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Abstract

A near 1-factor of a graph of order In > 4 is a subgraph isomorphic to (n - 2)K2 U P^ U Kx. Wallis
determined, for each r > 3, the order of a smallest r-regular graph of even order without a 1-factor;
while for each r > 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular,
(r — 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs
without near l-factors. It is known that every connected, cubic graph with less than six bridges has a
near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near
1-factor is determined.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 99.

Introduction

A factor of a graph G is a spanning subgraph of G; an r-regular factor is called
an r-f actor. A great deal of research has involved the existence or non-existence of
l-factors in graphs. Graphs that contain l-factors have been characterized by
Tutte [5].

THEOREM A (Tutte [5]). A graph G has a \-factor if and only if for every proper
subset S of V(G), the number of odd components ofG—S does not exceed \S\.

Of particular interest has been the determination of those r-regular graphs,
r > 3, that contain l-factors. Of course, any graph having a 1-factor must have
even order. An important and famous result along this line for 3-regular graphs is
due to Petersen [3]. A bridge in a connected graph is an edge whose deletion
results in a disconnected graph.
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194 Gary Chartrand, Sergio Ruiz and Curtiss E. Wall [21

FIGURE 1. The smallest cubic graph without a l-factor

THEOREM B (Petersen [3]). Every cubic graph with at most two bridges contains a
l-factor.

This result is best possible since cubic graphs with three bridges and no
1-factors exist. The graph of Figure 1 is the unique smallest such graph. Theorem
B also implies that every 3-regular, 2-edge-connected graph contains a l-factor.

All smallest connected /--regular graphs of even order without 1-factors have
been studied and characterized for every r > 3 by Wallis [6]. This result has no
connectivity condition (except that the graph be connected). Pila [4] introduced a
connectivity contition to this problem when he determined, for integers r(> 3)
and «(> 1), the smallest order of an r-regular, w-connected graph of even order
having no l-factor.

It is well-known that an r-regular, (r — l)-edge-connected graph (r > 3) of
even order contains a l-factor (see [1], for example). This result is best possible in
the sense that an r-regular, (r — 2)-edge-connected graph, r > 3, of even order
need not contain a l-factor. Chartrand, Goldsmith and Schuster [1] determined
the smallest order of an r-regular, (r — 2)-edge-connected graph (r ^ 3) of even
order and containing no l-factor.

In [2] the concept of a near l-factor was introduced. A near l-factor of a graph
G of order In > 4 is a factor of the type (n - 2)K2 U P3 U Kv (Note that a
l-factor of G is a factor of the type nK2.) Therefore, a l-factor and a near
l-factor differ in the placement of a single edge—more formally, the replacement
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[3] Smallest regular graphs without near 1-factors 195

of any edge uv in a 1-factor F of G by an edge uw in the complement of F

produces a near 1-factor of G.

Chartrand, Kapoor, Lesniak and Schuster [2] showed that the smallest r-regu-

lar, (r — 2)-edge-connected graphs of even order and not containing a 1-factor

can, however, be isomorphically factored into near 1-factors.

It is rather easy to see that every r-regular, ( r - l)-edge-connected graph of

even order contains a near 1-factor. The following result was obtained in [2].

T H E O R E M C (Chartrand, Kapoor, Lesniak and Schuster [2]). / / G is an

r-regular, ( r — 2)-edge-connected graph ( r > 3) of even order p containing less than

2r distinct edge cut sets of cardinality r — 2, then G contains a near \-factor.

The following extension of Tutte's Theorem [2] was also obtained and will

prove to be useful.

T H E O R E M D (Chartrand, Kapoor, Lesniak and Schuster [2]). Let G be a graph

of even order 2n > 4 with at most one isolated vertex such that G £ nK2. Then G

has a near l-factor if and only if for every proper subset S of V(G), the number of

odd components ofG—S does not exceed \S\ + 2.

Using Theorem D and following the general scheme employed by Wallis in [6],

we now proceed to determine the smallest order of connected regular graphs

without near 1-factors.

Smallest connected regular graphs without near 1-factors

The following elementary fact (which was also proved in [6]) will be useful in

this and the subsequent section.

LEMMA 1. If G is an r-regular graph, and if H is a subgraph of G induced by a

nonempty subset T of vertices of G, where \T\ < r, then the number of edges joining

H and G — H is at least r.

