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Summary. This paper gives alternative straightforward and
simpler proofs of some of the results of Laurent's [10], and Likes'
[11], [13]). The derivation of the results is simplified by using the
theory of Dirichlet's multiple integral and the transformation used to
derive this multiple integral. Some applications of Dirichlet's
transformation to order statistic theory from gamma, and normal
populations, have been already given by Kabe [7].

1. Introduction. A considerable amount of research work has
recently been done in the distribution theory of linear functions, or of
ratios of linear functions, of ordered statistics from one or more
exponential populations, which sometimes may be truncated. The
exponential model is nowadays widely used in Failure Theory, see
e.g., Epstein and Sobel [1], Epstein [2], Epstein and Tsao [3],

Laurent [10], and Holla [6], and its properties are thoroughly

explored either from a mathematical point of view, see e.g., Tanis

[19], Hogg and Tanis [5], Likes [11], [12], or from a mixed mathematical
and applied point of view, see e.g., Saleh [17], Likes [13], and also
Epstein et al. The mathematical tools employed, in the derivation

of the distribution problems, by above authors are varied and

sometimes complicated, see e.g., Laurent [10], and Likes [11], [12],
[13], [14]. A common tool that appears to be frequently used by some

of the above authors is a theorem of Epstein and Sobel's [1] which

states that X(i) - X(i-i) is distributed as a XZ variate with two degrees

of freedom, where X(i) is i-th smallest observation in an ordered sample

of size N from an exponential population. Dirichlet's transformation
which indeed is a very powerful tool for dealing with a substantial

part of applied order statistic theory from the exponential and

function distributions appears to have been neglected. Our purpose in
this paper is to use this tool to give simple, elegant, and straightforward
proofs of some of the results of Laurent's [10], and Likes [11], [13].
Alternative proofs of some of the results of other authors may be
developed on similar lines.

1
This paper was written while the author held a summer (1967) research
fellowship of the Canadian Mathematical Congress.
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Some results which are found useful in the sequel are stated in
the next section. We assume that all the integrals occurring in this
paper are evaluated over appropriate ranges of the variables of
integration.

2. Some useful results. The Dirichlet's multiple integral,
Gibson ([4], p.492), states that

o, -1 axz-i o -1
(1) fR Y, Y, RN f(y1+ +YN)dY1 dyN
oz1+...+ozN—1
- o o o +..0 + e )
(I“a/1 Faz FQN/ f‘(a1 Q/N)) N f(eN)

where the region R of integration is determined by the conditions,
Yi >0,i=14,2,..., N; y1 +y2 + ... +yN: ON. Here f is a suitable

function and the integral is to be understood as a part of the volume

integral over the range, yi_>_0, i=1, ..., N; @N< vy +... +yN< 6N+d9

In case f is a suitable density function of the y's, then obviously the
right-hand side of (1) is the density function of the variate GN. The

N’

integral (1) is then evaluated by using the (Dirichlet's) transformation,
Gibson ([4], p.147)

J
(2) Ty, = 6.6 ...0 i = 1,2,...,N.
i=1

The Jacobian J of the transformation from the y's to the 6's is
known to be, Gibson ([4], p. 147)

(3)

o
1"
D
D
w N
D
o>

We next require a result of Patil and Wani's [15], which may be

stated as follows. Let x1, xZ, PN XN be a random sample of size N

from the distribution F(x, 8) = p{x < x}, and let t(xi, XZ’ e, XN) be

a complete and sufficient statistic for €. Then p{x1 < a,t} is the

unbiased minimum variance estimate (UMVE) of F(a, 0), where a
is a known constant. It may be mentioned that in view of Tukey's
theorem [21], Patil and Wani's result also holds good for truncated

populations. Further, it follows that p{x1 < ai, x2 < az, ... ,xk < ak,t}

is UMVE for the product F(ai, 0) F(az, 0) ... F(ak, 6), which shows

that powers of F(a, 6) may be estimated and have UMVE's.

