Let ;yP = socle (gP). 
Now 

(2) y = cifi + c2r2 + . . . + ctrt 

for some ct £ S and rt £ R such that c ^ 5̂  0. Then yP = c ^ P = ctR under 
P-isomorphism at : yR—> c ^ P given by <7i{yr) = c^-r; r £ P . If for some 
value X of i, H(c\Y\) ^ k — 1, we can choose &x 6 &XP satisfying 
d(b\R/c\R) = k — 1. Then e(&\) = & and by Lemma 2 (b), o-x can be extended 
to an isomorphism rj\ : gR —> 6xP; we can take 6x = ?7x(g)- Then as y = g s for 
some 5 G P, we get Cx̂x = ^xs. Consider g' = g — &x. Then g' (? Af', and grP is 
a homorphic image of gR under the natural mapping. As e(g) is minimal, we get 
gR ~ g'R, and gfs = J]^x £/* is in P . Hence we can suppose that g itself is 
such that in (2) all c,r, satisfy H (ctrt) ^ k - 2. Clearly as H(y) ^ k - 1, / ^ 2. 
We can find smallest positive integer m such that ct £ Pm for all i. If m > 1, for 
some value of i say for i = t,ct g Pm-i- Then also y $ Pm_i. As H(y) > H(ct), 
in the construction of Sm, 3; is taken into account before ct. So that y is ex­
pressible as a linear combination of c\s different from ct. This violates the 
independence of S. Similar consideration holds for m = 1. Hence M = M''. 

Necessity: Let M = ©£*€/-W*> where Ni are uniserial. For each positive 
integer n, let Afn be the sum of those Nt which have d(N\) ^ n. Since Mn is a 
direct summand of Af, Lemma 6 yields that the height of every uniform 
element of Mn, in Mn is the same as its height in Af. Then Lemma 5, yields 
H(x) S n for every uniform elements x of Mn. This proves the theorem. 

Since for any uniform element x in a torsion P-module AT, if zR = socle(xP) 
then H (x) ^ H(z), we get the following: 
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COROLLARY 1. Let M be a torsion R-module and P be its socle. Then M is a 
direct sum of uniserial modules if and only if P is a union of ascending sequence 
Pn(n = 1, 2, 3 ) of submodules such that for each n, there exists a positive 
integer kn with the property that H(x) ^ Kfor every uniform element x of Pn. 

The following corollary generalizes the corresponding result of Prufer for 
abelian ^-groups. 

COROLLARY 2 [4, Theorem (11.2)]. A bounded torsion right R-module is a 
direct sum of cyclic modules. 

We call a right i^-module M to be decomposable if it is a direct sum of cyclic 
modules and finitely generated torsion free uniform modules [9, p. 332]. Since 
over an (hnp) -ring, every finitely generated module is a direct sum of a projective 
module and torsion cyclic modules, we get that any decomposable module M 
over an (hnp)-ring equals S ® T, where S is projective and T is a direct sum of 
cyclic torsion modules. With these observations in mind, we obtain the follow­
ing generalization of Kaplansky [9, Theorem 4]. 

THEOREM 4. Let R be any (hnp)-ring, which is not right primitive. If M is a 
decomposable R-module, then every submodule of M is decomposable. 

Proof. Now M = TV © T, TV is a projective i^-module and T is a direct sum of 
torsion cyclic i?-modules. Let M' be any submodule of M. If p : M —> TV is the 
natural projection, then p (Mf) being a submodule of the projective i?-module TV, 
is projective. Hence M' — TV' © T' where T' = T C\ M' and TV'is projective. 
Since T satisfies the hypothesis of Theorem 3, the same holds for T'. Hence Tf 

is decomposable. By Eisenbud and Robson [1, Lemma (1.4)] every projective 
T^-module (in particular TV') is a direct sum of uniform right ideals (which are 
always finitely generated). Hence M' is decomposable. 

Definition. Let M be a torsion module over an (hnp)-ring R. A subset B of M 
is said to be a basis of M if 

(i) every member of B is a uniform element of M, 
(ii) B is an independent set and it generates M. 

THEOREM 5 [4, Theorem (13.1)]. Let M be a torsion right module over an 
(hnp)-ring R, which is not right primitive. Then a subset B of M consisting of 
uniform elements is a basis of M if and only if 

(i) B is a maximal independent set, 
(ii) no element of B can be replaced by a uniform element of exponent greater than 

that of that element without violating independence. 

