BOUNDS FOR CERTAIN LINEAR COMBINATIONS OF THE FABER COEFFICIENTS OF FUNCTIONS ANALYTIC IN AN ELLIPSE

E. HALILOGLU
Department of Management, Işık University, Büyükdere Caddesi, Maslak, Istanbul 80670, Turkey (engin@isikun.edu.tr)

(Received 7 July 2004)

Abstract Let Ω be a bounded, simply connected domain in \mathbb{C} with $0 \in \Omega$ and $\partial \Omega$ analytic. Let $S(\Omega)$ denote the class of functions $F(z)$ which are analytic and univalent in Ω with $F(0)=0$ and $F^{\prime}(0)=1$. Let $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$ be the Faber polynomials associated with Ω. If $F(z) \in S(\Omega)$, then $F(z)$ can be expanded in a series of the form

$$
F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z), \quad z \in \Omega
$$

in terms of the Faber polynomials. Let

$$
E_{r}=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{\left(1+\left(1 / r^{2}\right)\right)^{2}}+\frac{y^{2}}{\left(1-\left(1 / r^{2}\right)\right)^{2}}<1\right\}
$$

where $r>1$.
In this paper, we obtain sharp bounds for certain linear combinations of the Faber coefficients of functions $F(z)$ in $S\left(E_{r}\right)$ and in certain related classes.

Keywords: Faber polynomials; Faber coefficients; Jacobi elliptic sine function
2000 Mathematics subject classification: Primary 30C45
Secondary 33C45

1. Introduction

Let S denote the class of functions f analytic and univalent in the unit disk $\mathbb{D}=\{z$: $|z|<1\}$ such that

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

The Bieberbach conjecture [2] asserts that if $f \in S$, then $\left|a_{n}\right| \leqslant n(n \geqslant 2)$. This famous conjecture was proved by de Branges [4] in 1984. It was also shown that equality holds if and only if f is a rotation of the Koebe function

$$
\begin{equation*}
k(z)=\frac{z}{(1-z)^{2}} \tag{1.2}
\end{equation*}
$$

In this paper, we investigate bounds for certain linear combinations of the Faber coefficients in domains other than the unit disk \mathbb{D}, in particular an elliptical domain.

Let Ω be a bounded, simply connected domain in \mathbb{C} with capacity 1 and $0 \in \Omega$. Let $g(z)$ be the unique, one-to-one, analytic mapping of $\Delta=\{z:|z|>1\}$ onto $\mathbb{C} \backslash \bar{\Omega}$ with

$$
\begin{equation*}
g(z)=z+\sum_{n=0}^{\infty} \frac{c_{n}}{z^{n}} \quad(c>0, z \in \Delta) \tag{1.3}
\end{equation*}
$$

The Faber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, associated with Ω (or $\left.g(z)\right)$ are defined by the generating function relation [5, p. 218]

$$
\begin{equation*}
\frac{\eta g^{\prime}(\eta)}{g(\eta)-z}=\sum_{n=0}^{\infty} \Phi_{n}(z) \eta^{-n} \quad(\eta \in \Delta) \tag{1.4}
\end{equation*}
$$

Faber polynomials play an important role in the theory of functions of a complex variable and in approximation theory. On a simply connected domain Ω with at least two boundary points the Faber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, play a role analogous to that of $\left\{z^{n}\right\}_{n=0}^{\infty}$ in \mathbb{D}. If $\partial \Omega$ is analytic and $F(z)$ is analytic in Ω, then $F(z)$ can be expanded into a series of the form

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z), \quad z \in \Omega \tag{1.5}
\end{equation*}
$$

in terms of the Faber polynomials. This series is called the Faber series and it converges uniformly on compact subsets of Ω. The coefficients A_{n}, which can be computed via the formula

$$
A_{n}=\frac{1}{2 \pi \mathrm{i}} \int_{|z|=\rho} F(g(z)) z^{-n-1} \mathrm{~d} z
$$

with $\rho<1$ and close to 1 , are called the Faber coefficients of $F(z)$ [11, p. 42].
Let $\phi(z)$ be the unique, one-to-one, analytic mapping of Ω onto \mathbb{D} with $\phi(0)=0$ and $\phi^{\prime}(0)>0$. Thus a function $F(z)$ which is analytic and univalent in Ω and normalized by the conditions $F(0)=0$ and $F^{\prime}(0)=1$ may be written as

$$
\begin{equation*}
F(z)=\frac{f(\phi(z))}{\phi^{\prime}(0)} \tag{1.6}
\end{equation*}
$$

for some $f \in S$. The Faber coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ of a function $F(z)$ of the form (1.6) will be denoted by $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$ to indicate the dependence on $f \in S$.

