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Drag force acting on a particle is vital for the accurate simulation of turbulent multiphase
flows, but the robust drag model is still an open issue. Fully resolved direct numerical
simulation (DNS) with an immersed boundary method is performed to investigate the
drag force on saltating particles in wall turbulence over a sediment bed. Results show that,
for saltating particles, the drag force along the particle trajectories cannot be estimated
accurately by traditional drag models originally developed for an isolated particle that
depends on the particle-wall separation distance or local volume fraction in addition to
the particle Reynolds number. The errors between the models and DNS are especially
clear during the descending phase of the particles. Through simple theoretical analysis
and DNS data fitting, we present a corrected factor using the classical, particle Reynolds
number dependent drag force model as the benchmark model. The new drag model, which
takes the particle vertical velocity into account, can reasonably predict the mean drag force
obtained by DNS along a particle trajectory.
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1. Introduction

Turbulent multiphase flows are common in natural and industrial applications. Examples
include aeolian sand storms (Zheng 2009; Pähtz et al. 2018; Wang et al. 2019; Zheng,
Jin & Wang 2020; Jin, Wang & Zheng 2021; Zheng, Feng & Wang 2021), river sediment
transport (Ancey et al. 2008; Seminara 2010; Schmeeckle 2014; Berzi, Jenkins & Valance
2016; Pähtz et al. 2020) and fluidized beds (Fortes, Joseph & Lundgren 1987; Grbavcic
et al. 1991; Deen et al. 2007; Luo et al. 2016; Esteghamatian et al. 2018), to name a
few. In the framework of Euler–Lagrange simulations of particle-laden flows (Li et al.
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2001; Dritselis & Vlachos 2008; Eaton 2009; Zhao, Andersson & Gillissen 2010, 2013;
Capecelatro & Desjardins 2013; Schmeeckle 2014; Guan et al. 2021; Zheng et al. 2021),
the quasi-steady drag force is perhaps the most dominant of all the hydrodynamic force
contributions (Guan et al. 2021). The coupling between the particle and fluid also needs
to be realized by adding integral or distributed drag force feedback, among others, into the
momentum equation (Rouson 1997; Li et al. 2001; Rouson & Eaton 2001; Beetstra, van der
Hoef & Kuipers 2007; Dritselis & Vlachos 2008; Eaton 2009; Zhao et al. 2013). Even in
the Eulerian–Eulerian approach, the coupling terms by averaged equations for momentum
also need to be modelled by drag force (Tenneti, Garg & Subramaniam 2011; Chen et al.
2020). Therefore, the drag model is vital for the accuracy of simulations and is one of
the key issues of turbulent multiphase flow (Balachandar & Eaton 2010). Unfortunately,
although many drag models have been proposed under relatively ideal conditions,
their applicability for actual turbulent multiphase flow has not been well established
so far.

Stokes (1851) first proposed the well-known Stokes drag force F D = 3πμDpU∞ for
a single isolated sphere subject to a steady uniform Stokes flow, where F D is the drag
force, Dp and μ are the particle diameter and dynamic viscosity of the fluid, respectively,
and U∞ is the free-stream velocity usually being used as the particle–fluid slip velocity
uslip in practice. This drag model is valid in the limit of Rep → 0, with the particle
Reynolds number Rep being defined as uslipDp/ν, where ν is the kinematic viscosity of
the fluid. When the deviation from Stokes flow or the presence of neighbouring particles
is considered, the Stokes drag model has to be modified. The correction to the Stokes
drag force for Rep > 0 was completed theoretically by Oseen (1910) who proposed a
first-order slip-based inertial correction. However, most of the drag correction schemes
through theoretical analysis are still limited to Rep → 0 in either unbounded models
(Hasimoto 1959; Batchelor 1972; Proudman & Pearson 1957; Sangani & Acrivos 1982)
or bounded models, including the effect of walls on drag force (Faxén 1922; Vasseur
& Cox 1977; Happel & Brenner 1981). Works on a purely theoretical basis are rather
difficult for systems in which the volume fraction φp and particle Reynolds number
are non-zero, or more complex influencing factors are involved. For the experiments,
measurements based on a pressure drop over packed beds of various materials (Ergun
1952; Epstein 1954; Rumpf & Gupte 1971; Fand et al. 1987; Watanabe 1989) are usually
used to obtain estimates for the solid particle drag when φp > 0.1 and Rep > 1. In addition,
some studies also reported particle acceleration and trajectory tracking using non-intrusive
measurements such as a high-speed camera, tomographic particle image velocimetry and
the shake-the-box method (Ayyalasomayajula et al. 2006; Wu et al. 2006; Qureshi et al.
2008; Schanz, Gesemann & Schröder 2016). However, such experiments provide only
indirect information of drag force, and are often not well defined in terms of details such
as homogeneity, mobility and so on (Beetstra et al. 2007). Most importantly, detailed
experimental measurements of particle drag force in an actual multiphase flow, as turbulent
two-phase flow over the erodible bed concerned in this paper, are rare and as a result,
high-quality data are scarce. In fact, experimental observation is also a great challenge
due to particle aggregation and two-phase interaction.

Different from the experimental and analytic methods, particle-resolved direct
numerical simulation (PR-DNS) in the framework of body-conforming moving-mesh
methods (Feng, Hu & Joseph 1994a,b; Hu, Patankar & Zhu 2001) or immersed boundary
methods (IBMs) (Peskin 1977; Uhlmann 2005; Breugem 2012; Luo et al. 2019) evaluates
the hydrodynamic force on a particle by integrating the pressure and viscous stresses
around the particle surface. The exponential growth in computing power over the past

964 A9-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.206


Drag model of finite-sized particle in wall turbulence

20 years made PR-DNS become a preferred choice for developing more accurate drag
correlations over a larger range of φp, Rep (Brandt & Coletti 2022) and parameter space.
Zeng et al. (2009) obtained the hydrodynamic force acting on a finite-sized particle
translating parallel to the wall in a stagnant fluid and a stationary particle in a wall-bounded
linear shear flow by PR-DNS, based on which a composite drag correlation that is valid
for a wide range of 2 < Rep < 250 and distance from the wall L was proposed. Lee
& Balachandar (2010) furthered this study to a more general case of a translating and
rotating particle in a wall-bounded linear shear flow. They provided a composite drag
correlation that linearly superposes shear, translational and rotational effects. Ekanayake
et al. (2020) and Ekanayake, Berry & Harvie (2021) simulated finite-sized particles in
both quiescent and linear shear flows with low slip and shear Reynolds numbers. A
new drag coefficient correlation that includes higher-order terms in separation distance
and the shear-based inertial correction was proposed and tested in a linear shear flow.
For the dense flow, the effects of neighbouring particles, through displacing the local
fluid, become important and must be accounted for. The fully resolved simulations
have also been applied to study the drag force in flow through arrays of structured and
random particles (fixed or moving). In this regard, modified drag models need to consider
additional parameters, such as the solid volume fraction gradient, superficial velocity
gradient (Chen et al. 2020), the granular temperature (Zhou & Fan 2014, 2015; Tang, Peters
& Kuipers 2016; Huang et al. 2017), the particle velocity fluctuation (Luo et al. 2021)
and so on.

