Third Meeting, 13th January 1905.

Mr W. L. Thomson, President, in the Chair.

Contact between a Curve and its Envelope.

By Edward B. Ross, M.A.

This paper deals with a few of the simpler specialisations of the intersections of a plane curve and the envelope of the family to which it belongs. It follows the method adopted by Professor Chrystal in dealing with the p-discriminant of a differential equation of the first order. This method is specially applicable to definite problems ; in these it is safer to work out the result than to rely on theory.

A summary of the results is given at the end.
The family is taken to be $\phi(x, y, t)=0 ; t$ is the parameter. The t-discriminant locus $\Delta_{t}=0$, with which rather than with the somewhat vague envelope we must deal, is given by

$$
\phi=0, \quad \phi_{t}=0 .
$$

$\Delta_{t}=0$ should be found by a formal process, not by a short cut.
Our work will be simplified if we take the curve under consideration to be $t=0$; the point where it meets the envelope to be $x=0, y=0$; and the tangent to it there the x-axis. We assume that ϕ is expansible in powers of t, x, y in the neighbourhood of the point $x=0, y=0, t=0$.

Let

$$
\phi=\mathbf{A}_{0}+\mathbf{A}_{1} t+\mathbf{A}_{2} t^{2}+\mathbf{A}_{3} t^{3}+\ldots,
$$

where

$$
\begin{aligned}
\mathbf{A}_{0} & =a_{0}+b_{0} x+c_{0} y+d_{0} x^{2}+e_{0} x y+f_{0} y^{2}+\ldots, \\
\mathbf{A}_{1} & =a_{1}+b_{1} x+c_{1} y+\ldots \\
\mathbf{A}_{2} & =a_{2}+b_{2} x+\ldots \\
\mathbf{A}_{3} & =a_{3}+\ldots \\
& \text { etc. }, \quad \text { etc. }
\end{aligned}
$$

Since $\phi(0)=0$, i.e., $A_{0}=0$ touches the x-axis at the origin, $a_{0}=0, b_{0}=0$; as $\Delta_{t}=0$ also passes through the origin, $a_{1}=0$.

A sufficient approximation to the envelope in the ordinary case is

$$
4 a_{2}\left(c_{0} y+d_{0} x^{2}\right)=\left(b_{1} x\right)^{2} .
$$

This shows ordinary 2 -pointic contact between the envelope and the curve. This approximation is not sufficient if b_{1}, a_{2}, or c_{0} be zero.

We shall find it useful to write [λ] for a quantity of order λ in the variable x of the envelope, in terms of which we may suppose y and t expanded. If A_{0} is of order 4 in this variable (and $c_{0} \neq 0$), the expansions of y in terms of x derived from $\mathrm{A}_{0}=0$ and from the envelope would first differ in the coefficient of x^{4}, and so the curves would have 4 -pointic contact; if $c_{0}=0$, more information is required before the species of contact can be assigned.

Take a_{0}, a_{1}, \ldots as the orders of $\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots, \eta$ of y, τ of t.

$$
\phi=0 \text { or } 0=\mathbf{A}_{0}+\mathbf{A}_{1} t+\mathbf{A}_{2} t^{2}+\ldots,
$$

may be written

$$
0=\left[a_{0}\right]+\left[a_{1}+\tau\right]+[2 \tau]+\ldots,
$$

and $\phi_{t}=0, \quad 0=\left[a_{1}\right]+[\tau]+\ldots$, provided $a_{2} \neq 0$.
(1) Let $b_{1}=0$. We get $a_{1}=\tau, a_{0}=2 \tau$. In the simplest case $\tau=2$ so that $a_{0}=4$.

So we do not get in this way 3 -pointic contact. By the theory of implicit functions if $a_{2}, c_{0} \neq 0, y$ is expansible in integral powers of x; so η and a_{1} are integral, and a_{0} even. So from this case we can get only even-pointic contact.
(2) Let $a_{2}=0, b_{1} \neq 0$.

Our equations take the form

$$
\begin{aligned}
& 0=\left[a_{0}\right]+\left[a_{1}+\tau\right]+[2 \tau+1]+[3 \tau]+\ldots, \\
& 0=\quad\left[a_{1}\right]+[\tau+1]+[2 \tau]+\ldots,
\end{aligned}
$$

$\tau=\frac{1}{2}, a_{1}=1, a_{0}=\frac{3}{2}$.
There is a cusp on the envelope, the approximation being

$$
4\left(b_{1} x\right)^{3}+27 a_{3}\left(c_{0} y\right)^{2}=0 ;
$$

so that it breaks down if b_{1}, c_{0}, or $a_{3}=0$.
(3) Let $a_{2}=0, b_{1}=0$.

We find $a_{0}=3$; the algebraic approximation is

$$
-4 \mathrm{~A}_{1}{ }^{3} \mathrm{~A}_{3}+\mathrm{A}_{1}{ }^{2} \mathrm{~A}_{2}{ }^{2}+18 \mathrm{~A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}-4 \mathrm{~A}_{0} \mathrm{~A}_{2}{ }^{3}-27 \mathrm{~A}_{0}{ }^{2} \mathrm{~A}_{3}{ }^{2}=0 .
$$

From this we find that there are two branches of the envelope each having 3 -pointic contact with the curve. In some cases the branches coincide, e.g., a curve enveloping its circles of curvature.

