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Abstract Let Ω be a bounded, simply connected domain in C with 0 ∈ Ω and ∂Ω analytic. Let S(Ω)
denote the class of functions F (z) which are analytic and univalent in Ω with F (0) = 0 and F ′(0) = 1.
Let {Φn(z)}∞

n=0 be the Faber polynomials associated with Ω. If F (z) ∈ S(Ω), then F (z) can be expanded
in a series of the form

F (z) =
∞∑

n=0

AnΦn(z), z ∈ Ω,

in terms of the Faber polynomials. Let

Er =
{

(x, y) ∈ R
2 :

x2

(1 + (1/r2))2
+

y2

(1 − (1/r2))2
< 1

}
,

where r > 1.
In this paper, we obtain sharp bounds for certain linear combinations of the Faber coefficients of

functions F (z) in S(Er) and in certain related classes.
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1. Introduction

Let S denote the class of functions f analytic and univalent in the unit disk D = {z :
|z| < 1} such that

f(z) = z +
∞∑

n=2

anzn. (1.1)

The Bieberbach conjecture [2] asserts that if f ∈ S, then |an| � n (n � 2). This famous
conjecture was proved by de Branges [4] in 1984. It was also shown that equality holds
if and only if f is a rotation of the Koebe function

k(z) =
z

(1 − z)2
. (1.2)

In this paper, we investigate bounds for certain linear combinations of the Faber coef-
ficients in domains other than the unit disk D, in particular an elliptical domain.
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Let Ω be a bounded, simply connected domain in C with capacity 1 and 0 ∈ Ω. Let
g(z) be the unique, one-to-one, analytic mapping of ∆ = {z : |z| > 1} onto C \ Ω̄ with

g(z) = z +
∞∑

n=0

cn

zn
(c > 0, z ∈ ∆). (1.3)

The Faber polynomials, {Φn(z)}∞
n=0, associated with Ω (or g(z)) are defined by the gen-

erating function relation [5, p. 218]

ηg′(η)
g(η) − z

=
∞∑

n=0

Φn(z)η−n (η ∈ ∆). (1.4)

Faber polynomials play an important role in the theory of functions of a complex
variable and in approximation theory. On a simply connected domain Ω with at least
two boundary points the Faber polynomials, {Φn(z)}∞

n=0, play a role analogous to that
of {zn}∞

n=0 in D. If ∂Ω is analytic and F (z) is analytic in Ω, then F (z) can be expanded
into a series of the form

F (z) =
∞∑

n=0

AnΦn(z), z ∈ Ω, (1.5)

in terms of the Faber polynomials. This series is called the Faber series and it converges
uniformly on compact subsets of Ω. The coefficients An, which can be computed via the
formula

An =
1

2πi

∫
|z|=ρ

F (g(z))z−n−1dz

with ρ < 1 and close to 1, are called the Faber coefficients of F (z) [11, p. 42].
Let φ(z) be the unique, one-to-one, analytic mapping of Ω onto D with φ(0) = 0 and

φ′(0) > 0. Thus a function F (z) which is analytic and univalent in Ω and normalized by
the conditions F (0) = 0 and F ′(0) = 1 may be written as

F (z) =
f(φ(z))
φ′(0)

(1.6)

for some f ∈ S. The Faber coefficients {An}∞
n=0 of a function F (z) of the form (1.6) will

be denoted by {An(f)}∞
n=0 to indicate the dependence on f ∈ S.

In order to investigate the Faber coefficients An(f), it will be convenient to work with
a domain Ω for which the Faber polynomials Φn(z) may be computed via the formula
(1.4) in terms of the exterior mapping g(z) given by (1.3). We then express the interior
functions F (z) given by (1.6) in terms of the interior mapping φ(z). However, it is not
easy to deal with both exterior and interior mappings at the same time, so we restrict
our interest to the elliptical domain

Er =
{

(x, y) ∈ R
2 :

x2

(1 + (1/r2))2
+

y2

(1 − (1/r2))2
< 1

}
,

where r > 1, for which both of these functions are manageable.
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The function g(z) = z + (1/r2z), r > 1, is analytic and univalent in ∆ and maps ∆
onto C \ Ēr. After doing necessary calculations, we obtain from (1.4) that the Faber
polynomials, {Φn(z)}∞

n=0, associated with Er are given by

Φn(z) = 2nr−nPn( 1
2rz) (n = 0, 1, 2, . . . ).

Here {Pn(z)}∞
n=0 are the monic Chebyshev polynomials of degree n, which are given by

P0(z) = 1

and

Pn(z) = 2−n{[z +
√

z2 − 1]n + [z −
√

z2 − 1]n} (n = 1, 2, 3, . . . ).

Let sn(z; q) be the Jacobi elliptic sine function with nome q and modulus k0, and
let [8, Chapter 2]

K =
∫ 1

0

1√
1 − t2

√
1 − k2

0t
2

dt.