In the turbulent boundary layer, these drag models developed in laminar upstream flows
are proven to have limited effectiveness. Zeng et al. (2008) simulated isolated finite-sized
particles with diameters varying from 3.5 to 25 wall units (Dp/η = 2.0 ∼ 14.3, where η

shows the Kolmogorov scale) and located in the buffer region and along the centreplate
of channel turbulence. They found that, near the wall, only for small particles (away from
the viscous sublayer) under consideration, the instantaneous force is captured well with
the standard drag formulation of Schiller & Nauman (1935). Within the buffer layer, the
force fluctuation can be correlated well with incoming turbulent flow structures. With
increasing particle size, vortex shedding contributes to an increase in drag fluctuation
that cannot be captured by the standard drag model. Homann, Bec & Grauer (2013)
pointed out that the average drag force increases as a function of the turbulent intensity.
This increase is larger than what is predicted by standard drag correlations developed
based on laminar upstream flows. Li et al. (2019) investigated the forces on a stationary
finite-sized particle in wall turbulence over a rough bed and the interaction between
the particle and the near-wall turbulent structures. They found that the standard drag
formulation with near-wall correction proposed by Zeng et al. (2009) can reasonably
predict the drag force, provided that the slip velocity is correctly calculated. Again, the
large fluctuations due to self-induced vortex shedding probably result in a significant
discrepancy. Recently in Li et al. (2020), a spherical particle released and suspended
in a turbulent open channel flow was tracked by PR-DNS. It is found that the standard
drag formulation of Schiller & Nauman (1935) can only reflect the general trend of
drag, with the large-amplitude and high-frequency characteristic of the surface forces
missed.

In the past two decades a number of PR-DNS investigations of finite-sized particles
have also been documented for turbulent two-phase flows. Such studies focused on
either turbulence modulation (Pan & Banerjee 1997; Cate et al. 2004; Lucci, Ferrante
& Elghobashi 2010; Naso & Prosperetti 2010; Yeo et al. 2010; Lucci, Ferrante &
Elghobashi 2011; Gao, Li & Wang 2013; Tanaka & Teramoto 2015; Schneiders, Meinke
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& Schröder 2017; Tanaka 2017; Fornari et al. 2019; Yousefi, Ardekani & Brandt
2020) or particle migration (Kidanemariam et al. 2013; Kidanemariam & Uhlmann
2014; Lashgari et al. 2016, 2017; Kidanemariam & Uhlmann 2017; Ardekani et al.
2018; Costa, Brandt & Picano 2020; Yousefi et al. 2021). The reader is referred to
Brandt & Coletti (2022) for the state-of-the-art progress of particle-laden turbulence.
Only a few studies, however, discussed particle forces in turbulent two-phase flows.
For example, Esmaily & Horwitz (2018) simulated decaying turbulence laden with
inertial particles using point-particle models and compared their results against a
particle-resolved simulation. They revealed that the momentum exchange between
particles and fluid modifies the slip velocity and produces an erroneous prediction
of coupling force. A correction scheme to reduce this error and accurately predict
the undisturbed fluid velocity was proposed. Costa et al. (2020) simulated a one-way
coupled turbulent channel flow laden with small inertial particles. A direct comparison
between interface-resolved and drag-force-driven point-particle results was conducted
for φp ∼ O(10−5) and D+

p = Dpuτ,f /ν = 3, where uτ,f is the friction velocity of
particle-free wall turbulence. Ji et al. (2013) simulated sediment entrainment on an
erodible particle bed in turbulent channel flow. The hydrodynamic forces acting on the
particles were presented and the underlying mechanisms of sediment entrainment were
discussed.

Despite the numerous studies, as summarized above, particle drag force in multiphase
turbulence has not been thoroughly discussed. What are the characteristics of particle drag
force in a turbulent multiphase flow and whether previously proposed drag models can
predict the drag force acting on particles are still open questions, which inspire the present
study. We will simulate turbulent two-phase flow over an erodible particle bed using the
PR-DNS method and present an in-depth analysis of the drag force acting on saltating
particles. The characteristics of this two-phase flow are: once the fluid velocity or shear
velocity is high enough to exceed the threshold condition for the onset of sediment motion,
the two-phase flow will come into being with particles suspending, rolling and saltating
above the bed. Due to the inhomogeneous nature of wall turbulence in a wall-normal
direction and the attenuation of particle concentration along the height, a saltating particle
will experience varying local volume fraction, particle-wall separation distance, turbulent
velocity fluctuation and mean shear during its descending and ascending phases. As a
result, the factors affecting the drag force are quite complex. It is therefore of practical
and physical significance to discuss the drag force on particles in such a two-phase
flow. The structure of the paper is as follows. In § 2 we introduce the methodology.
Dynamic responses of a typical particle during continuous saltations are presented in
§ 3, together with the validity check of several classical drag models. Then a new drag
model is proposed by fitting the simulated results. Finally, we discuss the limits and draw
conclusions in §§ 4 and 5, respectively.

2. Numerical methodology

We simulate pressure-driven open channel flow over an erodible particle bed. A Cartesian
coordinate system is adopted such that x, y and z denote the streamwise, wall-normal
and spanwise direction, respectively. The simulation domain is [Lx × Ly × Lz]/H = 6 ×
1 × 3, where H is the half-channel height. The friction Reynolds number based on
H, the kinematic viscosity of fluid ν and particle-free friction velocity uτ,f is Reτ,f =
uτ,f H/ν = 180. The sediment bed consists of four layers of monodisperse spheres at
rest. This quasi-randomly packed particle bed is formed by particles randomly released
in the simulation domain that settle under the action of gravity (without hydrodynamic
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Rp = Dp/2up

〈uf〉

Hf

Hb

H

Figure 1. Sketch of the computational set-up. Here 〈uf 〉 represents the mean velocity of fluid over the
streamwise direction, up is the velocity of particles, Rp and Dp are the radius and diameter of the particles,
respectively, H is the half-channel height, Hb is the effective sediment-bed height and Hf = H − Hb.

force) and collision as detailed in Kidanemariam & Uhlmann (2014). The total number of
particles is 7200. Figure 1 shows a sketch of the computational set-up, particle bed and
moving particles. The particle-to-fluid density ratio is ρp/ρf = 2.5. The particle diameter
studied is Dp/H = 0.1 and the particle volume fraction is φtotal = 0.21, regardless of the
particle state of motion. Throughout the paper, subscripts p and f denote particle and
fluid phases, respectively. ‘Erodible’ indicates that particles resting on the bed may be
entrained by the direct fluid force or by the impact of settling particles. Meanwhile, once
a moving particle impacts the bed due to gravity, it may either trap into or rebound from
the bed. In this simulation, however, a moving particle can hardly eject other particles
resting on the bed due to the low particle-to-fluid density ratio. Shields number, which
is defined as θ = u2