Now we proceed with the applications of the results of this
section.
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3. An Exponential Analog of Thompson's Distribution. Thompson
[20] in his studies of rejection of outlying observations from a normal

population showed that the variate (x. - x)/s has a beta (in fact a
i

symmetrical beta) distribution. Here x, is the i-th observation x
is the sample mean and s is the samplelstandard deviation. Laurent
considers a two parameter exponential distribution

(4) f(x;m,o) = (1/0) exp{-(x-m)/c}, x>m, oc>0,
from which a sample of size N is available with x“) as the smallest
observation and X as the mean. If Y denotes x-x then it is

(1)

known that (x, ., Y) constitutes a complete and sufficient statistic for

(1)

the pair (m, o). He finds the distribution of (§ - x,,.)/Y where £

(1)
is any other of the N observations. The distribution of (£ - x(i))/Y

is a beta distribution termed by Laurent as an exponential analog of
Thompson's distribution. He uses this distribution to estimate the
survivor probability

0

(5) s(a) = p{x>a} = fa f(x;m,o)dx .

He also estimates powers of s(a). Laurent uses a very complicated
procedure for finding the distribution analogous to Thompson's
distribution. We give here an alternative proof. Since the distributions
in which we are interested do not depend on m and o, we take

m=0, ¢ =1.

Let X(i)’ XZ’ x3, e, XN be a sample of size N from the
density function
(6) f(x) = exp{-x} , 0<x< o,
where x“) denotes the smallest observation. Obviously, the
conditional density of xZ, x3, e, XN, given X(1), is

-1 N
e = N -z RS , X, > .

(7) f(x2 s XNIXM)) exp { Z (x1 X(i))} x, x“)

Let =X, -%x, ,1i=2, ..., k+1; §. =x.-x, ., j=k+2, ..., N.
LS T ) T CO

Then we note that

(8) NY:(n2+. )+(6k+ Foo.+6_ )

M 2 N
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It follows that the joint density of n's and Y, given x is

(1)’

-1
(9) N fR exp {~(n, 4o Fmy )6y e FE0) dEy e dE

where the region R of integration is determined by the condition (8).
However, the integral (9) is evaluated by using (1), and we find that

N

(10) £, - - ) = exp{~NY} (NY-n,- .. YN8 (Nek-1).

, Y .
M+ IX(1) Mt

Further it is easily shown that
N-2
(11) f(Y]x(“) = exp {-NY} (NY)  7/T(N-1) .

Hence from (10) and (11) we obtain that

(N-k-2)

(12) il 0 - [0y ¥) = (N-1)(NY-Zn)) )2 N (N- k- 1),

L]
Now by using (12) and the result of Patil and Wani's we conclude that
k

(13) ff(nz, ...,nkH]x(i), Y)dn,...dn ., = (1-ﬁ1

(a - y/Ny N2

(1)

is an UMVE of the survivor probability product S(ai) e S(ak).

The range of integration (13) is 1, > (a, ), i=2, ..., k+.
i i-

- x
i (1)
Incidentally note that Laurent's results ([10], p.653, equation (6), and
p. 655, equation (11)) are in error. In case k =1, then (12) gives

N

N"3(NY)2‘ , 0<m, < NY.

(14) fﬁ@lx“J,Y) = (N-2)(NY - 1,)

The distribution (14) is termed by Laurent as an exponential analogue
of Thompson's well known beta distribution, This, of course, is a
simple property of the exponential population which states that if Xy
and x2 have exponential (or gamma) distribution then the conditional
distribution of x1, given x1 + xz, is a beta distribution. The
multivariate generalizations of this property are also known, and a
number of such generalizations have been given by Laurent in a series
of papers, abstracts, technical reports, and memorandas.