Proof. Necessity: Let B = \a\\\ Ç A} be a basis of M. Consider any uniform 
element b G M. We can find a minimal subset [a\, a2, . . . , ak) of B such that 
b 6 © 2;=i aiR- We can write b = 2*6*; ^ ( T ^ O ) G atR. This relation shows 
that no a\ 5* ai(i = 1,2, . . . , k) can be replaced by b without violating 
independence. If for some i, say i = t, e(at) < e(b), then the i^-homomorphism 
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a : bR-*atR given by a (br) = b tr ; r £ i? is not a monomorphism. If cR = ker o-, 
then 0 ^ c = bs for some s £ R and 

0 ^ fo = 2 bts. 

Hence b, at(i = 1, 2, . . . , k; i 7e t) are not independent. So b cannot replace at. 
Sufficiency: Let B = {a\\\ G A} be satisfying (i) and (ii). Let M' = ®2\a\R. 

If M y£ M' we can find a uniform element b G M such that b Q Mf and g(6) is 
smallest among all such elements. As Mr is an essential submodule of M, 
e{b) > 1. Consider c £ bR with e(c) = e(6) — 1. Then c £ M', we can 
uniquely find aiy a2, . . . , ak in 5 such that 

c = ci + c2 + . . . + ck; Ci(^O) G a ^ . 

On the similar lines as in Theorem 3, we can suppose that e(at) < e(b) for all i. 
However for some i, cR = ctR. Consequently e(ct) = e(c) = e(b) - 1 ^ e{at) 
yields that cR = atR. So we can choose c in bR such that ct = at for that i. 
Then c — bs for some 5 in R yields at = Sc^ — bs. This then yields that the 
set B' obtained from B by replacing a t by b is independent even though 
e(b) > e(at). This violates (ii). Hence M = M'. 

Using the above theorem, following generalization of Kertèsz Theorem 
[4, Theorem (14.1)] can be proved. We omit the proof. 

THEOREM 6. Let M be a torsion module over an (hnp)-ring R, which is not right 
primitive, such that M contains no uniform element of infinite height. M is a 
direct sum of uniserial modules if and only if M contains a principal system. 

Hereby a principal system in M we mean a maximal independent set 
L = {a\\\ G A} of uniform elements of M, no element of which can be replaced 
by a uniform element of greater height without violating independence. 

In the following lemma, part (ii) is a weaker version of [4, Lemma (22.1)]. 

LEMMA 7. Let M be a torsion right R-module, T a submodule of M and K a 
submodule of M maximal with respect to the property that T C\ K = (0). Then the 
following hold: 

(i) If (xR + K)/K is a simple submodule of M/K, then xR C T + K. 
(ii) Given a simple submodule xR of M/(T + K.) there exists a corresponding 

simple submodule of [(HX{M) + K) C\ T]/Hi(T). 

Proof (i). Since (K + xR) C\ T ^ (0) we have y(^0) G (K + xR) C\ T. 
Then y g K and (yR + K)/K = (xR + K)/K. Hence 

xR + K = yR + K C T + K. 

This proves (i). 
(ii) Consider a minimal submodule xR of M/(T + K). By using Lemma 1, 

we can take x to be a uniform element of smallest exponent among all those 
uniform elements z of M for which xR = zR. Let yR = xR C\ (T + K). Then 
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yR C T + K and xR = xR/yR is a simple module. Hence y = t + k; t £ 3Hf 
* 6 X. If / = 0 then K C\ xR = yR and (xi? + i £ ) / ^ is a simple submodule of 
Af/X; so by (i), xR C r + K. This contradicts the hypothesis that xR ^ (0). 