τ /((ρp/ρf − 1)gDp) and quantizes the mobility of particles, is set to
0.125, where g denotes the gravitational acceleration. The corresponding Galileo number
Ga =

√
(ρp/ρf − 1)gD3

p/ν, based on the gravitational velocity scale, is 41.83. We address
that the friction velocity uτ in θ is a posteriori determined by evaluating the total shear
stress at the height of the mean fluid bed interface Hb. Therefore, particle diameter in such
a wall unit is D+

p = Dpuτ /ν = 9.69.
The numerical methods follow from our previous work in Zhu et al. (2022) and

Wang et al. (2022), and are only briefly introduced here. The flow is incompressible
turbulence and governed by the continuity equation and Navier–Stokes equation. Here
uf , vf and wf are the streamwise, vertical and spanwise velocities, respectively. A
second-order central difference scheme is used for spatial discretization and a second-order
Runge–Kutta method is used for fluid time advancement when numerically solving these
governing equations. The fractional-step method of Kim & Moin (1985) is applied at each
Runge–Kutta substep to ensure that the flow velocity is divergence free. The computational
domain is discretized on a uniform Cartesian grid with Nx × Ny × Nz = 540 × 90 × 270.
Periodical conditions are imposed in both the streamwise and spanwise directions. No-slip
boundary conditions are used on both the bottom wall and sphere surfaces. At the top
of the simulation domain, a free-slip condition is applied. The dimensionless time step
is �tf = 2.5 × 10−4 for the fluid solver. The schematic plot of the mean streamwise
velocity 〈uf 〉 is shown in figure 1, where 〈·〉 represents the ensemble average over the two
homogeneous directions x, z and over time. The motion of finite-sized particles is obtained
by solving the position, translational velocity and angular velocity in equations expressed,
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respectively, as

dxp

dt
= up, (2.1)

ρpVp
dup

dt
= F h + (

ρp − ρf
)

Vpg + F c, (2.2)

Ip
dωp

dt
= T h + T c, (2.3)

where Vp and Ip are the volume and moment of inertia of the spheroidal particle; xp, up
and ωp are the position vector, translational velocity and angular velocity of the particle,
respectively; F h is the hydrodynamic force tensor; F c and T c are the collision force
and torque acting on the particle, respectively. As in Costa et al. (2015), a lubrication
model is used for F c to consider the short-range interaction when the gap width is
smaller than the grid spacing. The collision process between the particles is calculated
through a discrete-element model (DEM) based on the soft-sphere approach. An adaptive
collision time model (ACTM) (Kempe & Fröhlich 2012; Biegert, Vowinckel & Meiburg
2017) is employed to calculate the collision force. To describe the collision process in
the framework of this model, the normal restitution, tangential coefficient and friction
coefficient are taken to be en,d = 0.97, et,d = 0.39 and μc = 0.15. The dimensionless time
step for the particle is �tp = �tf /50 and the collision time Tc = 10�tf , as in previous
studies (Zhu et al. 2022). Periodic boundary conditions are applied for particles in the
streamwise and spanwise directions. We remark here that particles do not collect at
the free surface in this study. The direct-forcing IBM (Uhlmann 2005; Breugem 2012;
Kempe & Fröhlich 2012) is used to realize the two-way coupling through adding a
localized force term to the incompressible Navier–Stokes equation. The carrier phase is
parallelized by the domain decomposition method, while the disperse phase is parallelized
by the mirror domain technique (Darmana, Deen & Kuipers 2006) to ensure that each
processor stores the same total particle data and the excellent load balance can be achieved.
The simulation is run for a total 1.9 × 105 steps (T+ = Tu2

τ /ν = 7.8 × 103) on China’s
Tianhe-2 supercomputer at China’s National Supercomputer Center in Guangzhou. In
order to reach statistical stability of the two-phase flow, the statistics are sampled during
an extra 50 000 steps.

Before presenting the simulated results, we validate the models based on the
drafting-kissing-tumbling (DKT) phenomenon of two settling spheres, in addition to the
validations performed in Zhu et al. (2022). Two spheres of identical diameter and density
are first released from rest, and then settle due to gravity. Their initial separation is as small
as |d − Dp|/Dp = 1.0418, where d is the distance between the centres of the two particles.
The leading drafting sphere creates a wake during settling, which attracts and interacts
with the trailing sphere by the generated pressure drop in the wake. With the mutual
interaction, the two spheres collide with each other (kissing contact) as time evolves that
then leads to a significant change in the subsequent trajectory of the two spheres, that is,
the trailing sphere catches up to the leading sphere in the vertical direction and overtakes
it (tumbling). The DKT phenomenon involves significant processes of sedimentation of a
spherical particle in a quiescent fluid and particle–particle collision in a viscous fluid and
is a good example for validating the accuracy of PR-DNS. To simulate this case, we set the
computational domain and initial positions of the two spheres similar to Breugem (2012)
and Luo et al. (2019). The properties of the two identical spheres are Dp = 1.667 × 10−3 m
and ρp = 1140 kg m−3. The density of the carrying fluid is ρf = 1000 kg m−3.
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Figure 2. The simulated drafting-kissing-tumbling (DKT) phenomenon. (a i–a iii) Diagrams of the locations
of the two spheres at t = 0.005 s, t = 0.391 s and t = 0.587 s, respectively. (b) The gap between two spheres as
a function of evolving time.

Figure 2(a) has three side-by-side diagrams showing the position of the two spheres
at different times, corresponding to the initial stage (t = 0.005 s, figure 2a i), the kissing
contact (t = 0.391 s, figure 2a ii) and the moment of separation (t = 0.587 s, figure 2a iii),
respectively. Figure 2(b) shows the gap |d − Dp|/Dp between the two spheres as a function
of time obtained from our simulation and those from the literature. It is seen that the
simulated gap agrees with the literature within the limit of error, confirming the accuracy
of the present PR-DNS code. Furthermore, since a short-range repulsive force model was
employed in Breugem (2012) for calculating the collision force on spheres, we also perform
the simulation by using the same repulsive force model (the solid black line). It shows
that the simulated results agree well with Breugem (2012). It is worth noting that ACTM
leads to a longer collision time, almost zero |d − Dp|/Dp during the kissing process and
a larger separation distance after contact as compared with the repulsive force model.
These differences are not unexpected since the repulsive force model is only designed to
prevent the particle overlapping with each other while ACTM for soft-sphere collision
allows particle overlapping.