4. Distribution of reduced i-th order statistic. This section
illustrates how we may proceed to obtain the distributions of the ratios
of linear functions of ordered statistics from an exponential population.
As an example we consider the distribution of the reduced i-th order
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statistic, see Laurent ([10], p. 656, equation 20). Since the
distributions in which we are interested do not depend on the original
parameters, we assume that our model is given by equation (6). Let

x < x <...<x be the order statistics. Set
(1)  (2) (N)

J
x . = 2 vy, j=1,2, ..., N. Note that the Jacobian of the
() i=1 i
transformation from the x variates to the y variates is unity, and
that the y variates are unordered. Now we are interested in finding
the distribution of the statistic

i N
YINY = (Z yv./Z (N-j+1)y.) = (u/v),
g2 =2 !

(15) W = (X(i) - x(“

where u and v denote, respectively, the numerator and the denominator
of third member on the right-hand side of (15). Obviously the joint

characteristic function (c.f.) ¢ (iti’ itz) of the variates u and v is

i N
(16) ¢ (it,, it)) = N fe><p{it1 T oy tit, T (N-jit)y,
j=2 j=2 J
N
- 2 (N-j+1)y} dy1 dyz dyN
j=2 !
o Nei D
= {(N-1)!/(N-i)! (1-it ) Y m [(N-k+14)(4-it) - it ]}
2 Koo 2 1
~ -1 (N-1) ! (-1)1"1 (1 - it)Z_N
- =1 (N-1) ! (k-1) ! (i-1-k) ! [(N-i+k)(1-it2) - iti] :

On inverting the c.f. (16) we find that

L) L ()5 exp{ov) (ve (Neitk)u)

(N-i) ! (N-3) ! (i-1-k) ! (k-1)!

17) f(u,v) =
k=1

By using (17) we may easily show that

i-1 k-1 N-3
. (N-1) 1 (N-2)(-1)" 14— (N-i46) W)
(18) f(w) = 2, (N-1) ! (k-1) ! (i-1-K) ! ’

where the range of values of W is W > 0, and that the expression in
the bracket containing W is positive. The result (18) has been
recently obtained by Likes [14] in a different way.
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Likes [13] considers the statistics

(19) U= Y(r,s; p,q) = (x(s) - X(r))/(x'(q) - X(p)) ,

1<p<r<s<qg<N,

in his studies of testing outliers from an exponential population. We
note that the density of | does not depend on the original parameters.
Since  is a ratio of linear functions of exponential populations its
distribution is of a beta type, in fact a finite series of beta distributions
of the type

(20) £(x) = a b {Bm,n)} * " 130" (axtb(1-x)™ R, 0< x < 1.

However, Likes [13] obtains them in a disguised integral representation
form. The density of { may be easily obtained by the method of c.f.s
as we have done in this section. The distribution of the reduced i-th
order statistic or the distribution of ) may also be obtained for the
truncated exponential population by using the method of c.f.s as
indieated in the next section.

5. Truncated Exponential Model. In case the exponential model
is truncated, then the method of characteristic function may be applied

to study the distribution theory of linear functions of ordered sample
values. Now consider the model

-1
(21) f(x) = (1 - exp(—xo)) exp{-x}, 0<x< x
The c.f. of x is
-1 . a1
(22) (1 - exp(—xo)) 1 - ex,p{—(1—1t)xo} (1 - it) .
Thuvs the c.f. of § = Xk+1 +Xk+2 + ... +xN is

(N-k) iy~ (N-K).