P R O O F . Let t — \T\. If v is a vertex of H, then degf f v < t — 1 and d e g c v = r;

therefore, v is adjacent to at least r — (t — 1) vertices of G — T. Then the

number of edges joining H and G - T is at least t(r - t + 1). Since 1 < t < r,

we have

(t-l)(r-t) = r t - r - ( t 2 - t ) > 0 ,

which implies that t(r - t + 1) > r, thereby proving the lemma.
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LEMMA 1. If G is a connected r-regular graph of even order p, and if G does not
contain a near 1-factor, then p > / ( / ) , where

34 forr=3,
44 for r = 4 and r = 6,

/ ( r ) = 56 / o r r = 8 ,
5r +11 for r > 5 awd r odd,
5r + 6 /or r > 10 aw J r euen.

PROOF. If G does not contain a near 1-factor, then according to Theorem D,
there is a set 5 Q V(G), with |5 | = k, such that G - S has n odd components
and n > k + 2. The fact that /» is even implies that n and k have the same
parity; therefore, the former inequality can be improved to

(1) n > k + 4.

Let Gj, G2,.-,Gn be the odd components of G - S and let a, denote the
number of edges joining G, and 5. Further, let m be the number of odd
components of G — S with more than r vertices, so that n — m is the number of
odd components of G — S with at most r vertices. Note that if r is odd and G, is
a component of G — S with more than r vertices, then G, has at least r + 2
vertices.

The next step will be to show that m 3* 5. This is done by finding upper and
lower bounds on the number of edges joining S and the n odd components of
G — S. In our setting, this number is equal to Z"=1a,. Each vertex of S
contributes at most r edges to this sum because G is r-regular; therefore,

(2) t a, > kr.
; = i

On the other hand, there is at least one edge joining each component to S
because G is connected. But we can say more about those n - m components of
order at most r. By Lemma 1, each such component is joined to S by at least r
edges; therefore,

(3) X) at > {n - m)r + m.

Comparing the inequalities (2) and (3), we obtain

(4) k > (« - m) + m/r,

but m/r > 0, so that

(5) k> n - m.
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[s I Smallest regular graphs without near 1-factors 197

Using inequality (1), we have k ^ (k + 4) - m and, consequently, m > 4.
Since m > 0, it follows by (4) that k > n — m. Using (1) again, we obtain
k>n-m^k + 4-m, which implies that

(6) m > 5.

A lower bound for the order p of G is obtained by observing that (i) each of
the n — m components of G - S having order at most r has at least one vertex,
(ii) each of the m remaining components has at least r + 1 vertices if r is even
and at least r + 2 vertices if r is odd, and (iii) the vertices of S are in none of
these components. Therefore,

(7) p > (n - m) + m(r + 1) + k if r is even,

and

(8) p > (« - m) + m(r + 2) + k if r is odd.

However, m > 5, n — m > 0, and k ^ 1; thus

(9) p > 5r + 6 if r is even,

and

(10) p > 5r + 11 if r is odd.

The bounds indicated in (9) and (10) can be improved, though, for the cases
r = 3, 4, 6 and 8. We study these cases separately.

Case 1. Assume r = 3.

We know by (6) that m ^ 5. Now k > 2, for if k were equal to 1, then the
vertex in S cannot be joined to five or more components. From (2) it follows that
£"_! a, *s 3k, and from (3) we have

n

mXl +(n - m ) x 3 < £ a,.
i - i

From (1) and the last two inequalities, we obtain

3« - 2m < 3k ^ 3(n - 4 ) .

Therefore m > 6.
Using the fact that k > 2 and inequality (8), we obtain /? ^ 32. If p = 32, then

w = 6, n — w = 0, and k = 2.
The graph G is 3-regular, S has two vertices, and G — S has six components,

from which it follows that G is disconnected, a contradiction. Thus p > 34.
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Case 2. Assume that r = A, 6 or 8.

We will show when r is even that

(11) m>A + -±-,jL-

and

(12) k>7^+(n-m).

If p' and q' are the order and size of an odd component G, of G — S, then

£ degcu = 2q' + a, = rp',

which implies that a, is even. However a, ̂  0 since G is connected, so that
a, > 2.

Now inequality (3) can be modified to produce
n

Y, Oj > (n — m)r + 2m.
/ = i

From (2) we have

(13) kr> (n - m)r + 2m

= rn — (r - 2) m

> r(k + 4 ) - ( r - 2)m

= rk + Ar -(r - 2)m.

Hence (r — 2)m > 4r, and finally

Ar A 8
m > ^ = 4 +

2

^ 4 + ,
r - 2 r - 2

thereby proving (11).
From (13) it follows that

i / \ 2m
k > (n - m) H

/ r

i , 2 Ar
> (»-'«) + 7x7r2
= (n - m) +yZT^>

which verifies (12).
Using (11), (12) and (7), we conclude that

(i) if r = 4, then m > 8, k > A, and p > AA;
(ii) if r = 6, then m > 6, k > 2, and /? > 44; and
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17] Smallest regular graphs without near 1-factors 199

(iii) if r = 8, then m > 6, k > 2, and p > 56.
This completes the proof of Theorem 1.

