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Involutions and Anticommutativity in
Group Rings
Edgar G. Goodaire and César Polcino Milies

Abstract. Let g 7→ g∗ denote an involution on a group G. For any (commutative, associative) ring R
(with 1), ∗ extends linearly to an involution of the group ring RG. An element α ∈ RG is symmetric
if α∗ = α and skew-symmetric if α∗ = −α. The skew-symmetric elements are closed under the Lie
bracket, [α, β] = αβ − βα. In this paper, we investigate when this set is also closed under the ring
product in RG. The symmetric elements are closed under the Jordan product, α◦β = αβ +βα. Here,
we determine when this product is trivial. These two problems are analogues of problems about the
skew-symmetric and symmetric elements in group rings that have received a lot of attention.

1 Introduction

In this paper, as usual, RG denotes the group ring of a group G over a commutative
associative ring R with 1 and involution means an antiautomorphism of order 2. An
involution g 7→ g∗ on G extends to RG in an obvious way: for α =

∑
αgg ∈ RG,

α∗ =
∑
αgg∗. Throughout this paper, all involutions on RG will be of this type.

An element α ∈ RG is symmetric if α∗ = α and skew-symmetric (sometimes we
abbreviate to skew) if α∗ = −α. By (RG)+ and G+, we mean the sets of symmetric
elements of RG and G, respectively, whereas, we use the notation (RG)− and G− for
the respective sets of skew-symmetric elements.

In recent years there has been increasing interest in problems regarding the prop-
erties of RG as a ring with involution. See, for example, [6,8–10,12,13,19–21] and the
rather fundamental paper [7]. The monograph [18] highlights many recent results in
this growing field. Notice that the product of symmetric elements in RG is symmetric
if and only if, given α, β ∈ RG with α∗ = α and β∗ = β, we have (αβ)∗ = αβ. This
occurs if and only if β∗α∗ = αβ, that is, if and only if βα = αβ. Thus the symmetric
elements of RG form a subring of RG if and only if they commute. This question has
been studied by several authors [2, 11, 17].

Notice too that the set (RG)− is closed under the Lie bracket [α, β] = αβ − βα,
and this Lie bracket is trivial if and only if for α, β ∈ (RG)−, αβ − βα = 0, that is, if
and only if the skew-symmetric elements commute. This problem has also received
much attention [3–6, 16].

In this paper we consider two problems related to these. First we address the
question of when the skew-symmetric elements of RG form a subring, that is, when
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does α, β ∈ (RG)− imply that αβ is also in (RG)−? Clearly the answer is if and only
if (αβ)∗ = −αβ, that is, if and only if β∗α∗ = (−β)(−α) = −αβ. So (RG)− is a
subring if and only if the skew-symmetric elements anticommute.

The set (RG)+ is closed under the Jordan product, α ◦ β = αβ + βα. Clearly
this product is trivial if and only if the symmetric elements anticommute. This is a
second situation we study, and resolve, in this paper.

In what follows, we shall find it convenient to refer to the “support” of elements
in a group ring. The support of α =

∑
αg∈R αgg, denoted supp(α), is the set of

group elements which actually appear in the representation ofα, that is, with nonzero
coefficients: supp(α) = {g ∈ G | αg 6= 0}.

2 When is (RG)− a Subring?

Let g 7→ g∗ be any involution of a group G and extend linearly to an involution of
RG. In this section, we classify the groups G for which the set (RG)− of elements
that are skew-symmetric relative to ∗ is a subring of RG. As we know, this problem is
equivalent to determining when the skew-symmetric elements of RG anticommute.

Suppose α =
∑
αgg is skew-symmetric. Then∑

αgg∗ = α∗ = −α = −
∑

αgg

and, for an element k ∈ supp(α), there are two possibilities. If k∗ = k, then the
coefficient of k in−

∑
αgg is−αk, whereas the coefficient of k inα∗ isαk, so 2αk = 0.

If k∗ 6= k, then there exists g ∈ supp(α) such that −αkk = αgg∗. Thus g∗ = k (and
g = k∗), so that k 6= g, and αk = −αg . So αkk + αgg = −αgg∗ + αgg = αg(g − g∗).
It follows that (RG)− is spanned by the set R ∪ S, where

(2.1) R = {αg | g ∈ G+, 2α = 0} and S = {g − g∗ | g ∈ G}.