3. Simulation results

Figure 3 shows an instantaneous snapshot of two-phase flow after a statistically
quasi-steady state is well established. The streamwise fluid velocity fluctuations u′

f =
uf − 〈uf 〉 are illustrated in several x–y and z–y slices, depicting high- and low-speed
streaks typically observed in wall turbulence. The entrained particles jump between
quasi-streamwise vortices and instantaneously locate in either low- or high-speed streaks.
However, on average, particles preferentially accumulate in the low-speed streaks (not
shown here). The illustration on the right of figure 3 presents the wall-normal profile of the
mean solid indicator fraction 〈Φ〉 defined by Kidanemariam et al. (2013), Kidanemariam
& Uhlmann (2014) and Kidanemariam & Uhlmann (2017). Evidently, 〈Φ〉 is roughly
divided into two parts along the height. In the lower part, the profile of 〈Φ〉 exhibits
four bulges whose peak are 0.816, 0.794, 0.757 and 0.533, respectively. Note that the
extreme value of the indicator fraction of densely packed particles on the stationary

964 A9-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.206


P. Wang, Y. Lei, Z. Zhu and X. Zheng

1.0

–2 –1 0 1 2

0.5

y/
H

0

0
1

2
3

4
5

6

0

〈Φ〉
1

2

3x/H

z/H

u′
f /ur

0 0.5 1.0
1.0

0.5

0

y/
H

Flow direction

Figure 3. Instantaneous snapshot of particle distribution. Several slices depict the streamwise fluid velocity
fluctuation u′

f . Particles above and below the mean interface height Hb are labelled in green and grey,
respectively. The inset on the right shows the average indicator fraction profile 〈Φ〉 of the solid particles. The
top inset is the magnified view of the representative particle being tracked and its ambient flow at this moment.

bed surface should be 0.816 for hexagonal packing. In the upper part, however, a strong
wall-normal particle concentration gradient forms due to the gravitational settling effect.
The wall-normal location of the particle centres is overwhelming in the region of yp/H <

0.86, where yp is the vertical height of the centre of the particle. The rolling and saltating of
the particles generate an uneven bed surface, indicating a significant erosion phenomenon.
The averaged fluid–bed interface location Hb is extracted by means of a threshold value
chosen as 〈Φ( yp)〉 = 0.1 (Kidanemariam & Uhlmann 2014, 2017). In figure 3 the effective
bed height of Hb = 0.34 is clearly shown by a cyan transparent plane, on which a mean
interface shear stress τb is defined by the sum of the viscous stress, Reynolds stress
and drag feedback (Kidanemariam & Uhlmann 2017). Therefore, the friction Reynolds
number Reb

τ = (H − Hb)uτ /ν based on Hf = H − Hb and the friction velocity uτ defined
as = √

τb/ρf at Hb is equal to 91. Note that particles above and below the virtual interface
are coloured green and grey, respectively.

At this moment, a representative ascending particle (the purple one) above Hb is selected
for further Lagrangian tracing. The top inset of figure 3 is the magnified view of the
representative particle being tracked and its ambient flow, in which the brown arrow marks
out particle velocity. The smaller circles in the inset of figure 3 show the cross-section of
surrounding particles on the x–z plane through the centre of the tracked sphere. It can
be seen that the tracked particle locates in the high-speed region of incoming flow at this
moment. However, the fluid velocity behind the particle is very low due to the complicated
wake and particle–particle interaction.

3.1. The drag force along saltating particle trajectory
We show the time series of the dynamic responses of the tracked particle during two
successive saltation processes in figure 4. The abscissa t is non-dimensionalized by the
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Figure 4. Dynamic responses of a typical saltating particle within two successive trajectories. (a) The height
of the particle centre yp, the local volume fraction around the tracked particle φp and the particle Reynolds
number Rep. (b) Time history of the streamwise component of the drag force. The solid black line is the
PR-DNS results. The red, blue and green lines are the predicted results by models listed in table 1 respectively.
(c,d) The same as (b), but for the wall-normal and spanwise components of the drag force.
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inner scale of ν/u2
τ and starts from the moment, Ts, that the particle is tracked and,

therefore, t+ = (T − Ts)u2
τ /ν. The time interval for the data output is �t+ = 0.146.

Figure 4(a) depicts the vertical height (the red line) of the particle centre yp. It can
be seen that the tracked particle reaches the vertexes of its parabolic-like trajectory at
t+ = 32.26 and t+ = 87.70, and collides with other particles near the bed at t+ = 2.05,
t+ = 72.01 and t+ = 114.10. Note that the high and low trajectory vertexes are the direct
results of different initial vertical take-off velocities for the two saltations. The local solid
volume fraction φp (the blue line) and the particle Reynolds number Rep (the black line)
are presented in the meanwhile. The same method as Link et al. (2005) and Luo et al.
(2021) is used to calculate φp, that is φp = ∑

∀j∈cell α
j
cellV

j
p,cell/Vcell, where V j

p,cell is the

volume of a rectangular statistical cell around the particle, and α
j
cell is the ratio of the

jth particle volume inside the statistical cell to the total particle volume. Here we use
two different sizes of statistical cells to calculate φp. The unit size of 4Dp × 3Dp × 3Dp
is denoted as φ4×3×3

p and 5Dp × 4Dp × 4Dp is denoted as φ5×4×4
p . For a finite-sized

particle, the particle Reynolds number Rep cannot be defined unambiguously (Yu et al.
2017) since there are different definitions of slip velocity uslip = u∗

f − up between the
individual particle and the ambient turbulent flow. When an individual particle is fixed
(up = 0) in an unbounded domain, uslip can be simply taken to be the uniform inflow fluid
velocity. In addition, the undisturbed flow velocity u∗

f in previous studies can also be the
flow velocity at the particle centre, the flow velocity averaged over the particle surface
based on the Faxén’s theorem, the flow velocity at a particle size in front of the particle
and the flow velocity averaged over a spherical shell centred at the particle location with
radius of Rs (Ganatos, Weinbaum & Pfeffer 1980a; Ganatos, Pfeffer & Weinbaum 1980b;
Zeng et al. 2008; Cisse, Homann & Bec 2013; Akiki, Jackson & Balachandar 2017a; Akiki,
Moore & Balachandar 2017b; Li et al. 2019; Luo et al. 2019, 2021), and so on. Zeng et al.
(2008) argued that u∗

f at the particle centre is adequate for the small particle in predicting
the instantaneous force but, for larger particles, a weighted volume average flow velocity
over a small sphere centred around the particle location is better. Then Kidanemariam
et al. (2013) first proposed a method based on an average of the fluid velocity over a
trimmed spherical surface around a particle. Li et al. (2019) also discussed the influence
of different u∗

f definitions on the prediction of the force acting on a particle with different
diameters and placed within different regions of wall turbulence. The performance of
different definitions of u∗

f were revealed to be different. In the numerical simulation of
a multiphase flow, it is especially difficult to determine the undisturbed fluid velocity seen
by the particle since the flow has already been observably disturbed. We directly calculate
u∗

f in this study according to Cisse et al. (2013) and Luo et al. (2019, 2021) based upon
the mass flux entering a spherical shell. To be specific, a spherical shell with a radius of
Rs = 3Rp is created by the Lagrangian grid generation scheme (Breugem 2012) and the
fluid velocity can be easily interpolated to the Lagrangian grid by a trilinear interpolation
method (Kidanemariam et al. 2013; Chouippe & Uhlmann 2019). Then uslip is calculated
according to the averaging method proposed by Cisse et al. (2013). The effects of Rs will
be discussed in § 5, as well as other typical u∗

