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Abstract. It is proved that if the normal closure of every element of a group G
has rank at most r, then the derived subgroup of G has r-bounded rank.
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A well-known result due to B. H. Neumann [4] states that a group G in which every
element has at most n conjugates, where n is a fixed positive integer, has its derived
subgroup finite. Subsequent papers discussed improved bounds for the order of G′

in terms of n (see, in particular, [7]). On the other hand, it is obvious that if G′ has
finite-order k, then every element of G has at most k conjugates. In paper [8], a related
property was discussed, the hypothesis there being that the normal closure of every
element of G has (Prüfer or Mal’cev) rank at most r, where r is a fixed positive integer.
This means that for every element x of the group G, all finitely generated subgroups of
the normal closure 〈x〉G are r-generated. The main result of [8] is that a locally soluble-
by-finite group G satisfying this hypothesis on normal closures has its derived subgroup
of r-bounded rank; that is G′ has finite rank at most s for some integer s that depends
on r only. It was also pointed out in [8] that the same result clearly holds if G belongs to
any class X of groups with the property that finitely generated X-groups of finite rank
are soluble-by-finite, and as noted in the corollary in that paper we see that X here may
be chosen to be the class of residually soluble-by-finite groups. (It was shown in [2] that
a residually finite group of finite rank has a locally soluble subgroup of finite index;
the generalization used for the above-mentioned corollary appears in [1].) The purpose
of this paper is to show that the condition on normal closures is in itself sufficient to
establish the finiteness of the rank of G′. It is clear that if G is a group and G′ has rank k,
then the normal closure of every element of G has rank at most k + 1. Here we prove the
following.

THEOREM. Let G be a group and r a positive integer, and suppose that 〈x〉G has rank at
most r, for every element x of G. Then G′ has rank at most s, where s is an integer that
depends only on r.
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We note that the hypothesis on G given in the theorem is inherited by subgroups
and homomorphic images. As a first step towards proving the theorem we establish a
result that exploits the results of [8] to an extent that allows us to concentrate on the
case in which G′ is perfect.

PROPOSITION 1. Let G be a group that satisfies the hypotheses of the theorem, and
let K = G′. Then, in order to show that K has r-bounded rank, we may assume that G is
finitely generated (so that G has finite rank and K is the normal closure in G of finitely
many elements) and that K is perfect and has no proper subgroups of finite index.

Proof. Let G be as stated. If F is an arbitrary finitely generated subgroup of G′,
then F is contained in E′ for some finitely generated subgroup E of G. Since it is enough
to show that E′ has suitably bounded rank, we may assume that G is finitely generated
and hence of finite rank, and then K is the normal closure in G of some finite set of
commutators.

If R is the finite residual of G, then, by [2], G/R is soluble-by-finite and hence
minimax (see Theorem 10.38 of [5]). Now let G/L be an arbitrary soluble-by-finite
image of G. Again G/L is minimax, and so its finite residual Y is radicable nilpotent,
by (a special case of) Theorem 9.31 of [5]. The torsion group T of Y is radicable and
Černikov, and Y/T has its derived factor group radicable and minimax and hence
periodic, which shows that Y/T is trivial; hence Y is abelian. Thus, if S is the soluble-
by-finite residual of G, then R/S is abelian, and it follows that G/S is soluble-by-finite.
Observe that S is the soluble-by-finite residual of every subgroup of finite index in G
and that SN/N is the soluble-by-finite residual of G/N for every normal subgroup N
of G.

Clearly S is perfect. Let V denote the finite residual of S. Then V � G and, by [2],
S/V has a normal locally soluble subgroup L/V of finite index, and we may choose
L/V to be characteristic in S/V ; thus L � G. Now G/L is finite-by-(soluble-by-finite)
and hence soluble-by-finite, and so L = S and S/V is locally soluble. But a non-trivial
locally soluble group of finite rank cannot be perfect [5, Lemma 10.39], and it follows
that V = S and hence that S has no proper subgroups of finite index.