In order to investigate the Faber coefficients $A_{n}(f)$, it will be convenient to work with a domain Ω for which the Faber polynomials $\Phi_{n}(z)$ may be computed via the formula (1.4) in terms of the exterior mapping $g(z)$ given by (1.3). We then express the interior functions $F(z)$ given by (1.6) in terms of the interior mapping $\phi(z)$. However, it is not easy to deal with both exterior and interior mappings at the same time, so we restrict our interest to the elliptical domain

$$
E_{r}=\left\{(x, y) \in \mathbb{R}^{2}: \frac{x^{2}}{\left(1+\left(1 / r^{2}\right)\right)^{2}}+\frac{y^{2}}{\left(1-\left(1 / r^{2}\right)\right)^{2}}<1\right\}
$$

where $r>1$, for which both of these functions are manageable.

The function $g(z)=z+\left(1 / r^{2} z\right), r>1$, is analytic and univalent in Δ and maps Δ onto $\mathbb{C} \backslash \bar{E}_{r}$. After doing necessary calculations, we obtain from (1.4) that the Faber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, associated with E_{r} are given by

$$
\Phi_{n}(z)=2^{n} r^{-n} P_{n}\left(\frac{1}{2} r z\right) \quad(n=0,1,2, \ldots) .
$$

Here $\left\{P_{n}(z)\right\}_{n=0}^{\infty}$ are the monic Chebyshev polynomials of degree n, which are given by

$$
P_{0}(z)=1
$$

and

$$
P_{n}(z)=2^{-n}\left\{\left[z+{\sqrt{z^{2}-1}}^{n}+\left[z-{\sqrt{z^{2}-1}}^{n}\right\} \quad(n=1,2,3, \ldots) .\right.\right.
$$

Let $\operatorname{sn}(z ; q)$ be the Jacobi elliptic sine function with nome q and modulus k_{0}, and let [8, Chapter 2]

$$
K=\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}} \sqrt{1-k_{0}^{2} t^{2}}} \mathrm{~d} t
$$

Then the function

$$
\varphi(z)=\sqrt{k_{0}}\left(\frac{2 K}{\pi} \sin ^{-1} \frac{r z}{2} ; \frac{1}{r^{4}}\right)
$$

is the one-to-one mapping of E_{r} onto \mathbb{D} with $\varphi(0)=0$ and $\varphi^{\prime}(0)=r K \sqrt{k_{0}} / \pi>0[\mathbf{1 0}$, p. 296].

We define $S\left(E_{r}\right)$ to be the class of functions $F(z)$ that are analytic and univalent in E_{r} and normalized by the conditions $F(0)=0$ and $F^{\prime}(0)=1$. We define two subclasses of $S\left(E_{r}\right)$ as

$$
C\left(E_{r}\right)=\left\{F(z) \in S\left(E_{r}\right): F\left(E_{r}\right) \text { is convex }\right\}
$$

and

$$
S^{(2)}\left(E_{r}\right)=\left\{F(z) \in S\left(E_{r}\right): F(z) \text { is odd }\right\}
$$

In addition, we let $P\left(E_{r}\right)$ denote the class of functions analytic in E_{r} and satisfying the conditions $F(0)=1 / \varphi^{\prime}(0)=\pi / r K \sqrt{k_{0}}$ and $\operatorname{Re}\{F(z)\}>0$. (The condition $F(0)=$ $1 / \varphi^{\prime}(0)$ is imposed for convenience.)

Note that if $F(z)$ is in one of the classes $S\left(E_{r}\right), C\left(E_{r}\right), S^{(2)}\left(E_{r}\right)$ or $P\left(E_{r}\right)$, then $F(z)$ may be written as in (1.6) for some $f(z)$ in the classes S, convex functions C, odd functions $S^{(2)}$ or functions with positive real part P defined for \mathbb{D}.

It has been conjectured in $[\mathbf{7}]$ that if $F(z) \in S\left(E_{r}\right)$, then

$$
\left|A_{0}(f)\right| \leqslant A_{0}(k)=\frac{\pi^{3}}{8 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2} \ln r}
$$

and

$$
\left|A_{n}(f)\right| \leqslant A_{n}(k)=\frac{\pi^{3} n}{4 r K^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-r^{-2 n}\right)} \quad(n \geqslant 1)
$$

whose special case for $r \rightarrow \infty$ is the famous Bieberbach conjecture.