Then the function

ϕ(z) =
√

k0

(
2K

π
sin−1 rz

2
;

1
r4

)

is the one-to-one mapping of Er onto D with ϕ(0) = 0 and ϕ′(0) = rK
√

k0/π > 0 [10,
p. 296].

We define S(Er) to be the class of functions F (z) that are analytic and univalent in
Er and normalized by the conditions F (0) = 0 and F ′(0) = 1. We define two subclasses
of S(Er) as

C(Er) = {F (z) ∈ S(Er) : F (Er) is convex}

and

S(2)(Er) = {F (z) ∈ S(Er) : F (z) is odd}.

In addition, we let P (Er) denote the class of functions analytic in Er and satisfying
the conditions F (0) = 1/ϕ′(0) = π/rK

√
k0 and Re{F (z)} > 0. (The condition F (0) =

1/ϕ′(0) is imposed for convenience.)
Note that if F (z) is in one of the classes S(Er), C(Er), S(2)(Er) or P (Er), then F (z)

may be written as in (1.6) for some f(z) in the classes S, convex functions C, odd
functions S(2) or functions with positive real part P defined for D.

It has been conjectured in [7] that if F (z) ∈ S(Er), then

|A0(f)| � A0(k) =
π3

8rK3
√

k0(1 − k0)2 ln r

and

|An(f)| � An(k) =
π3n

4rK3
√

k0(1 − k0)2(1 − r−2n)
(n � 1),

whose special case for r → ∞ is the famous Bieberbach conjecture.
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In this paper, we obtain sharp upper bounds for certain linear combinations of the
Faber coefficients for functions in the classes S(Er), C(Er) and P (Er). Special cases
yield bounds for A0(f), A1(f) and A2(f). In each case, there are two extremal functions,
which are given by

f(z) = k(z)

or

f(z) = −k(−z),

where k(z) is the Koebe function given by (1.2),

f(z) = c(z) =
z

1 − z
(1.7)

or

f(z) = −c(−z) =
z

1 + z
,

and

f(z) = p(z) =
1 + z

1 − z
(1.8)

or

f(z) = p(−z) =
1 − z

1 + z
, (1.9)

respectively, for the classes S(Er), C(Er) and P (Er). Here it is important that the
number of extremal functions is the same as the number of invariant rotations of the
elliptical domain Er. For functions in S(2)(Er) a sharp bound for a linear combination of
A1(f) and A2n+1(f), whose special case yields a sharp upper bound for A1(f) is obtained.
The corresponding extremal function in S(2) is shown to be

o(z) =
z

1 − z2 . (1.10)

2. Main results

We begin with the following lemma.

Lemma 2.1. Let F (z) be analytic in Er and have the Faber series given by (1.5).
Then the Faber coefficients {An}∞

n=0 of F (z) are given by the formula

An =
rn

π

∫ π

0
F

(
2 cos θ

r

)
cos nθ dθ (n = 0, 1, 2, . . . ).

Proof. Letting z = 2 cos θ/r in (1.5) and using Φn(2 cos θ/r) = 2r−n cos nθ yields

F

(
2 cos θ

r

)
= 2

∞∑
n=0

Anr−n cos nθ. (2.1)

Multiplying (2.1) by cosmθ and then integrating from 0 to π gives the desired result.
�
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As a consequence of this representation it can be shown that if F (z) has the represen-
tation (1.6) and belongs to one of the classes S(Er), C(Er), S(2)(Er) or P (Er), then the
Faber coefficients are given by

An(f) =
rn−1

K
√

k0

∫ π

0
f

(
ϕ

(
2 cos θ

r

))
cos nθ dθ (n = 0, 1, 2, . . . ). (2.2)

In addition, as was shown in [6], if F (z) ∈ S(2)(Er), then

A2n(f) = 0 (n = 0, 1, 2, . . . ).

Another representation formula for the Faber coefficients, {An(f)}∞
n=0, is given in the

following corollary.

Corollary 2.2. The Faber coefficients, {An(f)}∞
n=0, of functions in the classes S(Er),

C(Er), S(2)(Er) and P (Er) are given by

An(f) =
2nn!rn−1

K
√

k0(2n)!

∫ π

0
(f(ϕ(x)))(n)|x=2 cos θ/r sin2n θ dθ (n = 0, 1, 2, . . . ). (2.3)

Proof. Since Pn(cos θ) = 21−n cos nθ, formula (2.2) becomes

An(f) =
2n−1rn−1

K
√

k0

∫ π

0
f

(
ϕ

(
2 cos θ

r

))
cos nθ dθ (n = 0, 1, 2, . . . ).

Making the change of variable x = cos θ yields

An(f) =
2n−1rn−1

K
√

k0

∫ 1

−1
f

(
ϕ

(
2x

r

))
Pn(x)√
1 − x2

dx.