Obviously, the skew-symmetric elements of RG anticommute if and only if the ele-
ments of R ∪ S anticommute.

We begin with a lemma.

Lemma 2.1 Let g 7→ g∗ denote an involution of a group G and let ∗ also denote
the linear extension to RG. If the elements of RG that are skew-symmetric relative to ∗
anticommute, then one of the following holds:

(i) the characteristic of R is 2,
(ii) the characteristic of R is 4 and gg∗ = g∗g and (g∗)2 = g2 for all g ∈ G,
(iii) G is abelian and ∗ is the identity on G.

Proof Suppose char R 6= 2. For any g ∈ G, g − g∗ and g∗ − g anticommute if and
only if (g − g∗)(g∗ − g) = −(g∗ − g)(g − g∗), that is, if and only if

gg∗ + g∗g + g∗g + gg∗ = g2 + (g∗)2 + g2 + (g∗)2,

which reads

(2.2) 2gg∗ + 2g∗g = 2g2 + 2(g∗)2.
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Suppose ∗ is not the identity map and let g ∈ G with g∗ 6= g. Then gg∗ is not in the
support of the right side of this equation, so it is not in the support of the left side.
This implies gg∗ = g∗g and 4gg∗ = 0, so char R = 4 and g2 = (g∗)2 too. Now let g
be any element of G. Equation (2.2) implies that gg∗ = g∗g or gg∗ = g2 (so g = g∗)
or gg∗ = (g∗)2 (so g = g∗). In all cases, gg∗ = g∗g, the left side of (2.2) is 0 and
g2 = (g∗)2 as well.

Finally, we note that the identity map on a group G is an involution only if G is
abelian, giving case (iii) and the desired result.

In characteristic 2, skew elements are symmetric and anticommutativity is com-
mutativity, so the groups in which the skew-symmetric elements anticommute are
known [17, Theorem 3.3].

If 4 6= 0, G is abelian, and ∗ is the identity, then g− g∗ = 0 for any g ∈ G, so, with
reference to the definitions in (2.1), the elements of S most certainly anticommute
with each other and also with elements of R. Elements of R anticommute because if
2α = 0, (αg)(βh) + (βh)(αg) = 2αβgh = 0.

These remarks and Lemma 2.1 classify the groups G for which (RG)− is a subring
except in the case of characteristic 4. This case is more difficult and settled with the
next theorem.

Theorem 2.2 Let G be a group with an involution ∗ and let R be a coefficient ring of
characteristic 4. Then the set (RG)− of elements that are skew-symmetric with respect
to ∗ forms a subring of RG if and only if either

(i) G is an abelian group and there exists s ∈ G with s2 = 1 and g∗ = g or sg for all
g ∈ G (this includes the possibility that ∗ is the identity on G) or

(ii) G is a nonabelian group with a unique nonidentity commutator, s, for every g ∈
G, g∗ = g or sg, and either symmetric group elements commute or whenever
α, β ∈ R satisfy 2α = 2β = 0, then αβ = 0.

Proof Suppose first that (RG)− is a subring of RG and let g and h be elements of G.
Then g− g∗ and h− h∗ anticommute, that is, (g− g∗)(h− h∗) = −(h− h∗)(g− g∗),
so

(2.3) gh + g∗h∗ + hg + h∗g∗ = h∗g + hg∗ + gh∗ + g∗h.

We first suppose that G is abelian. In this case, (2.3) reads

(2.4) 2gh + 2g∗h∗ = 2gh∗ + 2g∗h.

If ∗ is the identity map on G, there is nothing to do, so assume this is not the case and
let g, h ∈ G with g∗ 6= g and h∗ 6= h. Then gh is not in the support of the right side of
(2.4), so the only possibility is gh = g∗h∗ and gh∗ = g∗h. The second equation gives
g−1g∗ = h∗h−1. Fixing g with g∗ 6= g, we see that for any h ∈ G with h∗ 6= h, the
element h∗h−1 = g−1g∗ is independent of h; call it s, so that h∗ = sh. If h is moved
by ∗, so is h∗, in which case (h∗)∗ = sh∗ = s2h, so s2 = 1. Thus G is as specified in
statement (i) of the theorem.