We claim t (? H\(T). On the contrary, let t G H\{T). Now /i? being a homo-
morphic image of ;yi?, is uniform. We can find a uniform element h £ T such 
that / G t\R and tiR/tR is a simple module. As iffy) è 1, k = y — t yields 
k G Hi(M). If k 9e 0, we can find a uniform element k\ of i f such that & £ &ii? 
and kiR/kR is simple. If & = 0, put k\ = 0. By Lemma 2, the natural projec­
tions of yR onto /i? and kR can be extended to homomorphisms of xR onto 
tiR and &ii? respectively; we can take t\ and &i as images of x under these 
extensions. In that case y = xa for some a G R yields / = ha, k = k\a} and 
xR == (/i + ki)R under the correspondence xr <-> (/i + &i)r; r £ R. We claim: 
xi? = (/! + ki)R. If not, then (h + kx)R C\ xR = yR and xR + (h + kJR is 
not an essential extension of (ti + ki)R, since an essential extension of a uni­
form module is uniform, and any finitely generated torsion uniform i^-module 
is uniserial. Hence, by using the fact that xR/yR is simple we get xR + (h + 
k\)R = (/i + k\)R ® zR for some simple submodule zR. Since kR C K C\ 
k\R and kiR/kR is a simple module, part (i) yields k\ £ T + K. Hence 
xR = zR and e(z) = 1. The minimality of e(x) yields e(x) = 1. This yields 
yR = (0) and hence / = 0. As seen before / 9^ 0. This is a contradiction. 
Hence xi? = {i\ + &i)i? and so x G T + K; which again is a contradiction. 
Hence t $ Hi(T). Further / = y - k gives / £ i?i(Af) + X. As / is uniform, 
and T/Hi(T) is completely reducible, we get ÎR is a simple submodule of 
[HX(M) + K) C\ T]/K. Clearly IR is determined by xR. 

Remark. The proof given above does not show that IR is uniquely determined 
by xR. 

COROLLARY 3. Let M, T, K satisfy the hypothesis of the above lemma. If 
[(HX(M) + K)C\ Tj/HxiT) = (0), then M = T ® K. 

Proof. This is immediate. 

The following theorem generalizes [4, Theorem (24.1)] for torsion abelian 
group. 

THEOREM 7. Let M be a torsion right module over an (hnp)-ring R, which is not 
right primitive. Further let N be a submodule of M, such that it is a direct sum of 
uniserial modules of the same finite length k. Then the following are equivalent: 

(i) N is a direct summand of M. 
(ii) Hn(N) = NH Hn(M) for all n. 

(iii) N satisfies Hk{M) C\ N = (0). 

Proof, (i) implies (ii): Let M = N © T. By Lemma 6, 

HH(M) = Hn{N) ® Hn{T). 

Hence Hn(M) C\ N = Hn(N) © (Hn(T) n N) = Hn(N). 
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(ii) implies (iii) : By Lemma 5, every uniform element in N has height ^ k — 1 
in N. So tha t Hk(N) = (0). Hence by (ii) NC\ Hk{M) = (0). 

(iii) implies ( i): Let K be a submodule of M maximal with respect to the 
property t ha t NC\K= (0) andHk(M ) C K. Consider T = (HX(M) + K)C\ N. 

By Lemma 6, Hk^{T) C (Hk(M) + K) C\ Hk.,(N) = K H Hk^(N) = (0), 
since K P\ N = (0). Hence Hk-\{T) = (0). Appealing to Lemma 4, we get 
T C Hi(N). Hence by Corollary 3, M = N 0 i£. Hence the result follows. 

For torsion abelian groups, the condition (ii) is equivalent to saying tha t TV 
is a pure subgroup of M. In general it is not known whether any submodule of 
M satisfying (ii) is a pure submodule. 

THEOREM 8. Let M be a torsion right module over an (hnp ) -ring R, which is not right 
primitive and N be any bounded submodule of M such that Hn(N) = Hn(M) C\ N 
for all n. Then N is a direct summand of M. 

Proof. The proof is on the same lines as for [4, Theorem (24.5)]. 

T h e following theorem generalizes Kulikov's Theorem [4, Theorem (25.2)] 
for torsion abelian groups. Since the proof is on the similar lines, it is omitted. 

T H E O R E M 9. Let M be a torsion module over an (hnp)-ring R, which is not right 
primitive. Let N be a submodule of M such that Hn(N) = TV C\ Hn(M) for all n. 
If M/N is decomposable, then N is a direct summand of M. 

LEMMA 8. If in a torsion R-module every uniform element of its socle is of infinite 
height, then M is an infective module. 

Proof. I t is clear from Lemma 6, t ha t the hypothesis is also satisfied by any 
direct summand of M\ further any direct sum of injective i^-modules is 
injective [14]. T h u s to show tha t M is injective it is enough to show tha t if M 
is non-zero, then M has a non-zero injective submodule. Let x be a uniform 
element of M. By applying induction on e(x), we show tha t there exists a 
uniform element y in M such tha t e(y) > e(x) and x Ç yR. 

