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ABSTRACT 
In product development, it is of great importance that a complete, unambiguous, and, as far as possible, 
contradiction-free target system is defined. Requirements documents of complex systems can contain 
several thousand individual requirements, derived in an interdisciplinary manner and written in natural 
language by many different stakeholders. Hence, errors, in the form of contradictions, cannot be 
completely avoided in these documents and today they must be corrected manually with high effort. 
 
This paper presents an important building block for automated contradiction detection and quality 
analysis of requirements documents. We discuss the necessary identification of conditions in 
requirements and the extraction of the verbal expressions associated with condition and effect, 
respectively. We applied and analyzed natural language processing methods based on grammatical 
versus machine learning models. The models have been applied to 1,861 real-world requirements. Both 
approaches generate promising results, with an accuracy partly over 98%. However, in structured 
specification texts, a grammatical model is preferable due to lower effort in preprocessing and better 
usability. 
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1 INTRODUCTION 

Requirements play a central role in the development process of virtually all products (Loucopoulos 

2005; Gericke and Blessing 2012) because they are usually a central basis of communication when 

solutions are developed by several involved persons, areas or even companies in parallel or 

successively (VDI 2221 Blatt 1:2019-11). It is a widespread practice that requirements documents are 

formulated in a specification sheet, which should contain the totality of the requirements within a 

development project (DIN 69901-5:2009-01). In this context, it is of great importance that a complete, 

unambiguous and, as far as possible, contradiction-free target system is defined (Bender and Gericke 

2021). However, specification sheets can contain several thousand individual requirements written in 

natural language and are typically derived in an interdisciplinary manner. Additionally, the variety of 

mechatronic products and the complexity of modern systems make distributed and concurrent 

development at different aggregation levels of the product development process indispensable. 

Typically, the requirements for each level are managed in different documents, for the overall product 

in a product requirements document and for the subsystems in component requirements documents 

(Göhlich et al. 2021). Therefore, it is not surprising that errors, e.g., in the form of contradictions, are 

often found in these documents.  

To the best of our knowledge, currently, neither a comprehensive automated contradiction detection 

nor an automated quality analysis of industrial specification documents is available. Our work aims at 

providing the necessary building blocks for an automated quality assurance of specification 

documents. In a previous study (Gärtner et al. 2022), we presented different types of contradictions 

that can occur in requirements specifications and developed a method to classify contradictions. In this 

context, the question of whether the requirement includes a condition or not plays a central role. In 

fact, they give the decisive hint as to whether statements contradict each other. For example, the two 

statements  x must be 4 and x must be 5 are contradictory unless the conditions state otherwise, e.g. if 

y=3 and if y=4. Therefore, the detection of conditions and extraction of their constituents is crucial for 

reaching the goal of an automated contradiction detection. In this paper, we want to show how 

conditions can be detected automatically and which verbal expressions form the condition. In detail, 

this paper aims to: 

• Identify all requirements in a specification that contain conditions.  

• Identify the verbal expressions that form the condition. 

• Evaluate which is the best-suited approach in this context: self-written rules or machine learning.  

• Create a basis to identify contradictions automatically. According to our previous study, the 

conditions and effects must be compared regarding their verbal expressions to find contradictions 

(Gärtner et al. 2022). 

For this purpose, we compare two natural language processing (NLP) techniques: the first one is a 

model that consists mainly of grammatical rules that are directly embedded into the source code. The 

second one uses a bag-of-words model for machine learning (ML). We, therefore, elaborate on the 

terminology, define rules on how to detect conditionals and the related verbal expressions, and finally 

present the results of our algorithms on 1,861 "real world" requirements.  

Our main dataset is in German, therefore the terminology, as well as the method, are tailored to 

German grammar. As Mark Twain in The Awful German Language (1880) notes, the German 

language is much more complicated than English. In this respect, we found that rules which work well 

for requirements written in German can be transferred easily into rules for requirements in written 

English, but not vice versa. We demonstrate this by translating and analyzing a public English dataset 

gathered by Fischbach et al. (2021a) into German.  