Now assume that G is not abelian. Since the elements of R anticommute, for any
α, β ∈ R with 2α = 2β = 0 and any symmetric elements g, h ∈ G, the elements αg
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and βh anticommute, so αβ(gh + hg) = 0. This says that either gh = hg or αβ = 0.
Thus the ring R has the property specified in statement (ii) of the theorem.

Next, select g, h ∈ G with gh 6= hg, hence also g∗h∗ 6= h∗g∗. Assume that g∗ 6= g
and h∗ 6= h. Then it is not hard to see that gh is in the support of the left-hand side of
(2.3), so gh is in the support of the right side. There are two possibilities: gh = h∗g
or gh = hg∗.

In the first case, gh = h∗g, we have h∗g∗ = g∗h as well and (2.3) becomes
g∗h∗ + hg = hg∗ + gh∗, giving hg = gh∗. In the second case, gh = hg∗, we have
also h∗g∗ = gh∗ and (2.3) reduces to g∗h∗ + hg = h∗g + g∗h, implying hg = g∗h. In
the second case, it is relevant that we also have g∗ = h−1gh. We intend to show that
this happens in the first case as well.

So assume gh = h∗g. We note that g and gh do not commute and that (gh)∗ 6= gh
because the alternative, (gh)∗ = gh, gives h∗g∗ = gh = h∗g, so g = g∗, which is
a contradiction. So we may apply to the pair g, gh our observations about g and h,
where there were two possibilities. Given the first of these, and applying hg = gh∗ to
the pair g, gh, we have (gh)g = g(gh)∗, so hg = h∗g∗. But hg = gh∗, so gh∗ = h∗g∗

and g∗ = (h∗)−1gh∗. Applying the involution, we get g = hg∗h−1, so g∗ = h−1gh.
Given the second possibility, and applying gh = hg∗ to the pair g, gh we get g(gh) =
(gh)g∗, so gh = hg∗ and again g∗ = h−1gh.

To this point, we have shown that if gh 6= hg, g∗ 6= g, and h∗ 6= h, then g∗ =
h−1gh.

Suppose gh 6= hg, g∗ 6= g but h∗ = h. If (gh)∗ = gh, then h∗g∗ = gh, so hg∗ = gh
and g∗ = h−1gh. If (gh)∗ 6= gh, we can again apply some of what we have learned
about the pair g, h to the pair g, gh, specifically, g∗ = (gh)−1g(gh) = h−1gh.

In summary, we have shown that for any g ∈ G, either g = g∗ or else h−1gh ∈
{g, g∗} for all h ∈ G.

Proceeding as in [14], we now focus attention on T = {g ∈ G | g∗ 6= g}, the
complement in G of the set of elements that are symmetric with respect to ∗, and
upon the subgroup A = 〈T〉 which T generates. Note that T 6= ∅ because G is not
abelian.

Fix t ∈ T. If g /∈ A, then tg /∈ T, so tg = (tg)∗ = g∗t∗ = gt∗ and t∗ = g−1tg.
(Similarly, replacing t by t∗, we have g−1t∗g = t .) If also h /∈ A, then gh must belong
to A because

(gh)−1t(gh) = h−1g−1tgh = h−1t∗h = t.

We have proven that g /∈ A and h /∈ A implies gh ∈ A, so the index of A in G is at
most 2.

If T is a commutative set, then A is abelian and the index is precisely 2 (because
G is not abelian). Write G = A ∪ Ac, c /∈ A. Suppose a1, a2 ∈ A with a∗1 6= a1 and
a∗2 6= a2. Anticommutativity of a1 − a∗1 and a2 − a∗2 gives

2(a1a2 + a∗1 a∗2 ) = 2(a1a∗2 + a∗1 a2).