If x G socle ( M ) , then as H(x) is infinite, there exists a uniform element y of 
i f such tha t x G yRa.nàe(y) > e(x).hete(x) = n > 1 and result hold for <n. 
Since xR is uniserial, there exists z G xR, such tha t zR is a simple submodule. 
As H(z) is infinite, we can find a uniform element u Ç M such tha t z G uR and 
e(u) > n.lix £ uR we are finished. Let x d uR. As zR C xR C\ uR, Lemma 2, 
showrs t ha t there exists an i?-monomorphism a : xR —+ uR such tha t a(z) = z. 
Then 17 : xR —> (x — a(x))R given by r\(xr) = (x — a(x))r is a non-zero 
i^-epimorphism and z G ker 77. Hence e(x — a(x)) < e(x). Hence by induc­
tion hypothesis x — <J(X) G vR for some uniform element v £ M and 
e(x — (T(X)) < e(v). This all shows tha t H((T(X)) ^ 1 and H(x — a(x)) ^ 1. 

Hence as x = (x — <r(x)) + er(x), Lemma 4, yields H(x) ^ 1. The definition 
of height yields a uniform element y satisfying x G yR and d(yR/xR) ^ 1. 
Hence e(y) > e(x). This proves the claim. 

Since M ^ (0), by Lemma 1, M has a non-zero uniform submodule. So we 
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can find a maximal uniform submodule [/of M. By Lemma 2 (a) and what we 
have done, U cannot be of finite length. Hence U is injective. This proves the 
lemma. 

THEOREM 10. Let M be a (non-zero) torsion module over an (hnp)-ring R, which 
is not right primitive. Then: 

(i) If a uniform element x in socle (M) is of finite height, x belongs to a uniform 
finite length, direct summand of M. 

(ii) M has a uniform direct summand, which can be chosen to be of finite length 
if M is not injective. 

Proof, (i) Let H(x) = n. Then there exists a uniform element y in M 
such that x £ yR and e{y) = n + 1. Consider N = yR. We prove that 
NnHm(M) = Hm(N) for all m. Obviously Hm(N) CNC\Hm(M). Let a 
uniform element u £ N H Hm(M). Then z £ yRC\ uR yields 

n = H(z) ^ H(u) + e{u) - e(z) ^ m + e[u) - 1. 

Therefore e(u) ^ n — m + 1. Hence d(yR/uR) = e(y) — e(u) ^ m. Hence 
height of uin N is at least m ; sou Ç Hm(N). Hence iVH Hm{M) = Hm(7V). By 
Theorem 7, iV is a direct summand of M. This proves (i). 

(ii) If every element in the socle of M is of infinite height, then by Lemma 8, 
Mis injective, and hence by Matlis [14], M is a direct sum of uniform modules. 
If there exists a uniform element in socle (M) of finite height, then (i) yields M 
has a uniform finite length direct summand. This proves (ii). 

As an application of above theorem we get the following special case of 
Levy [11, Theorem (3.4)]. 

COROLLARY 4. Every divisible R-module M is injective. 

Proof. Let M be non-zero torsion i^-module. If M is not injective, by 
Lemma 8, M has a uniform element x, in its socle, of finite height. By the above 
theorem, M has a finite length uniform direct summand U containing x. Thus 
U is also divisible and hence faithful. However by [17, Lemma 1] U is not 
faithful. This is a contradiction. Hence M is injective. 

Let M be not a torsion module, and T be its torsion submodule. Then T is 
also divisible. Hence T is injective and M = N 0 T where N is torsion free 
divisible .R-module. By Levy [11], every divisible torsion free module over a 
prime Goldie ring is injective. Hence N is injective. This proves that M is 
injective. 

COROLLARY 5. Any indecomposable torsion R-module is uniform. 

3. Quasi-projective modules. Throughout all the lemmas R is an (hnp)-
ring, which is not right primitive. First of all we determine the structure of 
torsion quasi-projective (right) i?-module. Let E and E' be any two indecom­
posable injective torsion i?-modules. As defined in [17], E is said to be equi­
valent to E' if there exist submodules K and K' of E and E' respectively such 
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that E/K ^ E'/K' and K ^ E, K' ^ Ef. If E is of finite periodicity, we saw 
in [17] that E' is equivalent to E if and only if E' is a homomorphic image of E. 
Let £/ be a uniform torsion i^-module. U is said to be of periodicity n, if and 
only if its injective hull E(U) is of periodicity n. (This definition differs from 
one given in [17].) Two torsion, uniform i?-modules U and V are said to be 
equivalent if their injective hulls are equivalent. Two uniform elements x and y 
in a torsion i^-module are said to be equivalent if xR and yR are equivalent. A 
torsion i?-module M is said to be primary if every pair of uniform elements of M 
are equivalent. By using Lemmas 1 and 3 it can be easily proved that given a 
uniform element x in a torsion jR-module M, the submodule N of M generated 
by all uniform elements equivalent to x, is primary. Such an TV is called a 
primary component of M. Again appealing to Lemmas 1 and 3, we get the 
following 

LEMMA 9. Any torsion R-module is a direct sum of its primary components. 