2 TERMINOLOGY 

Conditions are sub-statements of sentences that are "essential to the appearance or occurrence of 

something else" (Merriam-Webster 2022). In other words, the condition must be true for the effect to 

happen. In German, the condition can be formulated either in a subordinate clause (SC) or in an 

adverbial (ADVB) within the main clause (Duden 2006; Eisenberg 2016).  

SC-clauses are, in German, usually marked by conjunctions such as wenn, falls, sofern (eng: if, when, 

in case) (1), or by a special word position, the so-called verb-first position (2). The second case is non-
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existent in English and is always translated by using one of the mentioned conjunctions. In the 

examples below, the conditions are noted in italic: 

1. Wenn drei Sekunden vergangen sind, dann muss das Licht ausgehen. Eng.: When three seconds 

have passed, the light must go out. 

2. Sollten drei Sekunden vergangen sein, dann muss das Licht ausgehen. Eng.: When three seconds 

have passed, the light must go out. 

Adverbial conditions occur within the main clause without the need for a subordinate clause. It is 

important to note, that adverbs are defined differently in English. In German, they express the closer 

circumstances of an action, a process, or a condition (Duden 2006). They are usually marked by bei, 

nach, während, im Falle, and more (Eng.: at, after, while, in case of, and more). For example: In case 

of a message timeout, a message should be sent to the error manager. Although there is a comma after 

timeout, the first part of the sentence is not a subclause. 

It is important to note, that conditional statements are not statements of causality. The strike of a 

match is a cause of the match lighting. The presence of oxygen is a condition for the match lighting 

(Broadbent 2008). Confusion arises often, as both conditional and causal statements can be introduced 

by If …, then: If I strike a match, then the match lights (causal statement) and If oxygen is present, then 

the match can light (conditional statement). In requirements engineering (RE), causal statements 

would be classified as information rather than as requirements, as they describe why something 

happens and not how.  

Another research topic of this paper is to identify the verbal expressions that belong to the condition as 

well as the verbal expressions that belong to the subject and the verb of the clause. These terms are 

also referred to as constituents (words or groups of words that function as a unit). Unlike Fischbach's 

terminology (2021a) which we adopted in our previous paper, (Gärtner et al. 2022), we now propose 

the following terms: variable and action. For example, in the sentence If the threshold is reached, the 

controller must limit the speed decay, we must first differentiate between the condition (If the 

threshold is reached) and the effect (the controller must limit the speed decay), as shown in Figure 1. 

For the condition, the threshold is the variable, and if is reached is the action. For the effect, the 

controller is the variable, and must limit the speed decay is the action. In other words: the variable is 

the protagonist and the action that what shall happen. 

 

Figure 1: variable and action 

3 RELATED WORK 

In the literature we found several approaches to automatically identify conditions and effects. While 

rule-based methods were predominant in the past, machine-learning-based methods have emerged 

with increasing computing power (Asghar 2016).  

The rule-based approach from Khoo et al. (1998) extracts conditionals using linguistic clues and 

pattern-matching, reaching an accuracy of 68 %. It was designed based on prose text from the wall 

street journal, and not specifically designed for RE, which has more linguistic restrictions than a 

newspaper article. This approach, as well as an approach from Liu et al. (2021), searches for specific 

trigger words. Although this is a good approach, especially for English, in the analysis of our dataset 

for this paper we found that 17 % of the conditions were not based on trigger words but on special 

grammatical forms, as explained in section 2. Águeda and Olivas (2008) present an approach to 

automatically extract conditionals for search engine optimization. However, the constraints are too 

narrow, as "the cause must precede the effect" (Águeda and Olivas 2008). In RE, but also in general, 

the effect can precede the cause, e.g., the engine must shut down, if the engine speed is too high. 