Now a1a2 is not in the support of the right side here, so each side must be 0, in
particular a1a∗2 = a∗1 a2, implying a−1

1 a∗1 = a∗2 a−1
2 . Call this element s. We have

shown that if a ∈ A and a∗ 6= a, then a−1a∗ = s, equivalently, a∗ = sa. Note that
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s ∈ A because T is closed under ∗, so A = 〈T〉 is too. Now if a is moved by ∗, so
also is a∗. It follows that (a∗)∗ = sa∗ = s(sa), giving s2 = 1. This also shows that
s∗ = s because the contrary implies s∗ = ss = 1, which is not true. The last relevant
property of s is its commutativity with c. To see this, we use the fact that sc /∈ A
(because s ∈ A, c /∈ A), so that sc /∈ T, and this says that sc = (sc)∗ = c∗s∗ = cs.

Let a ∈ A be any element with a∗ 6= a. If ac 6= ca, previous arguments show that
a∗ = c−1ac. But a∗ = sa so c−1ac = sa and s = (c, a−1), the commutator of c and
a−1. This holds for any a moved by ∗. Replacing a by a−1, we have s = (c, a) for any
a with a∗ 6= a. Since s2 = 1, we have also s = (a, c). So (a, c) = 1 or s for any a ∈ A.
Also, since c2 ∈ A,

(2.5) (ac, c) = c−1a−1c−1ac2 = c−1a−1c−1c2a = (c, a) = 1 or s.

If a1, a2 ∈ A, we have

(2.6) (a1, a2c) = a−1
1 (a2c)−1a1a2c = a−1

1 c−1a−1
2 a1a2c

= a−1
1 c−1a1cc−1a−1

1 a−1
2 a1a2c = (a1, c) = 1 or s.

We now use the well-known commutator formulas

(2.7) (xy, z) = (x, z)y(y, z) and (x, yz) = (x, z)(x, y)z

to show that s is actually a unique (nonidentity) commutator in G. The only remain-
ing pair of elements to consider has the form a1c, a2c with a1, a2 ∈ A, and for these
we have (a1c, a2c) = (a1, a2c)c(c, a2c) = 1 or s by (2.5) and (2.6). All this shows that
when T is a commutative set, the group G and ring R are described by statement (ii)
of the theorem.

Suppose now that T is not commutative, and choose t1, t2 ∈ T with t1t2 6= t2t1.
Since t1t2t−1

1 6= t2, we must have t1t2t−1
1 = t2

∗, that is, t1t2 = t2
∗t1. We have t1t2 =

t2t1
∗ as well, because t−1

2 t1t2 = t1
∗, so t2

∗t1 = t2t1
∗. This gives t−1

2 t2
∗ = t1

∗t−1
1 =

t−1
1 t1

∗, since t1 and t1
∗ commute (by Lemma 2.1). Note also that t−1

1 t1
∗ = t−1

1 t−1
2 t1t2

and similarly t−1
2 t2

∗ = t−1
2 t−1

1 t2t1. Thus, if t1, t2 ∈ T and t1t2 6= t2t1, then (t2, t1) =
t−1

2 t2
∗ = t−1

1 t1
∗ = (t1, t2).

Now fix noncommuting elements t1, t2 ∈ T, let s = (t1, t2), and note that s2 = 1.
Let t be any element of T. If t fails to commute with t1, say, then, as above, we can
deduce t−1t∗ = t−1

1 t1
∗, giving t−1t∗ = s. Thus, if t−1t∗ 6= s, then t must commute

with both t1 and t2. Let t be such an element. If (tt1)∗ 6= tt1, then t−1
2 (tt1)t2 = tt1

or (tt1)∗ (and note that the second element (tt1)∗ = t∗1 t∗ = t∗t∗1 ). But t−1
2 (tt1)t2 =

(t−1
2 tt2)(t−1

2 t1t2) = tt1
∗, while tt1

∗ 6= tt1 and tt1
∗ 6= t∗t1

∗. So (tt1)∗ = tt1. Therefore
t1
∗t∗ = tt1 = t1t and so t∗t−1 = (t1

∗)−1t1 = s−1 = s. This shows that s = (t1, t2)
is independent of the elements t1 and t2 in T, that is, for any t ∈ T, t−1t∗ = s. This
gives part of the desired statement (ii) of the theorem, namely, that if g∗ 6= g, then
g∗ = sg (because such g is in T).
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We know that s is the commutator of any two (non-commuting) elements of T.
Also, if t ∈ T and g ∈ G is arbitrary with gt 6= tg, then t−1g−1tg = t−1t∗ = s.
Finally, if g /∈ T, h /∈ T, and gh 6= hg, then gh ∈ T, for otherwise (gh)∗ = gh, so
h∗g∗ = gh and hence hg = gh. So we have gh ∈ T and g ∈ G and (gh)g 6= g(gh). We
have already considered this possibility and found (gh, g) = s. Since (gh, g) = (h, g),
we get (h, g) = s, so (g, h) = s−1 = s. All this establishes that s is a unique (non-
identity) commutator in G and again G and R are described by statement (ii).