f definitions.
It is seen from figure 4(a) that the local volume fraction around the particle φp varies in

the same way as 〈Φ〉 (above Hb) during its descending phase. Except for a visible plateau
at approximately 8 < t+ < 15 where another particle enters and stays in the statistical cell
of φp, there is no obvious qualitative difference between φ4×3×3

p and φ5×4×4
p . Therefore,

unless specifically stated in the following, the local volume fraction of particles φp is
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always represented by φ4×3×3
p . On the contrary, the local volume fraction decreases rapidly

during its ascending phase. One exception is the sudden weak bulge at approximately
t+ = 50, which should be attributed to the influence of bed particles since the tracked
particle is now moving near the bed. The variation of the particle Reynolds number along
its trajectory is a little bit complex however. Firstly, the smallest Rep can be observed
near (but not exactly at) the vertexes of particle trajectories. This is to be expected since
particles are much easier to be accelerated by the flow away from the bed, resulting in
relatively small slip velocities. Secondly, Rep is very sensitive to the presence of the nearby
particles. Taking the variation of Rep within 8 < t+ < 15 as an example, the particle
Reynolds number continuously decreases through the fluid-mediated particle–particle
interaction, but suddenly increases when the other particles move away. And finally, an
abrupt change in Rep occurs before and after the collision, as shown during t+ = 0 ∼ 5
and t+ = 50 ∼ 60.

The solid black lines in figure 4(b–d) represent, respectively, the streamwise FD,x,
wall-normal (FD,y) and spanwise (FD,z) components of the drag force acting on the
tracked particle along its trajectory from PR-DNS, normalized by the submerged weight
G = (ρp − ρf ))gVp. Note that the circles in these figures mark out the vertexes of the
particle trajectory. We address here that the drag force F D is the projection of the
hydrodynamic force on the direction of slip velocity, namely, F D = F h cos αF, where αF
is the angle between the hydrodynamic force F h and slip velocity uslip. Several important
features can be observed from the time history of the drag force. First, at each impact
with the bed particles, the drag force peaks due to the collisions, which is consistent with
that observed in Ji et al. (2014). Therefore, the maximum values of the y coordinate are
just ±3 in figure 4(b–d) to clearly show the drag force without collision. This sudden
change is quickly damped by the hydrodynamic force. Second, there are sign changes
of the drag force during both ascending and descending phases. However, the transition
points of positive drag and negative drag force are not necessarily the same as the vertexes
of the particle trajectory due to the complicated dynamics of turbulence–particle and
particle–particle interactions. Third, the forces on the particle show substantial variations
with time in addition to collision extremum during both ascending and descending phases;
see, for example, FD,z during 21 < t+ < 45 and FD,y during 40 < t+ < 55. In previous
studies on individual fixed particles (Zeng et al. 2008; Homann et al. 2013; Li et al. 2019)
these features cannot be observed at the same time.

In figure 4(b–d) we also show the drag forces predicted by several typical drag models
based on the same uslip by DNS. The traditional drag models usually depend on 1 ∼ 3
independent parameters to account for the different dynamics and parameter ranges. For
the two-phase flow over the erodible bed concerned in this work, it is hard to distinguish
the effects of the individual parameter. Since the mean/local shear, velocity fluctuation
and the volume fraction all vary with wall-normal height in wall turbulence, we believe
that the model that takes the particle-wall separation distance L into account is a good
choice, in addition to the models that involve Rep and φp. The statistics indicate that
the particle Reynolds number in the simulation falls in the range of 0 < Rep < 80, and
the solid volume fraction range is approximately 0 < φp < 0.25 for saltating particles.
Therefore, the standard drag model (Schiller & Nauman 1935) of an isolated sphere that
characterizes the Reynolds number dependence, the φp-dependent model proposed by
Tenneti et al. (2011) and L-dependent model proposed by Zeng et al. (2009) are employed
for comparison. Throughout the paper, these three models are denoted as SN, TGS and
Zeng model for short and the predicted drag forces are F SN

D , F TGS
D and F Zeng

D . The drag
coefficient CD of the three models are listed in table 1, according to which the drag force
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Figure 5. (a) All identified saltating trajectories shown by the vertical height versus saltation time. (b) The
probability density distribution of the saltating angle.

can be given as F D = 1/8πρf CDD2
p|uslip|uslip. From figure 4 we can see that even though

the models qualitatively capture the trend of PR-DNS results, the quantitative differences
remain clear.

Before quantitatively evaluating the drag models, we collect and pretreat the PR-DNS
data according to several subjective criteria. The bed particles are first excluded since
we place emphasis on particles that characterize the two-phase flow over the erodible bed.
Then, particles that meet Hmax,i − Hs,i > 0.5Dp (Wiberg & Smith 1985) and yp − Dp/2 >

Hb are identified as saltators, where Hmax,i and Hs,i are the vertex of the ith saltating
particle trajectory and particle initial take-off height, respectively. Note that the vertical
position of the particle centre just finishes when the particle-bed collision is recorded as
the initial take-off height of a saltating particle. From this moment (the initial take-off
time, ts,i) on, the ith particle moves in the fluid until falling back to the bed again at
time te,i due to gravity. All identified saltating trajectories are illustrated in figure 5(a)
by their centre height, with regard to the inner-scale saltating time. Similar to Chouippe
& Uhlmann (2019), we define the saltating angle between the particle vertical velocity
up,y and the horizontal plane as β = atan(up,y/

√
u2

p,x + u2
p,z), which can also be used to

describe the particle saltation. Apparently, β > 0 indicates the ascending phase, β < 0
indicates the descending phase and the particle reaches the vertex of its trajectory when
β = 0. The probability density distribution of β is plotted in figure 5(b). It can be seen that,
for the saltation particle trajectory on the erodible bed surface in this study, β is distributed
between −20◦ and 40◦.

The model-predicted drag forces are then assessed using scatter plots and the correlation
R2 values presented in figure 6, where R2 is the statistical measure of how well the model
prediction agrees with the actual PR-DNS data. By definition, a perfect model would have
all the data points fall on the bisector, leading to R2 = 1. With the decrease of R2 to
zero, the model predictions are completely irrelevant to PR-DNS results. For all frames,
the abscissa and ordinate are for the PR-DNS and model-predicted results, respectively.
Only streamwise and vertical components of the drag force are plotted in figure 6 since
the spanwise component has similar comparison results as the streamwise component. In
addition, the drag forces during descending and ascending phases are separately presented
in consideration of the different dynamic responses shown in figure 4. Note that each
point in the figure corresponds to the drag force on an individual particle at a given time,
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Figure 6. Detail comparisons between model-predicted and PR-DNS drag force (non-dimensionalized by the
submerged weight) in streamwise and vertical direction during descending up,y < 0 and ascending up,y > 0
phases.

compared with the box-averaged pretreatment in several previous studies (Chen et al. 2020;
Seyed-Ahmadi & Wachs 2020; Luo et al. 2021).