In multiple papers, Frattini and Fischbach present different machine-learning-based approaches for the 

automatic detection of causalities (Frattini et al. 2022; Fischbach et al. 2021a; Fischbach et al. 2020) 

and the automatic detection of their constituents (Fischbach et al. 2021b). Although their theory is 
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explicitly designed for RE, they do not focus on conditionals, but on causalities. However, they 

seemed to have looked at both conditionals and causalities, which could be due to an incorrect 

definition of the terms, as explained in section 2 Terminology. In addition, they have classified 

sentences as causal, which are not causal nor conditional, e.g.: The fire is burning down the house. 

Although the fire is indeed the cause of the house burning down and there is an implicit causal 

relationship, the sentence is grammatically not causal. Furthermore, they define causality as a causal 

relation that requires the effect to occur if - and only if - the cause has occurred. However, this 

definition is not useful in the RE context, since effects can be triggered by multiple conditions: If the 

speed exceeds the threshold, the motor is to be switched off in an emergency and if the torque exceeds 

the threshold, the motor is to be switched off in an emergency. They investigated 14,983 sentences to 

track the extent and form in which causality occurs. Their approach achieved an accuracy of 82%.  

4 STUDY  

In this paper, we compare the performance of two approaches: a rule-based grammatical model versus 

two ML-based models. The former applies the rules mentioned in section 2 Terminology. The latter is 

implemented using a bag-of-words model for the document and two popular classifying theorems for 

NLP tasks: Naïve Bayes (NB) and k-Nearest Neighbor (kNN) (Bramer 2013). The bag-of-words 

algorithm is used to represent the document, "depicting [it] as a bag and each vocabulary in the 

texture as the items in the bag" (Ersoy 2021). The NB classifier uses probability to find the most likely 

of the possible classifications. kNN estimates the classification using the classification of its 

neighbors, with k representing the number of the closest instances to consider (Bramer 2013). For this 

study, it was deemed appropriate to limit the approach to utilizing these two simple and lightweight 

methods due to their demonstrated efficacy in section 5 - Results. Hence, the advanced features of 

more complex methods, such as GloVe and BERT, including improved contextual comprehension and 

semantic representation, were not considered for the current task and were not incorporated into the 

analysis. 

4.1 Method 

All 1,861 requirements of our datasets, see section 4.2 Data, were manually divided into conditionals 

and non-conditionals according to section 2. This classification was verified independently by 3 

persons, all having extensive experience in requirements engineering. The classification is necessary 

to train the ML models and to determine the accuracies of both the ML and the grammatical models.  

Our method as well as the software which was developed in form of a Python code are structured in 

four parts as shown in Figure 2: 

  

Figure 2: code structure 

1. Data Preprocessing (1): "Data directly taken from the source will likely have inconsistencies, 

errors or most importantly, it is not ready to be considered for a data mining process." (García 

et al. 2014). Therefore, data reduction techniques must be applied to remove irrelevant and 

noisy elements from the dataset, for example by replacing "<" with "is smaller than". 

2. Data Preprocessing (2): "Parsing is the task of analyzing grammatical structures of an input 

sentence and deriving its parse tree." (Bojić and Bojović 2017). This task is sometimes 

considered to be part of the preprocessing (Gudivada 2018). For the grammatical model, we 

used parse trees, also called dependency trees, and Part-of-Speech (POS) tagging. A parse tree 

is a graphical representation of the dependencies between words. POS tagging categorizes 

words in correspondence with a particular part of speech, e.g., nouns, verbs, adverbs, 

conjunctions, etc. The parsing was outsourced to the dependency parser ParZu, by Sennrich et 

al. (2013). For the ML models tokenization was done via countvectorizer, a method to convert 
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text to numerical data, making a separate tokenizer redundant. While it does not employ 

lemmatization techniques, this is not critical for the specific task at hand, as semantic 

considerations do not play a crucial role in this classification problem. 