The following is a special case of Fuller and Hill [6, Theorem (2.3)]. 

THEOREM 11. A module M over an artinian ring S is quasi-projective if and 
only if M is projective as S / ann (M)-module. 

Since every finitely generated torsion i^-module M has non-zero annihilator 
[17, Lemma 1] and by Theorem 1, every factor ring of an (hnp)-ring is 
generalized uniserial, Theorem 11 yields the following: 

LEMMA 10. Any finitely generated torsion R-module is quasi-projective if and 
only if M is projective as R / ann (M)-module. 

LEMMA 11. Let M be a torsion, quasi-projective R-module, and U be a finitely 
generated, uniform direct summand of M, of finite periodicity n (i.e., n is the 
periodicity of E( [/)). / / V is any finitely generated uniform submodule of M such 
that U C\ V — (0), socle ( U) = socle ( V) and U 0 V is a direct summand of 
M,then \d(V) - d(U)\ ^ n - 1. 

Proof. Let W be any torsion finitely generated, uniform jR-module. Let 
B = ann (W). Then B ^ (0) and W is a faithful module over the generalized 
uniserial ring R — R/B. Hence R/B is embeddable in T^(m), a direct sum of 
finitely many, say m, copies of W. So if e is a primitive idempotent of R then 
there exist m i^-homomorphisms ô  : eR —> W (1 ^ i ^ m) such that 
Oikerai — (0). However eR is uniserial. So for some i, ker <J x — (0). This 
shows that eR is embeddable in W. Consequently socle (êR) = socle (W). This 
shows that R = R/B is a generalized uniserial ring with homogeneous socle. 
Hence by [17, Theorem 1] we can find a Kupisch series ëiR, e2R, . . . , etR of R 
such that d(ëi+iR) = d(ëiR) + 1, and t is the periodicity of any uniserial 
-R-module. 

Since U and V have isomorphic socles. Theorem 2 yields that one of them is 
embeddable in the other ; so if B = ann ( U 0 V), then B = ann ( U) or B = ann 
(V). Consequently by the preceding paragraph, R = R/B has homogeneous 
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socle. Since by Lemma 10, U and Fare both projective i?/#-modules, m the n o _ 

tation of the last paragraph U = ëtR and V = ëjR for some i, j and both have 
periodicity t, as R/B-modu\es. It is clear that \d(U) — d(V)\ = \d(etR) — 
d(êjR)\ ^ / — 1. However as E(U) is of periodicity nt and all ëkR are em-
beddable in E(U), we have t ^ w. Hence \d(U) — d(V)\ ^ w - 1 . 

An i^-module M is said to be reduced if it has no non-zero divisible sub-
module. 

THEOREM 12. Let M be a torsion reduced qua si-projective module over an 
(hnp)-ring R, which is not right primitive. Let x be a uniform element of M such 
that E(xR) is of finite periodicity. Then the primary component of M to which x 
belongs is decomposable, bounded, and is projective as ilR modulo its annihilator1} 

module. 

Proof. Let the periodicity of E(xR) be n > 0. As M is reduced each of its 
primary component is reduced; hence by using Theorem 10 and Lemma 9, we 
get a uniform finite length direct summand [/of M such that [/is equivalent to 
xR. Let J ^ be the family of those direct sums N in M, of uniform submodules, 
which are such that each of them is equivalent to U and one of them is U 
itself; further each member N of ^ satisfies Hn(N) = N (^ Hm(M) for all m. 
^ is non-empty, as U G ^ . This family is inductive, so has a maximal 
member say Nv. Now 

te i 

where each Vt is uniform and equivalent to U. As M is reduced each Vt is of 
finite length. Since E{xR) is of periodicity n, we can put these Vt into not 
more than n disjoint classes, such that any two Vi are in the same class if and 
only if they have isomorphic socles. Let Vu V2, . . . , Vm (m ^ n) be representa­
tives chosen from each such class. Consider any Va different from Vi, F 2 , . . . , Vm. 
Now socle (Va) = socle (Vt) for some i with I ^ i ^ m. Now U © V © Vt 

being a direct summand of N, belongs to J^~. Hence by Theorem 8, U © Va © Vt 

is a direct summand of M. Thus by Lemma 11, d(Va) S d(V\) + n. So if k is 
the maximum of d(U) + n, d(Vi) + n, (1 ^ i ^ n), then d(U) ^ k and 
d(Va) ^ k for all a £ I. Hence by Theorem 8, Nv is a direct summand of M. 