(23) (1 - exp(—xo))— (1 - exp{—(i-it)xo} )N—k(1 )

On expanding the middle term of (23) by the binomial theorem and
inverting (23), we readily find that

-(N-k) 1 ¥ N-k

r=0 T

(24) £(5) = (1 - exp(-x)) ( (N-K))

exp(-6} (6 - mx ) T

where (B—rxo) is positive, hence r really runs from 0 to [6/x ].
o
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By setting k = 0 in (24) we get the density of the variate
t=x +... + 0 Thus using (21) and (24) we find the joint density

1
of X'l’ XZ’ ey Xk’ and § to be
(25) f(X1’X2’ xk) £(5) =f(x1, Xy X 5)

= (1 - exp(-xo))‘N( (N_k))~1 exp{-(x, +... tx_ +6)}

N-k
R GRS N IR
r 0]
r=0
Further setting & =t - x1 S T X and using (24) and (25) we have
that
) e e t
(26) £(x, xk! )
N-k
N-k _k-
N2 (DT (t-x, - oo -x - rx )V ETE
r 1 k o
_ r=0
N N
N N-1
(N-k) = () (D" (t-rx)
r:() r 0]

Thus p{x1 > ay, %, > A, eee s X > akft} , which can be explicitly
evaluated, is UMVE of the survivor probability product

s(a1) . s(ak). Thus, e.g., if t is held fixedin 0< t< X then
s(a'l) s(ak) is estimated by (t - a1 - . - ak)N_i/thi.
k = 1, the result (26) agrees with the one given by Holla ([6], p. 334,
equation (8)). Holla's result (9) is wrong.

In case

In case only the first r ordered observations are available
from (21), then we proceed as has been done by Holla ([6], pp. 334-335).
Incidentally note that we may show that Epstein and Sobel's [1]
transformation

(27) Ui = (N-iH)(x,. - ), 1 =414, ..., r; x = 0,

()~ -1

shows that U 's are independently and identically distributed when
i

x is infinite as Holla remarks ([6], p.334, last but one linc. Since Ui’
o

i=1,2,...,r, has exactly the density (21), we seec that Holla's second
result ([6], p.335, equation (13)) can be deduced from Holla's first result

([6], p-334, equation (9)) by simply substituting r for n and u for x.
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Similarly result (14) of Holla's may be derived from result (10), see
Holla ([6], pp. 334-335, equations (10) and (14)). It thus follows that

if x“) = 0, i.e., the population is truncated at 0, rather than at

x“) as assumed by Laurent, then from (13) we note that an UMVE of
k r-2

the product (s(ai)s(az). . .s(ak)) is (1 - = a./ru) , where only
j=1

the first r > k ordered statistics are available from (4), with m = 0,
and U is the mean of the Ui's given by (27). Obviously if k =1 and

t is fixed between 0 and x , then (26) is Laurent's exponential
o

analogue of Thompson's distribution for the truncated exponential

distribution.

6. Power function distributed. Let x )< .

< X Lo <X
(1) (2 (N)
be an ordered sample of size N from the power function distribution

(28) f(x) = k B—k xk_i, 0< x< B.

Then Likes [11] obtains some distributions of the powers of the products
and quotients of the ordered values. For this purpose he uses the
order statistic theory from the exponential population. It might be
interesting to obtain these distributions from the first principles. If
both and k are unknown, then the pair (x , log x - 2 log x,.
B pair (x ) 108 X & *(i)

constitutes a complete and sufficient statistic for the pair (B, k).

The joint density of this pair nmiay be casily obtained by the procedure

we shall outline in this scction. Similarly we may obtain the distributions
of products and quotients of the ordered value. We simply transform

the ordered x variates to the unordered 6 variates by the relation

IN)

J
(29) x . = Xy, =

0.6, ...8., j=1,2, ..., N.
) I j o+ S

The Jacobian J of this transformation is given by (3). As first

example we shall find the covariance of x(,) and x(.) i< j,
1 J
i=14,2, ..., N-1. Obviously the covariance is
, it N N N
(30) B{E( « ei w 07)-E( 7 ei) E(w 6.)
i=t = Y =i =
j-1 N
2 2
= % E(6) { v [E(0) - (E(0.)°])
=i = : !

where the distribution of 0's is
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Z