Multiplying the identity [1, p. 785]

Pn(x)√
1 − x2

=
(−1)n21−n

1 · 3 · · · · · (2n − 1)
dn

dxn
[(1 − x2)n−1/2]

by f(ϕ(2x/r)) and then integrating from −1 to 1 we obtain

∫ 1

−1

Pn(x)√
1 − x2

f

(
ϕ

(
2x

r

))
dx

=
(−1)n21−n

1 · 3 · · · · · (2n − 1)

∫ 1

−1

dn

dxn
[(1 − x2)n−1/2]

(
f

(
ϕ

(
2x

r

)))
dx. (2.4)

Integrating the right-hand side of (2.4) by parts n times results in

∫ 1

−1

Pn(x)√
1 − x2

f

(
ϕ

(
2x

r

))
dx

=
(−1)n21−n

1 · 3 · · · · · (2n − 1)

∫ 1

−1
(1 − x2)n−1/2

(
f

(
ϕ

(
2x

r

)))(n)

dx. (2.5)

The result follows from (2.2) by letting x = cos θ in (2.5), and carrying through the
details of this change of variables. �
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Theorem 2.3. If k(z), c(z) and p(z) are given by (1.2), (1.8) and (1.10), respectively,
then we have, for n = 0, 1, 2, . . . ,

|A0(f) ± r−2nA2n(f)| � A0(k) ± r−2nA2n(k), f ∈ S, (2.6)

|A0(f) ± r−2nA2n(f)| � A0(c) ± r−2nA2n(c), f ∈ C, (2.7)

and

|A0(f) ± r−2nA2n(f)| � A0(p) ± r−2nA2n(p), f ∈ P. (2.8)

Equalities occur in (2.6)–(2.8) if and only if f(z) = k(z) or f(z) = −k(−z), f(z) = c(z)
or f(z) = −c(−z) and f(z) = p(z) or f(z) = p(−z), respectively.

Proof. To prove (2.6), let f ∈ S be given by (1.1) and consider

In(f) =
∫ π

0
f

(
ϕ

(
2 cos θ

r

))
(1 ± cos 2nθ) dθ (n = 0, 1, 2, . . . ). (2.9)

Then

In(f) =
∫ π/2

0

[
f

(
ϕ

(
2 cos θ

r

))
+ f

(
− ϕ

(
2 cos θ

r

))]
(1 ± cos 2nθ) dθ

= 2
∫ π/2

0

[ ∞∑
m=1

a2mϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ.

Thus

|In(f)| � 2
∫ π/2

0

[ ∞∑
m=1

|a2m|ϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ, (2.10)

since ϕ(x) � 0 for x ∈ [0, 2/r]. Using the de Branges theorem in (2.10) results in

|In(f)| � 2
∫ π/2

0

[ ∞∑
m=1

2mϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ = In(k) = −In(−k(−z)).

Hence there are two extremal functions, which are given by f(z) = k(z) and f(z) =
−k(−z).

In a similar way, the proof (2.7) follows from the coefficient estimate |an| � 1 (n =
2, 3, . . . ) for the class C [9].

Now substituting

f(z) = 1 +
∞∑

m=1

bmzm ∈ P (2.11)

into (2.9) gives

In(f) = 2
∫ π/2

0

[
1 +

∞∑
m=1

b2mϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ.
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Thus

|In(f)| � 2
∫ π/2

0

[
1 +

∞∑
m=1

|b2m|ϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ, (2.12)

since ϕ(x) � 0 for x ∈ [0, 2/r]. Using the coefficient estimate |bn| � 2 (n = 1, 2, . . . ) for
the class P [3] in (2.12) yields (2.8) as

|In(f)| � 2
∫ π/2

0

[
1 +

∞∑
m=1

2ϕ2m

(
2 cos θ

r

)]
(1 ± cos 2nθ) dθ = In(p) = In(p(−z)),

where p(z) is given in (1.8) as desired. �

Remark 2.4. The case n = 0 in Theorem 2.3 yields sharp bounds for the Faber
coefficient A0(f) in the classes S, C and P , respectively.