3. Identifying conditional requirements: The grammatical model uses grammatical rules, trigger 

words, and POS tags to detect conditions, as explained in section 2. The ML models are trained 

using the labeled German dataset. An 80/20 split was chosen, i.e., 1,249 requirements for 

training and 313 requirements for testing. For kNN, hyperparameter tuning was done via 

gridsearch. This is a technique to determine the optimal values for a given model. The best 

results were achieved with leaf_size = 1, metric = minkowski, n_neighbors = 1, p = 2 and 

weights = uniform. The results are discussed in sections 5.1 and 5.2. 

4. Identifying constituents: The final task is to identify the constituents, as explained in section 2. 

From the POS tags and the parse tree, the verbal expressions associated with the condition and 

the effect can be determined, as well as the variables and actions. We did not use ML for this 

task, as the dataset is too large to label all variables and actions manually. The results for the 

grammatical model are discussed in section 5.3. 

4.2 Data 

We used two different datasets. The first dataset originates from a recent project for electric buses. In 

this context a complete requirements package was derived, that describes a modular system, which 

shall replace conventional bus powertrains with new, electric powertrains. The role of requirements in 

the development process of electric buses can be found in Design of urban electric bus systems 

(Göhlich et al. 2018). We based our study on 1,561 functional and non-functional requirements. The 

specifications are written in German and the examples discussed in this paper were translated into 

English. 

The second dataset is public, originating from Fischbach (Fischbach et al. 2020). It is an 

accumulation of approximately 15,000 requirements written in English from many different sources 

available online. From this dataset we used 300 randomly selected requirements, available online at 

Swarm-Engineer (2023). For our analysis, we translated them into German via DeepL. We used this 

dataset to show the feasibility to get correct results with non-automotive requirements and an 

originally English dataset.  

5 RESULTS 

The models were validated with two different datasets. In sections 5.1 and 5.2 the results of the 

questions on how to automatically detect conditional requirements are shown and discussed. In section 

5.3 the result for identifying the verbal expressions assigned to the condition/effect and to the action 

and variable are shown. 

5.1 Dataset 1 

Out of the 1,561 analyzed requirements, 785 (50,3%) were labeled as conditional by us, according to 

section 2 Terminology. The labeling was verified by three persons to increase confidence in the 

correctness of the labels. For the ML algorithms, an 80/20 split was chosen, i.e., 1,249 requirements 

for training and 313 requirements as a test set.  

The overall accuracies are: 

• grammatical model: 99%  

• NB model: 91% 

• kNN model: 94% 

To measure the effectiveness of the models, we used confusion matrices, as shown in Figure 3. They 

are used for performance measurements for machine learning classification problems, where the 

output can be two or more classes (Narkhedem 2018). In these tables, the different combinations of 

predicted and reference values can be examined. The combinations are called true negative (reference: 

0; predicted 0), false negative (reference: 1; predicted: 0), false positive (reference: 0; predicted: 1), 

and true positive (reference: 1; predicted: 1).  
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Figure 3: confusion matrices for dataset 1 based on 313 requirements 

The grammatical model (Figure 3(1)) only has a few false predictions compared to the other models. It 

misclassified only 3 requirements, consisting of 1 false positive and 2 false negatives. The Naïve 

Bayes model (Figure 3(2)) had the biggest difficulties with false positives, as 23 non-conditional 

requirements were misclassified as conditionals. Whereas the k-Nearest Neighbor model (Figure 3(3)) 

had the biggest difficulties with false negatives, as 14 conditional requirements were misclassified as 

non-conditionals.  