It can be seen from figure 6 that a number of scatters are in the second and fourth
quadrants, which indicates that αF > 90◦. In this case, the drag models cannot be improved
by simple CD correction unless models are linearly superimposed with an additional
contribution from the shear Reynolds number Reγ (Lee & Balachandar 2010; Ekanayake
et al. 2020, 2021) and nearby particles (Akiki et al. 2017a,b), and so on. The correlation R2

between the predictions and PR-DNS results vary from case to case. In general, R2 during
the ascending phase is higher than the descending phase, partly because the particles
have a large initial kinetic energy after collision with bed particles, which makes them
less susceptible to turbulence and the nearby particles. While during the settling stage,
particles accelerated by gravity (FD,y is applied almost in the opposite direction of motion)
from zero up,y are more prone to be influenced by neighbouring particles through the
fluid-mediated interaction. The worst cases occur for FD,y during the descending phase,
regardless of drag models. Here R2 < 0.2 in FD,y frames indicates that PR-DNS results
can hardly be predicted by the selected, typical drag models. We emphasize that the
chaotic vortex shedding in the particle wake cannot be visibly observed at a relatively small
particle Reynolds number (the maximum of Rep is smaller than 80) in our simulation. In
addition, it also shows that the volume fraction correction and particle-wall separation
distance correction do improve the model predictions as compare to the classical SN
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model. Therefore, it is necessary to establish a new drag model appropriate for the
two-phase flow based on the above comparisons.

3.2. A new drag model for saltating particle in two-phase flow
Unlike widely used drag models for a particle stationary or translating parallel to a wall
developed in wall flow, it might be more appropriate to establish the drag model along its
trajectory for a saltating particle. We assume that the local drag force for an isolated sphere
can be well predicted by the CD(Rep) model, and the effect of other factors, the volume
fraction, the particle-wall separation distance, turbulent velocity fluctuation and so on,
are all integrated into a correction function CR. Ideally, CR involves only dimensionless
particle velocity, at least in addition to Rep, and with a simple form for applications.
It is not unreasonable since the particle-wall separation distance and the local volume
fraction experienced by particles depend strongly on the velocity of the particle, as shown
in figures 3 and 4. Consequently, the related turbulent structures (depending on whether
the particle is embedded within the viscous sublayer, buffer region or the log layer) and
the fluid-mediated particle–particle interaction are implicitly involved. Before fitting the
CR∞up,y relation, we try to give a brief discussion.

As described in Appendix A, we assume that the ratio of the work
∫ yp

h0
Fh,y·dy done

by the hydrodynamic force component Fh,y to the potential energy (1 − ρf /ρp)mp( yp −
h0)g is a constant according to the average energy and work plots (figure 12) and the
initial position h0 = 0, then we obtain the relationship for particle vertical velocity up,y
at height yp, the initial vertical velocity up,0 and the vertex of a particle trajectory hs in
dimensionless form as

y+
p = h+

s

(
1 − u2

p,y/u2
p,0

)
. (3.1)

If the particle is placed in the viscous sublayer of wall turbulence, then y+
p = u+

f ,
and the slip velocity is u+

slip = u+
f − u+

p = [h+
s (1 − u2

p,y/u2
p,0) − u+

p,x]ex − u+
p,yey. If the

particle is placed in the log layer of wall turbulence and the mean fluid velocity satisfies
u+

f = (1/κ) ln(y+/y+
0 ), where κ and y0 are the von Kármán constant and the bed

roughness, respectively, then the saltating height can be expressed as y+
p = y+

0 (1 + κu+
f +

1/2κ2u+
f

2 + · · · ). As a result, the slip velocity can be expressed as u+
slip = [h+

s /κy+
0 (1 −

u2
p,y/u2

p,0) − 1/κ − u+
p,x]ex − u+

p,yey by discarding higher-order terms. Nevertheless, such
a rough discussion reveals that the slip velocity is approximately related to the nth power
of the particle velocity. Let us assume that the relationship between uslip and up,y can
approximately be uslip = f (un

p,y), with n ideally being approximately 2. Putting the relation
into the Stokes formula, we get the expression of drag force as

FD = kf (un
p,y), (3.2)

where k = 3πρf Dpν.
The standard drag curve of an isolated sphere characterizes Rep dependence of the

quasi-steady drag and is widely used as the benchmark mode for drag force corrections.
We also use this scheme to develop the new drag force model. Figure 7(a) shows the
ratio |F D|/|F SN

D | of the PR-DNS drag forces to the drag forces predicted by the SN
model as functions of Rep and up,y/up,0. Again, the points of |F D|/|F SN

D | are very
scattered when Rep or up,y/up,0 is fixed. It is hence unrealistic to directly pursue the
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instantaneous drag force in a real turbulence laden with saltating particles. We therefore
divide the data into different Rep and up,y/up,0 bins. The widths of the bins are 2.5 and
0.25, respectively. Several typical |F D|/|F SN

D |∞Rep and |F D|/|F SN
D |∞up,y/up,0 curves are

depicted in figure 7(b,c). It can be seen that |F D|/|F SN
D | decreases with Rep monotonously

but changes with up,y/up,0 quadratically. Then we use the least square method to fit the
data and get the fitting formula of the drag coefficient as

CFit
D = CSN

D CR,

CR

(
Rep,

up,y

up,0

)
=

40
(

up,y

up,0

)2

+ 27

Rep
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.3)

That is, the fitted drag coefficient is inversely proportional to Rep and proportional to the
particle speed squared. The fitted CR is shown in figure 7(a) as a transparent surface.
Note that the applicability of (3.3) is limited. On the one hand, the ranges of the used
parameter are 0 < Rep < 80 and −2.0 < up,y/up,0 < 2.0. Making further simulations for
different values of D+

p and particle-to-fluid density ratios will extend the parameter range
of the model. However, it is challenging because the Shields number will change as well,
resulting in varying erodibility of the bed. On the other hand, sediment in the bed-load
layer is actually transported via several modes: rolling/sliding and saltating. Saltation is
the most dominant for the formation of a two-phase flow in the current case. According to
the above data pretreatment and fitting process, we stress again that the proposed model
is only applicable to saltating particles that have a parabola-like trajectory as shown in
figure 5(a). In an Euler–Lagrange simulation of a two-phase flow formed by saltating
particles, if the bed is not resolved, a splashing function is usually employed to determine
the bed particle’s lift-off velocity and angle after a particle-bed collision (Zheng et al.
2021; Zhu et al. 2022). Therefore, the initial vertical velocity up,0 can be easily obtained.
Then, the new model can be adopted for the trajectory simulation.