In this paper, we obtain sharp upper bounds for certain linear combinations of the Faber coefficients for functions in the classes $S\left(E_{r}\right), C\left(E_{r}\right)$ and $P\left(E_{r}\right)$. Special cases yield bounds for $A_{0}(f), A_{1}(f)$ and $A_{2}(f)$. In each case, there are two extremal functions, which are given by

$$
f(z)=k(z)
$$

or

$$
f(z)=-k(-z)
$$

where $k(z)$ is the Koebe function given by (1.2),

$$
\begin{equation*}
f(z)=c(z)=\frac{z}{1-z} \tag{1.7}
\end{equation*}
$$

or

$$
f(z)=-c(-z)=\frac{z}{1+z}
$$

and

$$
\begin{equation*}
f(z)=p(z)=\frac{1+z}{1-z} \tag{1.8}
\end{equation*}
$$

or

$$
\begin{equation*}
f(z)=p(-z)=\frac{1-z}{1+z} \tag{1.9}
\end{equation*}
$$

respectively, for the classes $S\left(E_{r}\right), C\left(E_{r}\right)$ and $P\left(E_{r}\right)$. Here it is important that the number of extremal functions is the same as the number of invariant rotations of the elliptical domain E_{r}. For functions in $S^{(2)}\left(E_{r}\right)$ a sharp bound for a linear combination of $A_{1}(f)$ and $A_{2 n+1}(f)$, whose special case yields a sharp upper bound for $A_{1}(f)$ is obtained. The corresponding extremal function in $S^{(2)}$ is shown to be

$$
\begin{equation*}
o(z)=\frac{z}{1-z^{2}} \tag{1.10}
\end{equation*}
$$

2. Main results

We begin with the following lemma.
Lemma 2.1. Let $F(z)$ be analytic in E_{r} and have the Faber series given by (1.5). Then the Faber coefficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ of $F(z)$ are given by the formula

$$
A_{n}=\frac{r^{n}}{\pi} \int_{0}^{\pi} F\left(\frac{2 \cos \theta}{r}\right) \cos n \theta \mathrm{~d} \theta \quad(n=0,1,2, \ldots)
$$

Proof. Letting $z=2 \cos \theta / r$ in (1.5) and using $\Phi_{n}(2 \cos \theta / r)=2 r^{-n} \cos n \theta$ yields

$$
\begin{equation*}
F\left(\frac{2 \cos \theta}{r}\right)=2 \sum_{n=0}^{\infty} A_{n} r^{-n} \cos n \theta \tag{2.1}
\end{equation*}
$$

Multiplying (2.1) by $\cos m \theta$ and then integrating from 0 to π gives the desired result.

As a consequence of this representation it can be shown that if $F(z)$ has the representation (1.6) and belongs to one of the classes $S\left(E_{r}\right), C\left(E_{r}\right), S^{(2)}\left(E_{r}\right)$ or $P\left(E_{r}\right)$, then the Faber coefficients are given by

$$
\begin{equation*}
A_{n}(f)=\frac{r^{n-1}}{K \sqrt{k_{0}}} \int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right) \cos n \theta \mathrm{~d} \theta \quad(n=0,1,2, \ldots) \tag{2.2}
\end{equation*}
$$

In addition, as was shown in $[\mathbf{6}]$, if $F(z) \in S^{(2)}\left(E_{r}\right)$, then

$$
A_{2 n}(f)=0 \quad(n=0,1,2, \ldots)
$$

Another representation formula for the Faber coefficients, $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$, is given in the following corollary.

Corollary 2.2. The Faber coefficients, $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$, of functions in the classes $S\left(E_{r}\right)$, $C\left(E_{r}\right), S^{(2)}\left(E_{r}\right)$ and $P\left(E_{r}\right)$ are given by

$$
\begin{equation*}
A_{n}(f)=\left.\frac{2^{n} n!r^{n-1}}{K \sqrt{k_{0}}(2 n)!} \int_{0}^{\pi}(f(\varphi(x)))^{(n)}\right|_{x=2 \cos \theta / r} \sin ^{2 n} \theta \mathrm{~d} \theta \quad(n=0,1,2, \ldots) \tag{2.3}
\end{equation*}
$$