To complete the proof, we show that the conditions given in each statement of the
theorem guarantee that the skew-symmetric elements of RG anticommute. For this,
it is sufficient to show that the elements of R ∪ S anticommute, where R and S are
defined in (2.1).

Suppose (G, ∗) is a pair described by statement (i). Thus G is an abelian group,
s ∈ G satisfies s2 = 1, and for any g ∈ G, either g∗ = g or g∗ = sg. If αg, βh ∈ R,
then (αg)(βh) + (βh)(αg) = 2αβgh = 0, so αg and βh anticommute. If αg ∈ R

and h − h∗ ∈ S, then αg(h − h∗) + (h − h∗)(αg) = 2αg(h − h∗) = 0, so elements
of R anticommute with elements of S. To show that two elements of S anticommute,
let g − g∗, h − h∗ ∈ S. Clearly we may assume g∗ 6= g and h∗ 6= h, and then
(g−g∗)(h−h∗) = (1− s)2gh = 2(1− s)gh while−(h−h∗)(g−g∗) = −2(1− s)gh =
2(1− s)gh in characteristic 4.

Suppose (G, ∗) and R are as described by statement (ii) of the theorem. Let
αg, βh ∈ R. We wish to show thatαβ(gh+hg) = 0. If symmetric elements commute,
this is clear because 2α = 0. Otherwise, the hypothesis on the ring says αβ = 0 and
again we have the desired anticommutativity of elements of R.

To show that αg ∈ R and h − h∗ ∈ S anticommute, we may assume h∗ 6= h so
that h∗ = sh. We want to show that α(1 − s)gh = −α(1 − s)hg. If gh = hg, this
holds because 2α(1− s)gh = 0 while, if gh 6= hg, we have hg = sgh and α(1− s)hg =
α(1− s)sgh = −α(1− s)gh.

Finally, we must show that g − g∗ and h − h∗ anticommute for any g, h ∈ G.
For this, we may assume that g∗ = sg and h∗ = sh. We have (g − g∗)(h − h∗) =
(1−s)2gh = 2(1−s)gh (using centrality of s) while−(h−h∗)(g−g∗) = −2(1−s)hg.
If gh = hg, then 2(1− s)gh = −2(1− s)hg in characteristic 4. On the other hand, if
gh 6= hg, then hg = sgh and −2(1− s)hg = −2(1− s)sgh = +2(1− s)gh, again the
desired anticommutativity. This completes the proof.

Remark 2.3 In the last twenty-five years, considerable attention has been paid to
the fact that there exist loop rings that are not associative, but nearly so in the sense
that subrings generated by two elements are associative. In characteristic different
from 2, the loops that produce such “alternative” loop rings are constructed from
groups G having a unique nonidentity commutator and a property called LC, which
says that two elements of G commute if and only if one of the elements, or their prod-
uct, is central. See Chapter IV of [15], and especially Theorem 3.1 of that chapter, for
more details. In such G, one can show that the map g 7→ g∗, with g∗ = g on the cen-
tre and sg otherwise, is an involution. Further, the elements of G that are symmetric
with respect to this involution are central and so commute. It seems most curious
that such groups therefore satisfy the conditions of statement (ii) of Theorem 2.2, so
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that the skew-symmetric elements in the group ring RG form a subring.

3 Anticommutativity of (RG)+

As the heading suggests, in this section we classify groups G with the property that the
Jordan product α ◦β = αβ +βα is trivial on the set (RG)+ of elements that are sym-
metric with respect to an involution of RG that fixes the elements of R. As noted in
the introduction, this problem is equivalent to finding conditions under which sym-
metric elements anticommute. Since 1 is always symmetric, this statement implies,
in particular, that 1 anticommutes with 1, so that the characteristic of R is 2. Thus,
as posed, our problem has been solved because in characteristic 2 the groups G for
which the symmetric elements of RG commute (and hence anticommute) are known
[17]. We therefore restrict our problem and ask when it is the case that symmetric
elements of the form g + g∗ anticommute.