Clearly by construction Nv is decomposable and is contained in the primary 
component of M, to which x belongs. Now M = Nv © T. If we show that T 
has no uniform submodule equivalent to U, it follows that Nv is the primary 
component of M to which x belongs. As T is reduced, if T had a uniform sub-
module equivalent to U, then, as for M, T will have a uniform finite length 
direct summand V equivalent to U. Then Nv © V G ^ and this contradicts 
the maximality of Nv. Hence Nv is the primary component of M containing x. 

Let A = ann (Nv). We show that A 7^ (0). Let the composition series of 
E(xR) be: 

0 = XoR < xiR < < xtR < . . . < E(xR). 
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Each of Va being equivalent to xR is embeddable in E(xR)/XiR (0 ^ i ^ n). 
Further as d(Va) ^ k, we get that each Va is a submodule of an appropriate 
homomorphic image of xk+nR; same holds for U. Now by [17, Lemma 1], 
B = ann (xk+nR) ^ (0). Obviously B kills every one of U and F«. So 5 C A 
and 4̂ ^ (0). Further Nn being a direct summand of M, is a quasi-projective 
faithful module over the artinian ring R/A. Hence by Theorem 11, Nv is 
projective R/A -module. Trivially Nv is bounded. 

THEOREM 13. Let M be a reduced torsion R-module having no uniform element 
x with E(xR) of zero periodicity. Then M is quasi-projective if and only if each 
of its primary component N is projective as P /ann (N)-module. Further if M is 
quasi-projective, then each of its primary component is bounded, and M is decom­
posable. 

Proof. Necessity follows from Theorem 12. 
Sufficiency: By hypothesis each primary component of M is quasi-projective 

P-module. If N and N' are two primary torsion P-modules such that no uni­
form submodule of N is equivalent to a uniform submodule of N', then 
Lemmas 1 and 2 (c) yield that Horn (N, Nf) = (0). Using this fact, Lemma 9 
and the fact that every primary component of M is fully invarient, we get that 
M is quasi-projective. The last part follows from Theorem 12. 

Let E be an indecomposable injective torsion P-module and 

0 = x0R < XiR < . . . < xmR < . . . < E 

be its composition series. For each i, Pt = ann (xt+iR/XiR) is a maximal ideal 
of R. Then the infinite sequence (P0, Pi , Pi, . . . , Pm, • • •) is called the prime 
sequence associated with E. If E is of finite periodicity say ny then P0 , P i , . . . , Pn_i 
are all distinct and the above prime sequence is of periodicity n\ conversely as 
R/Pi are simple artinian, we have that if for some distinct i and j , Pt = Pjy 

then E must be of finite periodicity. Thus if R has only finitely many prime 
ideals (that happens in particular if J(R) ^ (0)), there exists no indecom­
posable, torsion, injective P-module of zero periodicity. The author is not 
aware of any P , which admits an indecomposable injective torsion module of 
zero periodicity. We have the following: 

LEMMA 12. Let E be an indecomposable, injective, torsion R-module of finite 
periodicity. Then E is not quasi-projective. 

Proof. Let E be quasi-projective and be of periodicity n > 0. Using the 
composition series of E, we get that E has a submodule xR of length n such that 
E = E/xR. Then by Fuchs and Rangaswamy [5, Lemma 4], xR is a direct 
summand of E. This is a contradiction. Hence E cannot be quasi-projective. 

THEOREM 14. Let R be an (hnp)-ring which is not right primitive and which 
admits no indecomposable injective, torsion module of zero periodicity. Then any 
quasi-projective torsion R-module is reduced. 
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Proof. Since every divisible i^-module is injective, the result follows from 
Lemma 12 and the fact that every injective i^-module is a direct sum of 
indecomposable injective i^-modules. 