Although we have results for the grammatical model classifying all 1,561 requirements, for the ML 

models we only have results on the test set consisting of 313 requirements. Comparing the results 

between 1,561 requirements and 313 would not be fair, which is why we determined the accuracy of 

the grammatical model also using the 313 requirements. The accuracies are calculated as the number 

of all correct predictions divided by the total number of the dataset: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
 (1) 

5.2 Dataset 2 

To show that the algorithm is not overfitted to the main German dataset, it was tested against a public 

English dataset. 300 out of approximately 15,000 sentences were randomly selected and then labeled 

so that they could now be used as a second test set, as explained before. The same models trained on 

the previous dataset were used and no new ML training was applied since the behavior of the models 

was to be tested with unknown data from different fields than automotive. The overall accuracies are: 

• Grammatical model: 92%,  

• NB model: 67%  

• kNN model: 91%.  

In contrast to the ML models, the reasons for the poorer accuracy of the grammatical model (99% with 

dataset 1 compared to 92% with dataset 2) can be clearly identified: some requirements were 

formulated in an inconsistent and complex way. Particularly adverbial trigger words were used much 

more liberally compared to the first dataset, causing the model to incorrectly identify ADVB-

conditions.  

The confusion matrices for dataset 2 are shown in Figure 4. As expected, the accuracies of all models 

are lower than for the dataset 1. On the one hand, this is because we built our theory using the 

dataset 1. On the other hand, the requirements in the second mostly don't follow standard RE 

documentation guidelines, for example described in Pohl and Rupp (2021). This complicates the 

analysis, as patterns do not exist or cannot be identified. Nevertheless, the grammatical model and the 

kNN model were able to achieve solid results. Although the accuracy for the grammatical model 

dropped from 99% to 92% and the accuracy from the kNN model dropped from 94,1% to 91%, the 

results are still good. Thus, we were able to show how the models can handle English datasets from 

other disciplines, although many requirements were formulated differently than in our first, 

automotive dataset. The NB model, however, misclassified many requirements, especially when 

analyzing non-conditional requirements. Here, only 66% were correctly classified, while 34% were 

misclassified. This suggests that the algorithm was overfitted to the original dataset.  
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Figure 4: confusion matrices for dataset 2 based on 300 requirements 

This leads to the following insight: some ML approaches, e.g. Naïve Bayes, are not well suited for our 

kind of problem, as the data that one wants to use in practice must correspond to the shape of the data 

of the training set. Especially important in this respect is the distribution of the labels True and False. 

In the German training dataset, there was a distribution of about 1 True to 1 False. Naturally, the 

German test set had the same distribution, which is why the accuracy is high, see Figure 3(2). The 

English test set though had a distribution of approximately 1 True to 10 False. The algorithm, 

however, expects a distribution of 1/1 and includes this in its classification. This can be seen in the 

result of Figure 4(2). More conditionals were recognized than there actually are: namely 114 (95 + 19) 

True predictions instead of 22 (3 + 19) True references. 

The kNN approach looks at the classification of its nearest neighbor, which is why this ML algorithm 

is not as biased toward the original label distribution. The grammatical model also ignores the original 

label distribution, as it considers a fixed rule set. 

5.3 Detection of constituents 

Another research point of this paper is to identify the verbal expressions that are linked to the 

condition and the effect, as well as the verbal expressions that are linked to the variable and action, as 

explained in section 2. In this case, we did not use ML as a comparison. First, it is very time-

consuming to label a training set accordingly. Second, and much more important, if the basis 

(condition-recognition) is correct, see Figure 2 steps 1-3, we can accurately match all verbal 

expressions to the condition, using a fixed rule set. This problem is not complex enough to expect a 

better solution with ML. In the previous problem of condition recognition, for example, we could not 

be sure of the grammatical model being better than ML, because there are many variables involved 

and ML could have found a better way - which still it did not. 