In the remainder of this section it is shown that the bounds presented in
Theorem 1 are best possible.

THEOREM 2. The smallest order p of a connected r-regular graph without a near
1-factor is p =/( /") , where

34 /orr=3,
44 forr = 4, 6,

f(r)= 56 / o r r = 8 ,
5r +11 for r > 5 and r odd,
5r + 6 for r > 10 awrf r euew.

PROOF. According to Theorem 1, it is enough to show the existence of
connected r-regular graphs of order f(r) having no near 1-factor. We now
consider a number of cases.

FIGURE 2. A smallest connected 5-regular graph
without a near one-factor

https://doi.org/10.1017/S1446788700033619 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033619


200 Gary Chartrand, Sergio Ruiz and Curtiss E. Wall 18]

FIGURE 3. A smallest connected 7-regular graph
without a near one-factor

Case 1. Assume r is odd, r > 5 andp = 5r + 11.

Using the terminology presented in the preceding theorem, we have in this case,
that k = 1 and m = 5.

The five odd components are described as

G, = ((/• - l)/2)K2 U P3 for 1 < / < 4,

and

G5 = Pr_2 U 2K2 .

Note that G5 has r — 4 vertices of degree r — 1 and all others of degree r. The
graphs G, (1 < / < 4) have exactly one vertex of degree r — 1, while all five
graphs G, (1 < / < 5) have order r + 2. A graph G is constructed by adding an
extra vertex u and joining u to each vertex of degree r — 1 in the graph
Gt U G2 U G3 U G4 U G5. In this case 5 = {«}, and G - 5 has five odd compo-
nents. Thus, by Theorem D, G has no near 1-factor. Figures 2 and 3 illustrate the
construction for r — 5 and r = 7, respectively.
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;' G

FIGURE 4. Construction of the smallest r-regular connected graph
without a near one-factor for r even and r > 10

Case 2. Assume r is even, r > 10 andp = 5r + 6.

Now we have k = 1 and m = 5 as in the former case. Here S consists of a
single vertex u and five components Glt G2,--,G5 of order t + 1, where

G, = K2 U(r - 1 ) * ! = Jfr+l - e for i = 1, 2, 3, 4

and

G = ( ( / • - 8)/2)A"2 U 9KX.

Figure 4 illustrates the construction, and the circles represent the components.

Case 3. Assume r = 3.

For k = 4 and w = 6 we obtain the graph of order 34 in Figure 5. The set
S = (a, &, c, </ } and the six odd components guarantee that this graph does not
contain a near 1-factor by Theorem D.

Case 4. Assume r = 4.

For r = 4, we obtain fc = 4, m = 8, and p = 44 (see Figure 6, where S =
{a,b,c,d}).
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FIGURE 5. A smallest connected cubic graph
without a near one-factor

FIGURE 6. A smallest connected 4-regular graph
without a near one-factor
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FIGURE 7. A smallest connected 6-regular graph
without a near one-factor

;' G*\

• Gl

FIGURE 8. Smallest connected 8-regular graph
without a near one-factor

Case 5. Assume r = 6.

Here we have k = 2, m = 6, and p = 44. Take six components isomorphic to
K-j — e, and let S = {u,v). Join each vertex of degree 5 in the components to
one of the vertices in S. The graph obtained is indicated in Figure 7, where each
circle represents Kn — e.
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Case 6. Assume r = 8.

In this case we have, k = 2, m = 6, and p = 56. Let 5 = { M, V }. For 1 < / < 5,
let G, = Kg — e and define G6 to be K9 with three independent edges removed.
A graph G is obtained by joining the vertices of 5 to each vertex of degree 7 in
the components Gt, 1 < / < 5, and by joining u to three vertices of degree 7 in G6

and v to the remaining three vertices of degree 7 in G6, as shown in Figure 8. This
completes the proof of the theorem.

Smallest /--regular, (r — 2)-edge-connected graphs

without near 1-factors

In the next two results we will be concerned with the minimality problem, but
now with restrictions on the edge-connectivity. As we saw in the introduction, an
/•-regular, (r — l)-edge-connected graph must have a near 1-factor, but an /--regu-
lar, (r — 2)-edge-connected graph need not. However for such graphs of small
order, they must contain a near 1-factor, as we verify.