The condition for 4 -pointic contact between the branches appears to be

$$
b_{2}^{2} c_{0}-3 a_{3}\left(d_{1} c_{0}-c_{1} d_{0}\right)=0
$$

In the important particular case of a family of straight lines, one of the branches is accurately $y=0$, and the other is approximately $\left(4 b_{2} x\right)^{3}+27 a_{3}{ }^{2} c_{0} y=0$, which appears to reduce to $y=0$ accurately for $b_{2}=0$.
(4) Let $c_{0}=0$. This corresponds to a double point on the original curve; the envelope has the double-point indicated by

$$
4 a_{2} \mathbf{A}_{0}=\mathbf{A}_{1}{ }^{2}
$$

If $d_{0}=0$ and $b_{1}=0$, one tangent of the envelope coincides with one of the curve.
(5) If the double point be a cusp,

$$
\left(c_{0}=0 \text { and say } d_{0}=0, e_{0}=0\right),
$$

the cuspidal tangent bisects the angle between the tangents to the envelope

$$
4 a_{2}\left(f_{0} y^{2}+g_{0} x^{3}\right)=\left(b_{1} x\right)^{2}
$$

When in addition $b_{1}=0$,

$$
4 a_{3}\left(f_{0} y^{2}+g_{0} x^{3}\right)=\left(c_{1} y\right)^{2}
$$

indicates that the envelope has a cusp with the same cuspidal tangent.
(6) If in (4) c_{1} also is zero,

$$
4 a_{2} \mathrm{~A}_{0}=\mathrm{A}_{1}{ }^{2} ;
$$

i.e, the two branches of the discriminant have 3-pointic contact with the branches of the curve.

In (5) if $c_{1}=0$ the envelope coincides more closely with the curve.
(7) If $c_{0}=0, a_{2}=0$,
we get for the envelope, supposing $a_{3} \neq 0$,
i.e., A_{1} is of order $\frac{4}{3}$.

$$
4 \mathrm{~A}_{1}{ }^{3}+27 a_{3} \mathrm{~A}_{0}{ }^{2}=0,
$$

(8) If $c_{0}=0, d_{0}=0, b_{1}=0, a_{2}=0$,
the envelope has three branches touching the x-axis.

Results.

We may now write down our results in a form independent of our choice of origin and axes.
(1) If in addition to $\phi=0, \phi_{t}=0$,

$$
\left|\begin{array}{ll}
\phi_{x}, & \phi_{y} \tag{i}\\
\phi_{x t}, & \phi_{y t}
\end{array}\right|=0,
$$

we have 4 -pointic contact.
(2) If $\phi_{a}=0$ (ii), the envelope has a cusp.
(3) If conditions (i) and (ii) hold, the envelope has two branches which have each 3 -pointic contact with the curve.
(4) To a double point $\phi_{x}=0, \phi_{y}=0$
corresponds a double-point.
If, in addition to (iii),

$$
\left|\begin{array}{ccc}
\phi_{x z}, & 2 \phi_{x y}, & \phi_{y y} \\
\phi_{t z}, & \phi_{t y}, & \\
& \phi_{t x}, & \phi_{t y}
\end{array}\right|=0, \quad-\quad-\quad \text { (iv) }
$$

one tangent is common.
(5) The tangent at a cusp,

$$
\text { (iii) with }\left|\begin{array}{ll}
\phi_{x x}, & \phi_{x y} \\
\phi_{x y}, & \phi_{y y}
\end{array}\right|=0 \quad \text { (v), }
$$

bisects the angle between the tangents at the double point on the envelope.

If in addition (iv) holds,

$$
\text { i.e., (iii) and }\left\|\begin{array}{ll}
\phi_{x x}, & \phi_{x y} \\
\phi_{x y}, & \phi_{y y} \\
\phi_{t x}, & \phi_{t y}
\end{array}\right\|=0 \quad-\quad \text { (vi), }
$$

che envelope has a cusp with the same cuspidal tangent.
(6) If in addition to (iii)

$$
\phi_{t x}=0, \phi_{t y}=0, \quad-\quad-\quad-\quad(v i i)
$$

(i.e., (i) and (iii)) the branches of the discriminant have 3-pointic contact with those of the curve.
(7) If (ii) and (iii) hold, the envelope has a singularity of the form $\eta^{3}=\lambda \xi^{4}$, where $\eta=0$ is the tangent to $\phi_{t}=0$.
(8) But if this tangent should coincide with one of the two tangents to the curve at the double-point, i.e., (iv), the form is $\eta=\lambda \xi^{2}$ thrice.

A Proof of the Theorem that the Arithmetic Mean of n positive quantities is not less than their Harmonic Mean.

By W. A. Lindsay, M.A., B.Sc.

Two Theorems on the factors of $2^{p}-1$.
By George D. Valentine, M.A.