N 651 0<ce <1,i=4, ..., N
1 1

(31) (6., ©
1 1

) ., 6_) =Nl
2 N) k

WA

1

By using (31) we may easily prove that
(32) B(6]) = ik/(ik+t), i = 1,2, ..., N.
it follows that

o X,0) = oo .ik .ik. :
1) () i ik+1 (kj+2)(jk+1)

N
(33) cov(x T

As second example we consider a result of Likes ([11], p.270),
who shows that the statistic

)'1/N

(34) 2kN/k = 2kN log U ) Em) ]

= 2kN log(x, .. /{x

2 (N)
has a XZ distribution with (2N-2) degrees of freedom. Here k
represents the maximum likelihood estimator of k. Now we note that
the distribution of k does not depend on $, ‘and thus it amounts to
finding the distribution of the statistic

-1
_ 1/N i/N -1
(35) z = X(N)./(X“) e X(N)) = ( o Gi y 7,

where the 6's have the joint density (31). The moments of z determine
its distribution uniquely. The (s-1)-th moment of z, or the Mellin
transform of the density function of z, is

(36) E(zs_i) = (Nk)N—i/(Nk+1—s)N_1.

On inverting the Mellin transform (36), we find that

N-1
N-2
(37) f(z) = % exp{-Nk log z} (log z) , 1< z<ow.

Thus 2kN log z has a XZ distribution with two degrees of freedom.

Dirichlet's multiple integral (and the transformation) has
several applications in probability theory and it may not be out of
place to show some of its applications to probability theory in this
paper. It might perhaps be of at least pedagogical interest.

7. Some other applications. Take for instance the following
example considered by Takacs ([18], p.107, example 5), who
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essentially evaluates the integral

(38) f dxidx2 de = (x - ra)N/N!, X >ra,
R

where the range R of integration is determined by the conditions

(39) 0<x1+...+xN<x, xi>a/, i=1,2, ..., r.

The integral is, of course, evaluated by using (1). Tackas

([18], pp. 107-108) gives an application of integral (38) to the
distribution of a linear function of sample values from uniform
distribution. The integral (38) may be applied to many classroom type
problems in probability and particle counter theory. As an illustration
consider the following example, Karlin ([9], p. 264, example 16). If

N points are chosen according to the uniform distribution on a line of
length L, then the probability that no two points will be closer together

than the distance d, 0 < d < L/(N-1), is (L- (N—i)d)N LI

0< x < x <...<x < L are the points, then obviously the
(1)~ () (N) P 4

required probability is

.. N
(40) (Nt/LT) fR Ay -e A

where the region R of integration is determined by the conditions

41 0< x <...<x <L, x, -x, > d.
(1) () < () @~ -1
J
By using the transformation x,,, = Z vy, j=1, ..., N, we find

(i) i=q 1

that the integral (40) is equivalent to the integral
N
42 N./L - )
(42) (NL/LT) [dy, ... dyg
the range of integration determined by the condition, 0<y1 +.o.. +yN< L,

and yj >d, j=2,...,N, whichis evaluated by using (38) and gives
the required probability.

Sometimes the Dirichlet's integral may appear in a disguised
form, like the following integral in Parzen ([16], p. 142)

t-t_-...-t t-t_-...-t t

(43) G(t) = N! f 2 N dx, f 3 N dx, f dx

t +
1 =t *N-1TtN
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= N! oodx , 0<x -t <x -t -t <...< “t - .-
N fdx1 XN x}—l 1 x1 175 XN 1 tN<

1

1 -t - -
Nt fdz1...dzN, O<zi<zz<...<zN<tt1 t

= N! , 0< + ... t-t -...-t_, ,
N fdw1 dw w, WS bty ty W, >0

which, of course, is a Dirichlet's integral and can be evaluated by
using (1).

Some other applications of Dirichlet's integral to particle counter
theory may be found in Kabe [8]. Wilks [22] gives some interesting
applications of Dirichlet's integral to distribution problems of ordered
statistics from an arbitrary continuous distribution.
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