Now over a bounded Dedekind prime ring S, every indecomposable injective 
torsion module is of periodicity one [17, Corollary 1] and hence any two 
equivalent uniform torsion 5-modules have isomorphic socles. So if M is a 
quasi-projective torsion 5-module, then by Theorem 14, M is reduced. By 
Lemma 11 and Theorem 12, each primary component of M is a direct sum of 
isomorphic, finite length uniform modules. Thus from Theorems 12, 13 and 14, 
we get the following: 

THEOREM 15. Let S be a bounded Dedekind prime ring and M be a torsion 
S-module. Then M is quasi-projective S-module if and only if each of its primary 
component is a direct sum of isomorphic uniserial modules. 

This theorem generalizes the main theorem in [5] for torsion quasi-projective 
abelian groups and the structure theorem for quasi-projective torsion modules 
over a Dedekind domain, proved by Rangaswamy and Vanaja in [15]. 

We now turn our attention to non-torsion, quasi-projective modules. The 

complete structure of such modules is not yet known. Here we give some 
information: 

Let S be a prime right Goldie ring. H S contains a direct sum of a uniform 
right ideals, which is an essential right ideal, then n is called the dimension of 
S (dim S = n). If dim S = n, any direct sum in 5 of n uniform right ideals 
contains a regular element. 

LEMMA 13. (a) If U and V are uniform right ideals of 5, then U and V are 
embeddable in each other. 

(b) Any non-zero torsion free right module over a prime right Goldie ring S 
has an essential submodule which is a direct sum of uniform submodules iso­
morphic to uniform right ideals of S. 

Proof, (a) By Goldie [7, Lemma (3.3)], given x 6 S, either xU = (0) or 
xu 9^ 0 for every u (T^O) £ U. Consequently if xU 9^ (0) then U = xU. Now 
VU 7* (0), as S is prime. So for some v £ V, U = vU Q V, this proves (a). 

(b) Let Q be the classical right quotient ring of S, which we know 
is simple artinian. By Levy [11], M ® s Q is the injective hull of M. Now 
M ®s Q = © 2 * e / ^*» Ni = eQ for some primitive idempotent e of Q. Since 
Ni is uniform, we can find a submodule Kt of Nt isomorphic to a right ideal of R 
contained in eQ C\ R. As Kt H M ^ (0), we can find such Kt C M. Then 
© E Kt C M. This proves (b). 

LEMMA 14. Let M be a right module over a prime right Goldie ring S such that M 
is not a torsion module and dim 5 = n. Then S is embeddable in a direct sum of n 
copies of M. 

Proof. Since M is not a torsion module, using the fact that every essential 
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right ideal of S contains a regular element [7], it follows tha t torsion submodule 
of M is not an essential submodule. So by Lemma 13 (b) M has a uniform 
submodule U which is isomorphic to a uniform right ideal V of S. S has an 
essential right ideal V\ © Vi © . . . © Vn; each Vf uniform. Since by 
Lemma 13, each Vt is embeddable in F and hence in M, © J2 Vt is embeddable 
in M © . . . © M (n copies). However © ^ t Vt contains a regular element, and 
so 5 is embeddable in © J2 Vt- Hence S is also embeddable in M © . . . © M 
{n copies). 

As defined by deRober t [16] an 5-module (5 any ring) is said to be projective 
relative to an 5-module TV (or TV-projective) if for every submodule K of TV, the 
induced sequence 

0 -> H o m s (M, K) -> H o m s (M, TV) -> H o m s (M, N/K) -> 0 

is exact. The class of modules TV for which a given module M is TV-projective is 
closed under submodules, quotient modules and finite direct sums [16]. Hence 
in part icular a quasi-projective module M is TV-projective for all submodules TV 
of M. Fur ther a right i^-module M, which is ^ - p r o j e c t i v e is TV-projective for 
every finitely generated right i^-module TV; thus in particular if M is also 
finitely generated, then as M is a homomorphic image of a finitely generated 
free module F, we get M itself is projective, since M is /^-projective. Hence we 
have the following: 

LEMMA 15. Any finitely generated RR-projective (R any ring) module M is 
projective. 

We now prove a result of independent interest. 

T H E O R E M 16. Any finitely generated quasi-projective right module M over a 
prime right Goldie ring S is projective, whenever M is not a torsion module. 

Proof. Let dim S — n. Now by deRober t [16], M{n) is quasi-projective. Since 
by Lemma 14, S s is embeddable in M{n\ M{n) is also Ss-projective. Hence by 
Lemma 15, M{n) is projective. Consequently M is projective. 

COROLLARY 6. Let R be a right, left noetherian prime ring. Then R is an 
(hnp)-ring if and only if every right ideal of R is quasi-projective. 