THEOREM 3. Let G be an r-regular, (r — 2)-edge-connected graph, r > 3, of even
order p . If p < 4{r\r/2] + r - 1), then G has a near \-factor.

PROOF. Assume, to the contrary, that G has no near 1-factor. Then, by
Theorem D, there exists a proper subset S of V{G) such that G — S has odd
components Gx, G2,---,Gn, where |S| = k and n > k + 2. However, n and k
have the same parity; therefore,

(14) n > k + 4.

Let at be the number of edges joining Gti and S. By Lemma 1, if |F(G;)| < r,
then a, > r. Let m denote the number of odd components G, of G - S having
more than r vertices.

Because G is (r — 2)-edge-connected, then a,- > r — 2 whenever \V{Gt)\> r +
1; therefore,

(15) ta,= £ a,+ X «,
/ = 1 \V(G,)\<r \V(G,)\>r+\

> X r+ X (r-2)

= (« — w)r + m(r — 2)

= nr — 2m.
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Further,

(16) E a, < E degtf = kr-

By (15) and (16), nr - 2m < AT, SO that

2m ^ nr — kr = (n — k)r > 4r;

thus

(17) m > 2r.

Using (16) and the fact that n > k + 4, we have

" 2) > (k + 4)(r - 2),

so that

(18) k>2r- 4.

Hence, for r even, we have by (17) and (18) that

p > m(r + 1) + k > 2r(r + 1) + 2r - 4

= 2r2 + 4r - 4

= 4(r[r/2l+r-l),

which contradicts the hypothesis.
For r odd, we have

p > m{r + 2) + k > 2r(r + 2) + 2r - 4

= 2r2 + 6r - 4

= 4(r[r/2l+r-l),

again producing a contradiction.

The smallest order of a connected cubic graph without a near 1-factor is 34, as
was seen in Theorem 2. For r = 3, 4(r\r/2] + r - 1) = 32; therefore Theorem 3
does not give the best result for cubic graphs. For r > 3, the bound given in
Theorem 3 is sharp.

THEOREM 4. For every integer r > 3, there exists an r-regular, (r — 2)-edge-
connected graph of order 4(r[ r/2] + r — 1) containing no near 1-factor.

PROOF. We present different constructions according to the parity of r.
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Case 1. Assume r = Infor some n > 2.

Let H = (n - l)K2 U 3KV Note that H has (odd) order r + 1, three of its
vertices have degree r, and the remaining r — 2 vertices have degree r — 1. For
/ = 1, 2, 3, 4, let At — (n — l)Klt and let 2?, = n//. An r-regular graph G is
produced by adding some edges among the graphs A, and 2?,, for / = 1, 2, 3, 4, so
that the order of G will be 4|F(^0 U V(BJ\ = 4|K((« - 1)A"X) U F(«2/)| = 4(n
- 1 +«( / •+ 1)) = 4(r\r/2] + r - 1).

For / = 1, 2, 3, in each component H of 2?/( join each of the r — 2 vertices of
degree r — 1 to one vertex of At ; U Ai+l in such a way that each vertex of
A,U Ai+l is adjacent to exactly one vertex of each component of 2?,. In a similar
way, add the corresponding edges between 2?4 and A4 U Av The graph G
obtained is r-regular, and it has the property that for every two nonadjacent
vertices u and v, there exist at least r — 2 edge-disjoint u — v paths. Therefore, G
is (r — 2)-edge-connected. By removing from G the 4M - 4 vertices of Al U A2 U
A3 U A4, we obtain the union of 4« components isomorphic to H, where H has
odd order r + 1. Therefore, by Theorem D, G has no near 1-factor. Figure 6 also
illustrates this theorem for r = 4.

Case 2. Assume r = 2« + 1 /or some integer n > 2.

Let H = PrU P2, so that / / has odd order r + 2, four vertices of degree r, and
r — 2 vertices of degree r - 1. Let ^ and ^43 be isomorphic to nKx, and let A2

and yl4 be isomorphic to (n — 1)/^. Further, let Bt be isomorphic to the union of
n + 1 copies of / / or n copaies of H, depending on whether i e {1,3} or
/ e {2,4}, respectively. We assume that the graphs At and Bt, i = 1, 2, 3, 4, have
pairwise disjoint vertex sets. The union of these sets will give the vertex set of the
r-regular graph G without a near 1-factor, that is, G has

2(» + l)(r + 2) + 2n(r + 2) + 2n + 2(n - 1) = 4r\r/2] + r - 1

vertices.
For i = 1, 2, 3, and for each of those components in 2?, isomorphic to H, join

each of the r — 2 vertices of degree r — 1 to a vertex of ^; U Ai+1 in such a way
that every vertex of Ai U Ai+1 is adjacent to exactly one vertex of each compo-
nent of Bt. Analogously, add the appropriate edges between B4 and A4 U Av

The graph G so obtained is r-regular and (r - 2)-edge-connected. By removing
from G the 2« + 2(« - 1) = An - 2 vertices of ^ U ̂ 2 U A3 U ̂ 4 , we obtain
the union of2(« + l) + 2n = 4« + 2 odd components H; so by Theorem D, G
has no near 1-factor. Moreover, it is easily seen that G is (r - 2)-edge-connected.