The mean drag forces F̃ D along a particle trajectory predicted by the newly proposed
model are plotted in figure 8, and compared against the PR-DNS results. Note that ‘along
a particle trajectory’ here implies an average over the saltating angle β. The previous
estimations that used particle-wall separation distance and volume fraction correction are
also plotted in the same figure. The predictions from (3.3) agree well with the PR-DNS
results, while the SN model underestimates the drag force on saltating particles the most
even at the vertex of the trajectory where L- and φp-dependence are relatively low. We
attribute this underestimation towards the nonlinear force-velocity relation. The turbulent
velocity fluctuation will increase the mean drag force predicted by the SN model according
to the analysis of Zeng et al. (2008). The TGS and Zeng models that involve, respectively,
the correction of φp and L both improve the predictions to a certain extent. When β > 10◦,
the Zeng model performs better than the TGS model, which means that the effect of local
solid volume fraction is less significant near the bed during the ascending phase. While for
β < −10◦, the TGS model predictions are more consistent with DNS. Note that very close
to the bed, (3.3) predictions still deviate from DNS. This may be attributed to the deviation
of saltating particle trajectory from the smooth parabola near the bed due to the presence
of rolling particles. Consequently, the relationship between F D and up,y for |up,y/up,0| > 1
in figure 7(c) cannot be described by a quadratic function. This deviation can be eliminated
to some degree by fitting the filtered data with up,y/uτ , see the orange dashed line,
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Figure 7. A comparison between the drag force obtained by PR-DNS and SN model as a function of Rep with
up,y/up,0.

though the underlying physics is not as clear as up,y/up,0 when describing a particle
trajectory.

4. Discussion

As discussed in § 3, there are different definitions of the undisturbed flow velocity u∗
f

in previous studies. We calculate uslip according to Cisse et al. (2013) with a radius of
Rs = 3Rp. However, the radius Rs of the spherical shell may affect uslip. We perform
an additional elaboration with Rs = 2Rp to evaluate the effects of Rs on the drag force.
Figure 9(a) shows the DNS drag force along the trajectories of the same particle as in

964 A9-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

20
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.206


P. Wang, Y. Lei, Z. Zhu and X. Zheng

4.0

3.5

3.0

2.5

2.0F̃D /G

|FD|/G
|FD

Zeng| /G

1.5

1.0

0.5

0
–20 –10 0 10

β
20 30

|FD
SN/G|

|FD
TGS| /G

|FD
Fit,up,0| /G CR = (40 (up,y/up,0)2 + 27) / Rep

|FD
Fit,uτ| /G   CR = (12 (up,y/uτ)

2 + 27) / Rep

Figure 8. The mean drag force along particle trajectories in a two-phase flow over an erodible bed.

figure 4 with different Rs. In addition, we also calculate the slip velocity based on the
undisturbed flow velocity averaged over the Rs = 3Rp and 2Rp surface as Kidanemariam

et al. (2013) and show the corresponding drag forces F
Kid,3Rp
D and F

Kid,2Rp
D in figure 9(a).

Other methods for calculating the slip velocity, like the velocity at a point located one
diameter in front of the particle and the undisturbed flow velocity at the particle centre
from a companion DNS in the absence of particles, are either difficult to obtain or
inappropriate. It is clear that the PR-DNS results are not very sensitive to Rs for both
methods, as shown in figure 9(b). In the process of saltation, the drag forces obtained
by the two methods are similar in the general trend, but quantitative differences remain
especially when the particles take off from the bed after the collision. Here F

Kid,3Rp
D and

F
Kid,2Rp
D drop rapidly to near zero and then increase to the level of F D. Moreover, the

fluctuation of drag force σ
Kid,3Rp
D and σ

Kid,2Rp
D seems to be smaller than σD when β > 10◦.

Unfortunately, the underlying mechanics of the difference is not clear.
Let us move to the underlying dynamics of the drag force. It is clear that the forces

on the particle are caused by the complicated dynamics of turbulence–particle and
particle–particle interactions. Figure 10 shows snapshots of the fluid velocity fluctuation
and vorticity around the particle at t+ = 44.00, t+ = 46.93 and t+ = 52.79 to discern the
influences. One can refer to figure 4 for the details along a particle trajectory. The brown,
green and cyan arrows indicate the particle velocity, the slip velocity and hydrodynamic
force, respectively. Within such a short time, the tracked particle is located in a somewhat
high-speed streak, as shown in figure 10(a,c,e). Note that the low-speed wake behind the
particle (the particle is large enough to create a wake behind it) interacts with turbulence,
making it difficult to identify whether it is in a high-speed or low-speed streak. However,
the streamwise component of the slip velocity is negative, indicating that the flow in front
of the particle as it approaches the particle is high speed. At t+ = 44.00, there is another
nearby particle at the lower right of the tracked particle in figure 10(b). A positive local
streamwise vorticity Ωx region between the two particles is visible. This region becomes
intense and elongates as the other particle comes closer at t+ = 46.93 in figure 10(d).
While at t+ = 52.79, Ωx shows an almost symmetrical, positive/negative vorticity region
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Figure 9. (a) Time histories of the drag force acting on the tracked particle in figure 4 based on different
methods for calculating the slip velocity. (b) The fluctuating variances of the drag force along a particle
trajectory.

near the upstream face of the particle in figure 10( f ) when the nearby particle moves
away. We emphasize that the approaching particle leads to a dramatic change in both
hydrodynamic force and αF in figure 10(b,d, f ).

Obviously, the inclusion of the local volume fraction in the drag model cannot
effectively improve the prediction of the drag force since the force on the particle related
to the local volume fraction will be estimated to be the same as long as φp is the same
within a given statistical box. This has already been confirmed by Akiki et al. (2017a)
who further proposed a pairwise interaction extended point-particle model to account for
the precise location of a few surrounding neighbours. The performance of this model
was then validated by successfully simulating the sedimentation problems of 2, 5 and
80 sediment spheres with the DEM method. A pairwise interaction assumed that each
adjacent disturbance flow is independent, then the effects of all neighbours are linearly
superposed to obtain the total perturbation based on the pre-stored single neighbour,
Rep-dependent perturbation libraries. However, in a two-phase turbulent flow over the
erodible bed, the single neighbour perturbation libraries also depend on the position of
all neighbours themselves.