The results for three exemplary sentences of the first dataset can be seen in Figure 5: correct verbal 

expression assignments of an SC-condition and an ADVB-condition as well as an unsuccessful 

assignment. Figure 5(1) shows, the correctly determined SC and the resulting assignment of the verbal 

expressions that correspond to the condition. Figure 5(2) shows, that while no SC was detected, the 

ADVB was correctly determined and the verbal expressions that correspond to the condition were 

correctly assigned. Figure 5(3) shows a requirement that could not be processed by our algorithm 

because the parser had difficulty interpreting the input: For unknown reasons, it detected a main clause 

with the verb must and a subordinate clause with the alleged verb transfer. Therefore, the output 

resulted in a completely wrong assignment. The correct interpretation would be that must transfer is a 

compound main clause verb and thus no subordinate clause prevails as a condition.  
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Figure 5: condition/effect verbal expression detection 

Figure 6 shows the results for variable and action detection. The first two examples show correct 

verbal expressions assignments, while the third one shows a failed assignment. The correctness of the 

assignments is directly linked to the correctness of the assignments of the verbal expressions for 

condition and effect, see Figure 5 - and also fails for the same reasons. 

 

Figure 6: action/variable verbal expression detection 

5.4 Discussion of validity 

Descriptive validity (Maxwell 1992) deals with the risk of not having remained objective when 

conducting a study. Although we defined conditions based on fixed criteria, there may have been 

inconsistencies when labeling the dataset. We have tried to reduce this risk by having three persons 

review the labeling of the dataset. In addition, the grammatical model has an advantage here, because 

a different understanding of a condition can immediately be implemented, whereas for ML everything 

would have to be re-labeled and re-trained. Generalizability (Maxwell 1992) is given when the results 

can be applied to other situations that are outside the present research, which is also a threat to the 

study's validity. We addressed this, by testing and validating our method with a non-automotive 

dataset. That is why we believe that other industries write requirements in a similar way to the 

automotive industry. This is also supported by Göhlich et al. (2021) who found that processes to 

manage requirements and specifications do not differ significantly with regard to the industrial 

context. However, further testing should be conducted in the future to verify its applicability in 

different industries. 

6 SUMMARY, CONCLUSION AND OUTLOOK 

In this paper, we have provided a building block for how to make requirements engineering (RE) and 

requirements management intelligent using automated methods. In specific, we made a proposal on 

how to automatically detect conditionals and how they occur in the RE. In section 2, we elaborated on 

the terminology and on how to detect conditional sentences. Furthermore, we laid the foundation to 

identify the verbal expressions respectively associated with the variables and actions. In section 4, we 

presented the results on 1,861 requirements while comparing a grammatical model with two machine 

learning (ML) models.  

We found that in structured texts, such as usually found in specifications, grammatical models are well 

suited for identifying conditionals and their constituents. Grammatical models show better or at least 

similar results than ML approaches. Some ML algorithms e.g. Naïve Bayes, are not well suited for our 

kind of problem. For example, for this algorithm, the data that one wants to use in practice must 

correspond to the shape of the data of the training set. Furthermore, every dataset used for ML 

methods must first be labeled, which can be very time-consuming and prone to human errors. 
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Therefore, we conclude that the grammatical model is preferable as the rules can be tracked and easily 

adjusted if needed, for example, by changing trigger words. It is important to note, that this is not the 

case for every natural language processing problem. These findings do not apply to unstructured text, 

such as in newspapers or books. In RE, however, there seem to be certain explicit or implicit rules - 

depending on the industry - according to which sentences are formulated, which massively reduces the 

complexity of the problem and makes machine learning redundant. 

Complete and error-free requirements specifications are crucial for a good product design. Some 

specifications contain several thousand individual requirements. Therefore, it is obvious, that 

automatization would result in an enormous leap in the manageability of such large datasets. Moving 

in this direction, this paper creates the possibility to identify contradictions between two requirements 

automatically. The approach is, that if two requirements had the same condition and in the effect the 

same variables, but different actions, this would indicate a contradiction (Gärtner et al. 2022). This 

research contributes a building block for this approach by identifying these corresponding verbal 

expressions. Such a method could, for example, help developers to identify critical requirements 

already during the design process or even in later stages like the review phase. This will be elaborated 

further in a future paper. 
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