Proof. Since $P_{n}(\cos \theta)=2^{1-n} \cos n \theta$, formula (2.2) becomes

$$
A_{n}(f)=\frac{2^{n-1} r^{n-1}}{K \sqrt{k_{0}}} \int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right) \cos n \theta \mathrm{~d} \theta \quad(n=0,1,2, \ldots)
$$

Making the change of variable $x=\cos \theta$ yields

$$
A_{n}(f)=\frac{2^{n-1} r^{n-1}}{K \sqrt{k_{0}}} \int_{-1}^{1} f\left(\varphi\left(\frac{2 x}{r}\right)\right) \frac{P_{n}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

Multiplying the identity [1, p. 785]

$$
\frac{P_{n}(x)}{\sqrt{1-x^{2}}}=\frac{(-1)^{n} 2^{1-n}}{1 \cdot 3 \cdots \cdot(2 n-1)} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left[\left(1-x^{2}\right)^{n-1 / 2}\right]
$$

by $f(\varphi(2 x / r))$ and then integrating from -1 to 1 we obtain

$$
\begin{align*}
& \int_{-1}^{1} \frac{P_{n}(x)}{\sqrt{1-x^{2}}} f\left(\varphi\left(\frac{2 x}{r}\right)\right) \mathrm{d} x \\
& \quad=\frac{(-1)^{n} 2^{1-n}}{1 \cdot 3 \cdots \cdots(2 n-1)} \int_{-1}^{1} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left[\left(1-x^{2}\right)^{n-1 / 2}\right]\left(f\left(\varphi\left(\frac{2 x}{r}\right)\right)\right) \mathrm{d} x \tag{2.4}
\end{align*}
$$

Integrating the right-hand side of (2.4) by parts n times results in

$$
\begin{align*}
\int_{-1}^{1} \frac{P_{n}(x)}{\sqrt{1-x^{2}}} & f\left(\varphi\left(\frac{2 x}{r}\right)\right) \mathrm{d} x \\
& =\frac{(-1)^{n} 2^{1-n}}{1 \cdot 3 \cdots \cdot(2 n-1)} \int_{-1}^{1}\left(1-x^{2}\right)^{n-1 / 2}\left(f\left(\varphi\left(\frac{2 x}{r}\right)\right)\right)^{(n)} \mathrm{d} x \tag{2.5}
\end{align*}
$$

The result follows from (2.2) by letting $x=\cos \theta$ in (2.5), and carrying through the details of this change of variables.

Theorem 2.3. If $k(z), c(z)$ and $p(z)$ are given by (1.2), (1.8) and (1.10), respectively, then we have, for $n=0,1,2, \ldots$,

$$
\begin{array}{ll}
\left|A_{0}(f) \pm r^{-2 n} A_{2 n}(f)\right| \leqslant A_{0}(k) \pm r^{-2 n} A_{2 n}(k), & f \in S \\
\left|A_{0}(f) \pm r^{-2 n} A_{2 n}(f)\right| \leqslant A_{0}(c) \pm r^{-2 n} A_{2 n}(c), & f \in C \tag{2.7}
\end{array}
$$

and

$$
\begin{equation*}
\left|A_{0}(f) \pm r^{-2 n} A_{2 n}(f)\right| \leqslant A_{0}(p) \pm r^{-2 n} A_{2 n}(p), \quad f \in P \tag{2.8}
\end{equation*}
$$

Equalities occur in (2.6)-(2.8) if and only if $f(z)=k(z)$ or $f(z)=-k(-z), f(z)=c(z)$ or $f(z)=-c(-z)$ and $f(z)=p(z)$ or $f(z)=p(-z)$, respectively.

Proof. To prove (2.6), let $f \in S$ be given by (1.1) and consider

$$
\begin{equation*}
I_{n}(f)=\int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right)(1 \pm \cos 2 n \theta) \mathrm{d} \theta \quad(n=0,1,2, \ldots) \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{aligned}
I_{n}(f) & =\int_{0}^{\pi / 2}\left[f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right)+f\left(-\varphi\left(\frac{2 \cos \theta}{r}\right)\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta \\
& =2 \int_{0}^{\pi / 2}\left[\sum_{m=1}^{\infty} a_{2 m} \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|I_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left[\sum_{m=1}^{\infty}\left|a_{2 m}\right| \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta \tag{2.10}
\end{equation*}
$$

since $\varphi(x) \geqslant 0$ for $x \in[0,2 / r]$. Using the de Branges theorem in (2.10) results in

$$
\left|I_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left[\sum_{m=1}^{\infty} 2 m \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta=I_{n}(k)=-I_{n}(-k(-z))
$$

Hence there are two extremal functions, which are given by $f(z)=k(z)$ and $f(z)=$ $-k(-z)$.