Finally, we address here that the drag force is defined as the hydrodynamic force in
the direction of the slip velocity following Luo et al. (2021), which indicates that the
unsteady effects are implicitly involved (at least partially) in the modified drag force.
Similar treatment was also done by Bombardelli, Picano & Brandt (2016) who considered
the drag coefficient CD as a function of the Reynolds number and Strouhal number (the
unsteady effect). In the traditional view (Maxey & Riley 1983), the hydrodynamic forces
on an individual point particle can be written as the sum of the quasi-steady (the drag
force), stress-gradient, added-mass and viscous-unsteady forces (the Basset force), etc.
It is natural to wonder if the inclusion of the unsteady forces can improve the prediction
since there are rapid changes in the force that are due to the rapid changes in particle
motion (Zeng et al. 2008; Li et al. 2019). To this end, we subtract the fluid acceleration
force F FA, the added-mass force F AM and the Basset history force F BA from the total
hydrodynamic force F h to obtain the quasi-steady force F Steady (= F h − F FA − F AM −
F BA). According to the Maxey–Riley equation (Maxey & Riley 1983), F FA, F AM and F BA
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Figure 10. Snapshots of the streamwise fluid velocity fluctuation u′
f in the x − z plane at (a) t+ = 44.00,

(b) t+ = 46.93, (c) t+ = 52.79. The spanwise vorticity Ωx in the z − y plane at the same time are presented
in (b,d, f ), respectively. The brown, green and cyan arrows indicate the particle velocity, the slip velocity and
hydrodynamic force, respectively. The length of the arrows indicate the value of the variables.

on a solid particle can be expressed as

F FA = ρf
mp

ρp

Duf

Dt
,

F AM = 1
2
ρf

mp

ρp

(
Duf

Dt
− Dup

Dt

)
,

F BA = 6πμ(Dp/2)2√
πμ/ρf

[∫ t

0
K(t − τ)

(
duf

dt
− dup

dt

)
dτ

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

The operator D(.)/Dt indicates the material derivative, K is the Basset kernel and τ is a
dummy. Following Bombardelli, González & Niño (2015), a memory time period concept
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Figure 11. The comparisons between the SN-model-predicted drag force and the quasi-steady drag force
during the descending up,y < 0 and ascending up,y > 0 phases.

is applied for the Basset kernel as

K(t − τ) =
⎧⎨
⎩

1√
t − τ

, t − twindow < τ < t,

0, τ < t − twindow.

(4.2)

The projection of this quasi-steady hydrodynamic force component on the slip direction
yields the quasi-steady drag force of F D,Steady = F Steady cos αF. The detail comparisons
between SN-model-predicted drag force and F D,Steady are presented in figure 11.
Unfortunately, as compared with figure 6(a i–d i), R2 is not fundamentally improved, which
might be attributed to particle rotation taking place at anytime and anywhere along its
trajectory.

5. Conclusions

In this study, particle saltation over the erodible bed in a turbulent open channel flow was
numerically investigated using the DNS for turbulence flow, the fully resolved method and
ACTM for particle dynamics and the IBM for the fluid–particle interaction. The drag force
on saltating particles was presented along the particle trajectory. Typical drag models were
employed to predict the drag force and compared against the PR-DNS results. According
to the comparisons and the analysis on particle dynamics, a novel mean drag force model
was proposed.

The particle volume fraction decreases rapidly along the height above the fluid–bed
interface. Therefore, a saltating particle experiences a varying local volume fraction during
its ascending and descending phases. Apart from inter-particle collision, the varying
number of neighbouring particles, the turbulence structures around particles and the wake
behind them make the drag force acting on particles in two-phase flow extremely complex.
The typical SN model that characterizes the particle Reynolds number Rep dependence,
the TGS model that accounts for the joint influence of Rep and local volume fraction φp,
and the Zeng model that involves both Rep and the particle-wall separation distance L, are
employed to examine if these models are still accurate enough to predict the drag force on
a particle in a turbulent flow over the erodible bed. It is found that these classical models
originally developed for a single particle cannot predict accurately the drag force acting on
saltating particles, especially during their descending phase.

Through simple theoretical analysis of particle velocity and slip velocity along a particle
trajectory, we proposed that the drag force should be a function of particle vertical velocity
to the nth power. Based on this consideration, we fitted the mean drag force along a particle
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trajectory, taking the SN model as the benchmark model. The trajectory was described by
the angle β between the particle vertical velocity and the horizontal plane. The corrected
factor CR for the drag force is inversely proportional to Rep and proportional to the particle
velocity (scaled by the initial take-off velocity up,0) squared. In addition, it is found that
the performance of the new drag model can be further improved if the particle vertical
velocity up,y in the corrected factor is scaled by the friction velocity uτ of the two-phase
flow.

Due to the complicated combined influence of turbulence–particle and particle–particle
interactions on particle dynamics, it is not possible so far to study the fluctuation of the
drag force just based on up,y and Rep. Furthermore, the particle-to-fluid density ratio, the
particle-to-fluid scale ratio, the Shield number and the turbulence Reynolds number will
all play pivotal roles in the prediction of the drag force.
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Appendix A

The motion equation of particles (without collision force) in the vertical direction is

mp
dup,y

dt
= Vp(ρp − ρf )g + Fh,y, (A1)

where Vp and Fh,y are the volume of the spheroidal particle and the vertical component of
the hydrodynamic force. The works done by each term after distance dy = up,y dt are

mp
dup,y

dt
· up,y dt = Vp(ρp − ρf )g · dy + Fh,y · dy. (A2)

By integrating the above equation from 0 to t (from h0 to yp),∫ t

0
mp

dup,y

dt
· up,y dt =

∫ yp

h0

Vp(ρp − ρf )g · dy +
∫ yp

h0

Fh,y · dy, (A3)

we can get

mp

(
u2

p,y

2
−

u2
p,0

2

)
= Vp(ρp − ρf )g · ( yp − h0) +

∫ yp

h0

Fh,y · dy (A4)

or

mp

(
u2

p,y

2
−

u2
p,0

2

)
= (1 − ρf /ρp)mp( yp − h0)g +

∫ yp

h0

Fh,y · dy. (A5)
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Figure 12. (a) The kinetic energy, potential energy and work done by the vertical component of the
hydrodynamic force along a particle trajectory, averaged over β. (b) Ratio of the work done by the vertical
component of the hydrodynamic force to potential energy.

At the vertex hs of a particle trajectory, we have

− 1
2

mpu2
p,0 = (1 − ρf /ρp)mp(hs − h0)g +

∫ hs

h0

Fh,y · dy. (A6)

Dividing (A5) by (A6) yields

1 − u2
p,y

u2
p,0

= (1 − ρf /ρp)mp( yp − h0)g + ∫ yp
h0

Fh,y · dy

(1 − ρf /ρp)mp(hs − h0)g + ∫ hs
h0

Fh,y · dy
. (A7)

The kinetic energy, potential energy and the work done by the hydrodynamic force
component Fh,y along a particle trajectory are plotted in figure 12. It is found that the
ratio Eratio of

∫ yp
h0

Fh,y·dy to (1 − ρf /ρp)mp( yp − h0)g is approximately 0.0–0.5 except
for β < −12◦ (particles settle near the bed surface) and β > 25◦ (where the probability
density distribution of β is low). Although the ratio varies with β, let us assume that the
ratio Eratio is equal to a constant value B and the right-hand side of (A7) becomes

(1 − ρf /ρp)mp( yp − h0)g + B( yp − h0)

(1 − ρf /ρp)mp(hs − h0)g + B(hs − h0)
. (A8)

Then, the simple theoretical analysis and assumption yield

u2
p,y

u2
p,0

≈ hs − yp

hs − h0
. (A9)
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