As in the preceding section, we begin with a lemma which shows that the charac-
teristic of R is always critical.

Lemma 3.1 Suppose g 7→ g∗ is an involution of a group G with the property that
elements of the form g + g∗, g ∈ G, anticommute in a group ring RG. Then one of the
following holds:

(i) char R = 2,
(ii) char R = 4 and gg∗ = g∗g and g2 = (g∗)2 for all g ∈ G,
(iii) char R = 8, G is abelian, and g∗ = g for all g ∈ G.

Proof With g = 1, g∗ = 1, so 1 + 1 and 1 + 1 anticommute. Thus 4 = −4, 8 = 0 in
R, and char R = 2, 4, or 8. For any g ∈ G, we have (g + g∗)2 = −(g + g∗)2, so

2g2 + 2gg∗ + 2g∗g + 2(g∗)2 = 0.

Suppose char R = 4. Then for a given g either g2 = gg∗ and gg∗ = (g∗)2 or g2 = g∗g
and gg∗ = (g∗)2 or g2 = (g∗)2 and gg∗ = g∗g. So either g = g∗ or else g2 = (g∗)2

and gg∗ = g∗g. The latter condition holds in any case, so for all g ∈ G, g2 = (g∗)2

and gg∗ = g∗g, giving the second statement of the lemma. Finally, if char R = 8, then
all the elements g2, gg∗, g∗g, (g∗)2 are equal for any g ∈ G, in particular, g2 = gg∗, so
g∗ = g, showing that ∗ is the identity on G. Since ∗ is also an involution, G is abelian
and the proof is complete.

As observed, the case of characteristic 2 has been settled. In characteristic 8,
Lemma 3.1 says that G must be abelian with g∗ = g for all g ∈ G. This condition is
sufficient as well because anticommutativity of g + g∗ and h + h∗ is the condition

(3.1) gh + g∗h + gh∗ + g∗h∗ + hg + h∗g + hg∗ + h∗g∗ = 0,

which becomes 8gh = 0 when G is abelian, g∗ = g and h∗ = h. As in Section 2, then,
the case requiring some analysis is characteristic 4.

Theorem 3.2 Let G be a group with an involution ∗ and let R be a coefficient ring of
characteristic 4. Then elements of the form g + g∗, g ∈ G, anticommute in RG if and
only if either
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(1) G is abelian and there exists s ∈ G with s2 = 1 and g∗ = g or sg for all g ∈ G or
(2) G is a nonabelian group with a unique commutator s 6= 1 and g∗ = g or g∗ = sg

for all g ∈ G.

Proof This time we begin by showing that elements of the form g + g∗ anticommute
when G is a group of either of the described types. To do this, we must establish the
validity of (3.1) for each type of group.

If G is abelian, the left side of (3.1) becomes 2gh + 2g∗h + 2gh∗ + 2g∗h∗, which
is clearly 0 if g∗ = g and h∗ = h. If one of g, h is moved by the involution and
the other is not, say g∗ = sg and h∗ = h, then 2gh + 2g∗h + 2gh∗ + 2g∗h∗ =
2gh + 2sgh + 2gh + 2sgh = 4gh + 4sgh = 0, and if g∗ = sg and h∗ = sh, then
2gh + 2g∗h + 2gh∗ + 2g∗h∗ = 2gh + 2sgh + 2sgh + 2gh = 0 again.

Suppose G is not abelian, that G has a unique nonidentity commutator s (easily
seen to be central and to have order 2) and g∗ = g or sg for all g ∈ G. We consider
three cases. If g∗ = g and h∗ = h, then the left side of (3.1) is gh + gh + gh + gh +
hg + hg + hg + hg = 4gh + 4hg and this is 0 in characteristic 4. If one of g, h is moved
by the involution and the other is not, say g∗ = sg and h∗ = h, the left side of (3.1) is
gh + sgh + gh + sgh + hg + hg + shg + shg = 4gh + 4sgh, and this is 0 if gh = hg and
gh + sgh + gh + sgh + sgh + sgh + gh + gh = 4gh + 4sgh = 0 otherwise. The final case,
g∗ = sg, h∗ = sh, is similar.