In a similar way, the proof (2.7) follows from the coefficient estimate $\left|a_{n}\right| \leqslant 1$ ($n=$ $2,3, \ldots)$ for the class $C[\mathbf{9}]$.

Now substituting

$$
\begin{equation*}
f(z)=1+\sum_{m=1}^{\infty} b_{m} z^{m} \in P \tag{2.11}
\end{equation*}
$$

into (2.9) gives

$$
I_{n}(f)=2 \int_{0}^{\pi / 2}\left[1+\sum_{m=1}^{\infty} b_{2 m} \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta
$$

Thus

$$
\begin{equation*}
\left|I_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left[1+\sum_{m=1}^{\infty}\left|b_{2 m}\right| \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta \tag{2.12}
\end{equation*}
$$

since $\varphi(x) \geqslant 0$ for $x \in[0,2 / r]$. Using the coefficient estimate $\left|b_{n}\right| \leqslant 2(n=1,2, \ldots)$ for the class $P[\mathbf{3}]$ in (2.12) yields (2.8) as

$$
\left|I_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left[1+\sum_{m=1}^{\infty} 2 \varphi^{2 m}\left(\frac{2 \cos \theta}{r}\right)\right](1 \pm \cos 2 n \theta) \mathrm{d} \theta=I_{n}(p)=I_{n}(p(-z))
$$

where $p(z)$ is given in (1.8) as desired.
Remark 2.4. The case $n=0$ in Theorem 2.3 yields sharp bounds for the Faber coefficient $A_{0}(f)$ in the classes S, C and P, respectively.

Theorem 2.5. If $k(z), c(z)$ and $p(z)$ are defined as in Theorem 2.3 and $o(z)$ is given by (1.10), then we have, for $n=0,1,2, \ldots$,

$$
\begin{align*}
& \left|A_{1}(f) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(f) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(f)\right| \\
& \leqslant A_{1}(k) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(k) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(k), \quad f \in S, \tag{2.13}\\
& \left|A_{1}(f) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(f) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(f)\right| \\
& \leqslant A_{1}(c) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(c) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(c), \quad f \in C, \tag{2.14}\\
& \left|A_{1}(f) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(f) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(f)\right| \\
& \leqslant A_{1}(p) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(p) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(p), \quad f \in P, \tag{2.15}
\end{align*}
$$

and

$$
\begin{align*}
& \left|A_{1}(f) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(f) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(f)\right| \\
& \quad \leqslant A_{1}(o) \pm \frac{1}{2} r^{-2 n} A_{2 n+1}(o) \pm \frac{1}{2} r^{-2 n+2} A_{2 n-1}(o), \quad f \in S^{(2)} \tag{2.16}
\end{align*}
$$

where $A_{-1}(f)=0$. The extremal functions in (2.13)-(2.15) are identical to those given in the statement of Theorem 2.3. In (2.16) equality holds if and only if $f(z)=o(z)$.

Proof. Let $f \in S$ be given by (1.1) and consider

$$
L_{n}(f)=\int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right) \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta \quad(n=0,1,2, \ldots)
$$

Then

$$
\begin{aligned}
L_{n}(f) & =\int_{0}^{\pi / 2}\left[f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right)-f\left(-\varphi\left(\frac{2 \cos \theta}{r}\right)\right)\right] \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta \\
& =2 \int_{0}^{\pi / 2}\left[\varphi\left(\frac{2 \cos \theta}{r}\right)+\sum_{m=1}^{\infty} a_{2 m+1} \varphi^{2 m+1}\left(\frac{2 \cos \theta}{r}\right)\right] \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|L_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left[\varphi\left(\frac{2 \cos \theta}{r}\right)+\sum_{m=1}^{\infty}\left|a_{2 m+1}\right| \varphi^{2 m+1}\left(\frac{2 \cos \theta}{r}\right)\right] \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta \tag{2.17}
\end{equation*}
$$

Using the de Branges theorem in (2.17) yields (2.13). As in Theorem 2.3, it is easy to observe that the two extremal functions are $f(z)=k(z)$ and $f(z)=-k(-z)$.