By [8], K/S has r-bounded rank r1, say. Also, by Theorem 3.25 of [5], G/S is
nilpotent-by-abelian-by-finite, and so there is a normal subgroup U of finite index in
G such that U ′/S is nilpotent. Since G/U ′ is finitely presented we see that U ′/S is
finitely generated as a G-group, and so there is an r1-generated subgroup X of U ′ such
that U ′ = S〈X〉G. As 〈X〉G has rank at most r1r we may factor and hence assume that
U ′ = S. If U ′ has rank r2, then K = G′ has rank at most r + r2; thus we may replace G
by U and hence assume that K = S. This concludes the proof of the proposition. �

If K is a perfect normal subgroup of a group G and N1, . . . , Ns are distinct maximal
G-invariant subgroups of K with intersection N, then K/N is a direct product of s
G-invariant subgroups Mj/N isomorphic to the groups K/Nj. This is well known and
easily established by induction on s, and we shall require this result in the proof of
the theorem. But we shall require too the following more general version of this result
(which is also probably well known), where Nj are not necessarily maximal.

LEMMA 2. Let K be a perfect group and s an integer greater than 2, and suppose
that N1, . . . , Ns are normal subgroups of K such that K = NiNj whenever i �= j. Let N =⋂s

i=1 Ni, and for each j = 1, . . . , s, let Mj = ⋂
i �=j{Ni : 1 ≤ i ≤ s}. Then K = ∏s

j=1 Mj,
and so K = MjNj for each j and K/N = Drs

j=1Mj/N.
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Proof. Suppose first that s = 3. Then we have

[N3, K ] = [N3, N1][N3, N2] ≤ (N3 ∩ N1)(N3 ∩ N2)

and, similarly,

[N2, K ] ≤ (N2 ∩ N1)(N2 ∩ N3),

so that K = K ′ = [N2N3, K ] ≤ M1M2M3, and the result is established in this case.
Now suppose that the result holds for some t ≥ 3 and that N1, . . . , Nt+1 are normal

subgroups of K such that K = NiNj whenever i �= j. Let L = ⋂t
i=2 Ni. Then K =

N1Nt+1, and by two applications of the case s = t, we have K = N1L = Nt+1L. By
the case s = 3 it follows that K = N1(L ∩ Nt+1) = N1M1. By symmetry we thus have
K = NjMj for each j = 1, . . . , t + 1, and so

K = (N1M1) ∩ (N2M2) ∩ · · · ∩ (Nt+1Mt+1)

= ((M1M2)(N1 ∩ N2)) ∩ (N3M3) ∩ · · · ∩ (Nt+1Mt+1)

= ((M1M2M3)(N1 ∩ N2 ∩ N3)) ∩ (N4M4) ∩ · · · ∩ (Nt+1Mt+1)

= · · · = (M1M2 . . . Mt+1)N = M1M2 . . . Mt+1,

and the result follows by induction. �
We need two further lemmas. The first of these may be established by a routine

application of Zorn’s lemma, and we omit the proof.

LEMMA 3. Let G be a group and K a subgroup that is the normal closure in G of
a finite set of elements but not the normal closure of a single element. Then there is a
G-invariant subgroup M of K that is maximal with the property that K/M is not the
normal closure of a single element.

LEMMA 4. Let G be a group and K a perfect subgroup of G that is the normal closure
in G of finitely many elements xi, each of finite order, and suppose that K has finite rank.
Then K = 〈a〉G for some a ∈ K.

Proof. Let m be the rank of K ; suppose that N1, . . . , Nt are distinct maximal
G-invariant subgroups of K ; and let N denote the intersection of the Nj, j = 1, . . . , t.
By the remarks preceding the statement of Lemma 2, K/N is a direct product of t
G-invariant subgroups Mj/N, where Mj/N ∼= K/Nj for each j. At most m of these
direct factors are non-periodic, since K/N has no free abelian section with rank greater
than m. Now let π be the set of primes p such that p divides |xi| for some i. If, for some
j, K/Nj is periodic, then it contains an element of order p for some p ∈ π. But as for
non-periodic elements, at most m of the factors K/Nj can contain an element of order
p, and we deduce that t ≤ m(1 + |π|).