Theorem 2.5. If k(z), c(z) and p(z) are defined as in Theorem 2.3 and o(z) is given
by (1.10), then we have, for n = 0, 1, 2, . . . ,

|A1(f) ± 1
2r−2nA2n+1(f) ± 1

2r−2n+2A2n−1(f)|
� A1(k) ± 1

2r−2nA2n+1(k) ± 1
2r−2n+2A2n−1(k), f ∈ S, (2.13)

|A1(f) ± 1
2r−2nA2n+1(f) ± 1

2r−2n+2A2n−1(f)|
� A1(c) ± 1

2r−2nA2n+1(c) ± 1
2r−2n+2A2n−1(c), f ∈ C, (2.14)

|A1(f) ± 1
2r−2nA2n+1(f) ± 1

2r−2n+2A2n−1(f)|
� A1(p) ± 1

2r−2nA2n+1(p) ± 1
2r−2n+2A2n−1(p), f ∈ P, (2.15)

and

|A1(f) ± 1
2r−2nA2n+1(f) ± 1

2r−2n+2A2n−1(f)|
� A1(o) ± 1

2r−2nA2n+1(o) ± 1
2r−2n+2A2n−1(o), f ∈ S(2), (2.16)

where A−1(f) = 0. The extremal functions in (2.13)–(2.15) are identical to those given
in the statement of Theorem 2.3. In (2.16) equality holds if and only if f(z) = o(z).

Proof. Let f ∈ S be given by (1.1) and consider

Ln(f) =
∫ π

0
f

(
ϕ

(
2 cos θ

r

))
cos θ(1 ± cos 2nθ) dθ (n = 0, 1, 2, . . . ).

Then

Ln(f) =
∫ π/2

0

[
f

(
ϕ

(
2 cos θ

r

))
− f

(
− ϕ

(
2 cos θ

r

))]
cos θ(1 ± cos 2nθ) dθ

= 2
∫ π/2

0

[
ϕ

(
2 cos θ

r

)
+

∞∑
m=1

a2m+1ϕ
2m+1

(
2 cos θ

r

)]
cos θ(1 ± cos 2nθ) dθ.
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Hence

|Ln(f)| � 2
∫ π/2

0

[
ϕ

(
2 cos θ

r

)
+

∞∑
m=1

|a2m+1|ϕ2m+1
(

2 cos θ

r

)]
cos θ(1 ± cos 2nθ) dθ.

(2.17)

Using the de Branges theorem in (2.17) yields (2.13). As in Theorem 2.3, it is easy to
observe that the two extremal functions are f(z) = k(z) and f(z) = −k(−z).

Proofs of (2.14) and (2.15) are given in a similar way.
If f ∈ S(2), then

Ln(f) = 2
∫ π/2

0
f

(
ϕ

(
2 cos θ

r

))
cos θ(1 ± cos 2nθ) dθ.

Thus

|Ln(f)| � 2
∫ π/2

0
|f

(
ϕ

(
2 cos θ

r

))
| cos θ(1 ± cos 2nθ) dθ. (2.18)

Using the distortion theorem

|f(z)| � |z|
1 − |z|2 , f ∈ S(2),

[5, p. 70] in (2.18), one obtains that

|Ln(f)| � 2
∫ π/2

0

ϕ(2 cos θ/r)
1 − ϕ2(2 cos θ/r)

cos θ(1 ± cos 2nθ) dθ = Ln(o),

because 0 � ϕ(x) < 1 for x ∈ [0, 2/r]. �

Remark 2.6. The case n = 0 in Theorem 2.5 yields sharp bounds for the Faber
coefficient A1(f) in the classes S, C, P and S(2), respectively.

Theorem 2.7. If k(z), c(z), p(z) and o(z) are as in Theorem 2.5, then we have, for
n = 0, 1, 2, . . . ,

|(2n + 1)A1(f) ± r−2nA2n+1(f)| � (2n + 1)A1(k) ± r−2nA2n+1(k), f ∈ S,

|(2n + 1)A1(f) ± r−2nA2n+1(f)| � (2n + 1)A1(c) ± r−2nA2n+1(c), f ∈ C,

|(2n + 1)A1(f) ± r−2nA2n+1(f)| � (2n + 1)A1(p) ± r−2nA2n+1(p), f ∈ P,

|(2n + 1)A1(f) ± r−2nA2n+1(f)| � (2n + 1)A1(o) ± r−2nA2n+1(o), f ∈ S(2).

Extremal functions are as in Theorem 2.5.

Proof. Let

Mn(f) =
∫ π

0
f

(
ϕ

(
2 cos θ

r

))
[(2n + 1) cos θ ± cos(2n + 1)θ] dθ.
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Then Theorem 2.7 follows by using the argument of Theorem 2.5 and noting that

(2n + 1) cos θ ± cos(2n + 1)θ � 0, θ ∈ [0, π/2].

�

Remark 2.8. The case n = 0 in Theorem 2.7 again yields bounds for the Faber
coefficient A1(f) in the classes S, C, P and S(2), respectively.

Remark 2.9. More coefficient estimates may be obtained this way by considering
different trigonometric inequalities. For instance, the trigonometric inequality cos4 θ � 0
on [0, π/2] gives rise to a sharp estimate of a linear combinations of the Faber coefficients
A0(f), A2(f) and A4(f) in the classes S(Er), C(Er) and P (Er) since cos4 θ = 1

8 (3 +
4 cos 2θ + cos 4θ).
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