Figure 9 illustrates the theorem for r = 5, where each dotted circle represents a
copy of H.
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B,

FIGURE 9. A smallest 3-edge-connected 5-regular

graph without a near one-factor

A smallest connected cubic graph with six bridges

and without a near 1-factor

If we apply Theorem C to cubic graphs, we see that every cubic graph with less
than six bridges contains a near 1-factor. A cubic graph of order 44 with six
bridges and without a near 1-factor was found by Chartrand, Kapoor, Lesniak
and Schuster [2]. A natural question arises: What is the minimum order of a cubic
graph G with six bridges and containing no near 1-factor? The answer to this
question is provided in our next result.
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THEOREM 5. The smallest order of a connected cubic graph of even order with six
bridges and containing no near l-factor is 40.

PROOF. Suppose, to the contrary, that there exists a graph G that is connected
and cubic, has six bridges but no near l-factor, and has even order p, where
p < 40.

By Theorem D, there exists a proper subset 5 of V(G) having cardinality k
such that the number n of odd components of G - S is at least k + 4.

From the proof of Theorem 1, we know that k > 2 and /?>(« — m) + 5m + k,
where m( > 6) is the number of odd components with at least five vertices.

Suppose that k = 2. The removal of the two vertices of S will produce at most
five components, a contradiction when n > 6. Therefore k > 3.

Suppose that k = 3, so that n > 7. The removal of the three vertices of S
produces at most seven components, but since n > 7, we conclude that n = 7.
Therefore each vertex of S must be incident with three bridges, necessarily all of
which are distinct bridges of G; therefore G has at least nine bridges—a
contradiction. Hence k > 4.

Suppose that k = 4, so that n > 8 and p > 36. First assume that /? = 36. In
this case G — S must have six components of order 5 and two trivial components
with vertices u and w. By a straightforward argument it follows that S is an
independent set of vertices, and that exactly two vertices of S are joined to both u
and w.

Suppose vx, v2 G S are joined to u and w. Then each of vx and v2 is incident
with exactly one bridge, while the other two vertices of S are incident with three
bridges, which implies that G has eight bridges—a contradiction.

Suppose k = 4 but p = 38. Then m = 6 and n — m = 4. In this case the ten
components of G — S are joined to S with at least 18 edges, which is impossible
since |5 | = 4. Therefore, k > 5.

Suppose next that k = 5; then p > 38. Since p < 40, we have p = 38, which
implies that m = 6 and n = 9. Hence G — S has six components of order 5 and
three trivial components. The number of edges joining G - S with S is at least
15, but since \S\ = 5, the number of edges joining S to G — S is at most 15. This
implies that the number of such edges is exactly 15. The three trivial components
are joined to S with nine edges; so there are six edges between S and the six
components of order 5. Therefore each component of G - S of order 5 is joined
to S1 by exactly one edge, necessarily each such edge being a bridge. Since G is
connected, no vertex of S can be joined to three components of order 5.
Therefore, there is a vertex of S that is joined to two components of G - S
having order 5, and to one trivial component. These three edges are necessarily
bridges. Each of the other components of order 5 contributes one bridge. So G
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has at least seven bridges—a contradiction. Therefore k > 6, but this implies that
p > 40, producing the final contradiction.

Following a case by case argument, we were able to show that there are exactly
two cubic graphs of order 40 with six bridges and having no near 1-factor. Both
graphs have an isomorphic factorization into the graph H where H = 16K2 U
2/3 U 2KV Note that H differs from a near 1-factor only in the location of one
edge, so that a near 1-factor has edge independence number equal to 19, while the
corresponding value for H is 18. Figures 10 and 11 show both cubic graphs, with
their factorizations indicated by the different ways in which their edges are
represented. By studying the possible factorizations of the components of G — S
having order 5, one may conclude that neither graph of Figures 10 and 11 can be
isomorphically factored into any other graph having edge independence number
18.

FIGURE 10. A cubic graph of order 40 with six bridges
and no near one-factor
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FIGURE 11. A cubic graph of order 40 with six bridges
and no near one-factor
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