Now assume that G is a group with involution and that elements of the form g +g∗

anticommute. We show that G is described by statement (i) or (ii) of the theorem.
First suppose that G is abelian. Then (3.1) becomes 2gh+2g∗h+2gh∗+2g∗h∗ = 0.

If g∗ 6= g and h∗ 6= h, then (3.1) can hold only if gh = g∗h∗ and so g∗h = gh∗ too.
This implies h−1h∗ = g−1g∗ and so the element s = g−1g∗ is independent of g with
g∗ 6= g. It follows that g∗ = g or sg for all g ∈ G. Note that s2 = 1 because g2 = (g∗)2

by Lemma 3.1.
Now suppose that G is not abelian and that g, h ∈ G do not commute. If g∗ 6= g

and h∗ 6= h, then the only way for g and h to satisfy (3.1) is for gh = g∗h∗; otherwise,
gh = hg∗ = h∗g = h∗g∗, which is not the case because h∗g 6= h∗g∗. So gh = g∗h∗

and h∗g∗ = hg, and (3.1) becomes 2gh + 2hg + g∗h + gh∗ + hg∗ + h∗g = 0. It follows
that gh = hg∗ = h∗g, so g∗ = h−1gh. Suppose g∗ 6= g and h∗ = h. If (gh)∗ = gh,
then gh = h∗g∗ = hg∗ and g∗ = h−1gh, while if (gh)∗ 6= gh, we may apply to
the noncommuting pair g, gh what we discovered about the pair g, h, specifically that
g∗ = (gh)−1g(gh). This says again that g∗ = h−1gh.

As in the proof of Theorem 2.2, we have learned that for any g ∈ G, either g∗ = g
or else h−1gh ∈ {g, g∗} for all h ∈ G. As before, we let T = {g ∈ G | g∗ 6= g}. If T
is not commutative, we discover, exactly as before, that G has a unique commutator
s 6= 1 and that for any g ∈ G, either g∗ = g or g∗ = sg. On the other hand,
if T is commutative, the subgroup A generated by T is abelian, [G : A] = 2, and
the involution restricted to A maps into A = 〈T〉. We studied this situation in the
previous paragraph, so we conclude here that there is an element s ∈ A with s2 = 1
and a∗ = a or sa for any a ∈ A. Now g∗ = g for any g /∈ A (since such g /∈ T), so we
have g∗ = g or g∗ = sg for each g ∈ G and G is almost as described by statement (ii)
of the theorem. Since G is not abelian, the map ∗ is not the identity, so s 6= 1. This
implies s∗ = s, because the contrary implies s∗ = ss = 1. It remains only to prove
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that s is the only commutator different from 1 in G. Let c be any element not in A (so
c∗ = c). Then G = A∪Ac with s and c commuting, because sc /∈ A means sc /∈ T, so
sc = (sc)∗ = c∗s∗ = cs.

Take t ∈ T. Then tc /∈ A, so tc /∈ T. Therefore, tc = (tc)∗ = c∗t∗ = cst = sct ,
so s = tct−1c−1 = (t−1, c−1). Applying the foregoing to t−1 and c−1, we also have
s = (t, c). Since A is generated by T, the formula (xy, c) = (x, c)y(y, c) shows that
(a, c) = 1 or (a, c) = s for all a ∈ A. Now s is central in G because it commutes with
c and with all elements of A. Hence we can show that (a1c, a2c) = 1 or s using the
commutator formulas (2.7) as before. This completes our proof.

Remark 3.3 We conclude with a remark analogous to Remark 2.3. It is not hard
to embed a group described by statement (ii) of Theorem 3.2 in a Moufang loop
with the same description; the M(G, ∗, 1) construction described in [15, §II.5] can
be used, for example. With a coefficient ring of characteristic 2, such a loop is known
to have a loop ring that is alternative (but not associative) [1]. Again we find the con-
nection between group rings with involution satisfying the properties of this paper
and alternative loop rings interesting and most curious.
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