Proof. Sufficiency : Theorem 16 yields tha t every right ideal of R is projective. 
Then by Small [18], R is also left hereditary. Hence R is an (hnp)-r'mg. 
Necessity is obvious. 

T H E O R E M 17. Let M be a reduced quasi-projective module over an (hnp)-ring R, 
which is not right primitive. If M is not a torsion module, M has a non-zero 
finitely generated, projective direct summand. 

Proof. Let dim R = n. By Lemma 14 and deRober t [16], M{n) is ^ - p r o j e c ­
tive and hence M is ^ - p r o j e c t i v e . Now M is reduced. So there exists a regular 
element din M such tha t Md ^ M, i.e., MRd ^ M. By Eisenbud and Robson 
[2, Theorem (4.10)], R is right bounded. So by Lenagan [10, Theorem (3.3)], R 
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has enough invertible ideals. Consequently by [2, Corollary (4.11)] R is left 
bounded as well. Consequently Rd contains a non-zero ideal and hence contains 
a product P1P2, . . . Pn of non-zero prime ideals. Thus for some i, MP\ 7^ M. 
Thus as R/Pi is simple artinian, we can find a simple direct summand N of 
M/MPf and we get a diagram 

M 

{-
RR^>N->0 

where a and w both are P-epimorphisms. Then i^-projectivity of M yields that 
there exists i\-homomorphism/ : M —> R such that wf = a. Clearly/(Af) 5̂  0. 
As R is right hereditary, f(M) is projective P-module. Hence M = M' © TV'; 
AT =f(M) is a non-zero projective finitely generated submodule of M. 

Let M be any right P-module. Since the injective hull of M is a direct sum 
of uniform modules, M has an essential submodule N, which is a direct sum of 
uniform submodules, say N = 0 ]C*€/ iV*. Then the cardinality \I\ of J is 
called the rank of M. Since E(M) = E(N) = 0 2mE(Ni) by the Krull-
Schmidt-Azumaya Theorem, | / | is uniquely determined by E(M), and hence 
by M. This definition generalizes the corresponding definition of rank of an 
abelian group [4, p. 31]. We now prove the following 

THEOREM 18. Let M be a reduced qua si-projedive finite rank module over an 
(hnp)-ring R, which is not right primitive. Then 

(i) M is projective and finitely generated, or 
(ii) M is a torsion module. 

Proof. Let M be not a torsion module. As seen in proof of Theorem 17, M is 
P^-projective and M = Mi 0 Ni where Mi is projective, finitely generated 
and non-zero. Clearly rank (Ni) < rank (M). N\ being a direct summand of M 
is also ^-projective. By applying induction on rank (M), we get M = N ® T, 
where N is a non-zero finitely generated projective P-module and T is a torsion 
P-module. As T \s i^-projective and of finite rank, if T 9^ (0), then proceeding 
on the same lines as in Theorem 17, we get that T has a projective direct 
summand. This is a contradiction. Hence M is a finitely generated, projective 
P-module. 

Remark 1. In Section 2, we essentially used the fact that over an (hnp)-r'mg 
R, which is not right primitive, no finitely generated torsion module is faithful. 
All the results in Section 2, can be proved for the class those torsion modules 
over an arbitrary (hnp)-r'mg, which have no finitely generated torsion faithful 
submodules. 

Remark 2. Let R be an (hnp)-r'mg which is not right primitive and Q be its 
classical quotient ring. If Q is not quasi-projective as P-module (e.g. the field of 
rational numbers is not quasi-projective Z-module; Z the ring of integers), then 
every quasi-projective torsion free i^-module is reduced. So for such a ring R, 
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any finite rank quasi-projective torsion free i^-module is projective, by 
Theorem 18. 

Added in proof. Zaks in [Some rings are hereditary rings, Israel J. Math. 10 
(1971)] proved that if every proper homomorphic image of a neotherian, 
bounded, prime ring R is a QF-r'mg, then R is a Dedekind prime ring. It is of 
interest to observe that all the results in the present paper which lead to the 
proof of Corollary 4, viz. every divisible module over a bounded (hnp)-ring R 
is injective, can be proved for any noetherian prime ring, whose every proper 
homomorphic image is generalized uniserial. Since a homomorphic image of a 
divisible module is divisible, so it follows that any such ring must be hereditary, 
hence an (hnp)-ring. This result generalizes the Zaks theorem mentioned above. 
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