Thus we may assume that {N1, . . . , Nt} is the set of all maximal G-invariant
subgroups of K . Now, with the Mj as defined above, choose aj ∈ Mj \ N for each j, and
set a = a1 . . . at. Since K/N is perfect we deduce that N〈a〉G = K (see Section 3.3.12 of
[6]). If 〈a〉G < K , then, since K is finitely generated as a G-group, 〈a〉G is contained
in some maximal G-invariant subgroup Nj of K , and we have the contradiction
K = N〈a〉G ≤ Nj. The result follows. �

We are now in a position to complete the proof of the theorem. In view of
Proposition 1, it will be enough to establish the following.
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PROPOSITION 2. Let G be a group and K a perfect subgroup that is the normal
closure in G of finitely many elements. Suppose that K has finite rank and that K has
no proper subgroups of finite index. Then there are elements x, y, z of K such that K =
〈x, y, z〉G.

Proof. Assuming that the result is false, we shall prove that for every integer s ≥ 2,
the following holds:

(*) There exist G-invariant subgroups N1, . . . , Ns of K such that K = NiNj

whenever i �= j, and for each j = 1, . . . , s, K/Nj is not the normal closure in G of
a single element and Nj is maximal with respect to this property.

By Lemma 3 there is a G-invariant subgroup N1 of K such that K/N1 is not the
normal closure of a single element and N1 is maximal subject to this condition. If
x ∈ K \ N1, then there is an element y ∈ K such that K = N1〈x, y〉G, and K/〈x, y〉G is
not the normal closure in G of a single element, by hypothesis. Thus, again by Lemma 3,
there is a G-invariant subgroup N2 of K , containing x and y, such that K/N2 is not the
normal closure of a single element and N2 is maximal such. Then K = N1N2, and (*)
holds for s = 2.

Assume now that, for some t ≥ 2, we have subgroups N1, . . . , Nt such that (*)
holds. Each of the indices |K : Nj| is infinite, and so by a well-known result from
[3], some element x of K is not contained in

⋃t
j=1 Nj. For each j = 1, . . . , t we have

K = Nj〈x, aj〉G, for some aj; moreover, by Lemma 2 we may choose aj to lie in Mj :=⋂
i �=j{Ni : 1 ≤ i ≤ s}. Write a = a1 . . . at.

Since K/〈a, x〉G is not the normal closure of a single element, we may apply
Lemma 3 once more to obtain a G-invariant subgroup Nt+1 of K such that Nt+1

contains a and x, K/Nt+1 is not the normal closure of a single element and Nt+1

is maximal with this condition. We show now that K = NjNt+1 for all j = 1, . . . , t.
Indeed, for each such j and for every i ∈ {1, . . . , t} \ {j}, we have ai ∈ Nj ≤ NjNt+1, and
since a ∈ NjNt+1 it follows that aj ∈ NjNt+1 and hence that K = Nj〈x, aj〉G ≤ NjNt+1,
as required. This in turn establishes that (*) holds for all s ≥ 2.

Now fix an integer s ≥ 2, and set N = ⋂s
i=1 Ni. From Lemma 2 we see that K/N

is the direct product of s G-invariant subgroups, each isomorphic to some K/Nj. But,
by Lemma 4 (with K/Nj in place of K), none of the factors K/Nj is periodic, and it
follows that K/N has a free abelian subgroup of rank s. Since s was arbitrary we have
a contradiction to the fact that K has finite rank, and the proposition is proved, as
therefore is the theorem. �

ACKNOWLEDGEMENTS. The third author is grateful to the mathematics department
at the University of Salerno for its generous hospitality.

REFERENCES
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