Proofs of (2.14) and (2.15) are given in a similar way.
If $f \in S^{(2)}$, then

$$
L_{n}(f)=2 \int_{0}^{\pi / 2} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right) \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta
$$

Thus

$$
\begin{equation*}
\left|L_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2}\left|f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right)\right| \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta \tag{2.18}
\end{equation*}
$$

Using the distortion theorem

$$
|f(z)| \leqslant \frac{|z|}{1-|z|^{2}}, \quad f \in S^{(2)}
$$

[$\mathbf{5}$, p. 70] in (2.18), one obtains that

$$
\left|L_{n}(f)\right| \leqslant 2 \int_{0}^{\pi / 2} \frac{\varphi(2 \cos \theta / r)}{1-\varphi^{2}(2 \cos \theta / r)} \cos \theta(1 \pm \cos 2 n \theta) \mathrm{d} \theta=L_{n}(o)
$$

because $0 \leqslant \varphi(x)<1$ for $x \in[0,2 / r]$.
Remark 2.6. The case $n=0$ in Theorem 2.5 yields sharp bounds for the Faber coefficient $A_{1}(f)$ in the classes S, C, P and $S^{(2)}$, respectively.

Theorem 2.7. If $k(z), c(z), p(z)$ and $o(z)$ are as in Theorem 2.5, then we have, for $n=0,1,2, \ldots$,

$$
\begin{aligned}
& \left|(2 n+1) A_{1}(f) \pm r^{-2 n} A_{2 n+1}(f)\right| \leqslant(2 n+1) A_{1}(k) \pm r^{-2 n} A_{2 n+1}(k), \quad f \in S \\
& \left|(2 n+1) A_{1}(f) \pm r^{-2 n} A_{2 n+1}(f)\right| \leqslant(2 n+1) A_{1}(c) \pm r^{-2 n} A_{2 n+1}(c), \quad f \in C \\
& \left|(2 n+1) A_{1}(f) \pm r^{-2 n} A_{2 n+1}(f)\right| \leqslant(2 n+1) A_{1}(p) \pm r^{-2 n} A_{2 n+1}(p), \quad f \in P \\
& \left|(2 n+1) A_{1}(f) \pm r^{-2 n} A_{2 n+1}(f)\right| \leqslant(2 n+1) A_{1}(o) \pm r^{-2 n} A_{2 n+1}(o), \quad f \in S^{(2)}
\end{aligned}
$$

Extremal functions are as in Theorem 2.5.
Proof. Let

$$
M_{n}(f)=\int_{0}^{\pi} f\left(\varphi\left(\frac{2 \cos \theta}{r}\right)\right)[(2 n+1) \cos \theta \pm \cos (2 n+1) \theta] \mathrm{d} \theta
$$

Then Theorem 2.7 follows by using the argument of Theorem 2.5 and noting that

$$
(2 n+1) \cos \theta \pm \cos (2 n+1) \theta \geqslant 0, \quad \theta \in[0, \pi / 2] .
$$

Remark 2.8. The case $n=0$ in Theorem 2.7 again yields bounds for the Faber coefficient $A_{1}(f)$ in the classes S, C, P and $S^{(2)}$, respectively.

Remark 2.9. More coefficient estimates may be obtained this way by considering different trigonometric inequalities. For instance, the trigonometric inequality $\cos ^{4} \theta \geqslant 0$ on $[0, \pi / 2]$ gives rise to a sharp estimate of a linear combinations of the Faber coefficients $A_{0}(f), A_{2}(f)$ and $A_{4}(f)$ in the classes $S\left(E_{r}\right), C\left(E_{r}\right)$ and $P\left(E_{r}\right)$ since $\cos ^{4} \theta=\frac{1}{8}(3+$ $4 \cos 2 \theta+\cos 4 \theta)$.

References

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables (Dover, New York, 1972).
2. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preuss. Akad. Preuss. Wiss. 38 (1916), 940-955.
3. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Pontenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115.
4. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
5. P. L. Duren, Univalent functions (Springer, 1983).
6. E. Haliloglu, On the Faber coefficients of functions univalent in an ellipse, Trans. Am. Math. Soc. 349 (1997), 2901-2916.
7. E. Haliloglu, Generalizations of coefficient estimates for certain classes of analytic functions, Proc. Jpn Acad. A 73 (1997), 116-121.
8. D. F. LaWDEn, Elliptic functions and applications (Springer, 1989).
9. K. Loewner, Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden, Sitzungsberichte Preuss. Akad. Preuss. Wiss. 69 (1917), 89-106.
10. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
11. G. Schober, Univalent functions: selected topics, Lecture Notes in Mathematics, Volume 478 (Springer, 1975).
