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On the Gras Conjecture for Imaginary
Quadratic Fields

Hassan Oukhaba and Stéphane Viguié

Abstract. In this paper we extend K. Rubin’s methods to prove the Gras conjecture for abelian
extensions of a given imaginary quadratic field k and prime numbers p that divide the number of
roots of unity in k.

1 Introduction

Let k C C be an imaginary quadratic field, and let Oy be the ring of integers of k.
Let H C C be the Hilbert class field of k. Let K C C be a finite abelian extension of
k, and write G for the Galois group of K/k, G := Gal(K/k). Let Og and Of be the
ring of integers of K and the group of units of O, respectively. In [[8, Theorem 3.3],
K. Rubin applied the technique of Euler systems to prove the Gras conjecture for K,
when H C K and for all prime number p, p { wy[K : k], where wy is the number
of roots of unity in H. Soon after he generalized his result in [9, Theorem 1] to all K
(that is, without the assumption H C K) and all p, p t wi[K : k], where wy is the
number of roots of unity in k. The Gras conjecture is a very subtle information about
the ideal class group, used for example, in the proof of [8, Theorem 10.3] as the last
step in the direction of the main conjecture.

In this paper we complete the result of Rubin. Indeed, we prove the Gras conjec-
ture for those prime numbers p |wy and p 1 [K : k]. As a first step, we prove a weak
form of the Gras conjecture for every prime number p 1 [K : k]. More precisely, let
Ek be the group of units of K defined in the following section (see the end of Section
[ for a description of the elements of Ex as elliptic units, and also for a comparison
with the group of elliptic units considered by Rubin in [8,9]). Let CI(K) be the ideal
class group of K, and let g := [K : k]. Then, by applying the elementary approach
used in [13] (hence without using Euler systems), we prove the following formula for
every nontrivial, irreducible, rational character ¥ of G:

(1.1) [ew(Z[g*I]@@Z 0F) tew(Zlg™") @7 SK)} :#[eg(Z[gfl]@oza(K))},

where ey is the idempotent of Z[g~!][G] associated with ¥. By #X we mean the
cardinality of the finite set X. Of course the formula (L)) is already known if we
replace g by wig. This is a consequence of [9, Theorem 1]. Let us remark that the
product of (L) for all the nontrivial irreducible rational characters of G yields the
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equality

#(Z[g™' ®z CUK))
#(Zlg"] @, Cl(k)) ’

(1.2) (257" @2 OF : 2[g " @y &] =

which has been known for a long time. Indeed, is a straightforward consequence
of [, Théoreme 5]. It was the ultimate ingredient used by Rubin to prove the Gras
conjecture.

In Sections [ and 5} we define our Euler systems for p |wy and establish all the
results needed to apply them to the p-part of the ideal class group of K. Their ap-
plication gives Theorem[5.4] which, with the help of (in fact is sufficient),
implies the following theorem.

Theorem 1.1 Let p be a prime number such that p |wy and p 1 [K : k]. Let x be a
nontrivial irreducible /,-character of G. Then

(1.3) [eX(ZP Rz O;) : eX(ZP KRz 81{) ] = #[eX(ZP Rz CI(K)) ] R
where e, is the idempotent of 7,[G] associated with x.

In a forthcoming paper we shall apply Theorem [[1] to the main conjecture for
prime numbers p, p |wy.

2 The Group Ex

It is well known that Stark conjectures are satisfied for abelian extensions of imagi-
nary quadratic fields. Moreover, the Stark units are constructed by using appropriate
elliptic units. On the other hand, the groups of elliptic units are generated by the
norms of these Stark units.

For each nonzero ideal m of Oy, we denote by H,, C C the ray class field of k
modulo m. Suppose m & {(0), Ok}, then Stark proved in [I1]] the existence of an
element € = ¢, € H,, characterized, up to a root of unity, by the following three

properties
(i) Let wy be the number of roots of unity in Hy,. Then the extension Hm(sl/ W) [k
is abelian.

(if) If mis divisible by two prime ideals, then ¢ is a unit of Oy,,. If m = q°, where q
is a prime ideal, then

Wm

@

gon = (@',

where (q)y, is the product of the prime ideals of Oy, that divide q.
(iii) Let |z| = 2z for any complex number z, where Z is the complex conjugate of z.
Then

2.1) Lo =-— S x|

"™ s eGal(Hy /k)

for all the complex irreducible characters x of Gal(H,, /k).
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Here s — Ly (s, x) is the L-function associated with y, defined for the complex num-
bers s such that Re(s) > 1, by the Euler product

Lm(S, X) = H (1 - X(UD)N(p)is) 71,
pfm

where p runs through all prime ideals of O not dividing m. For such ideals, o,
and N(p) are the Frobenius automorphism of H,,/k and the order of the field O /v,
respectively.

For any finite abelian extension L of k, we denote by y; the group of roots of unity
in L, by wy, the order of py, and by ¥, C Z[Gal(L/k)] the annihilator of y;. The
description of JF given in [12} p. 82, Lemme 1.1] and property (i) of €, imply that
for any € Fy,, there exists e,,() € Hy, such that

em(n)"™ = eq.
Definition 2.1 Let P be the subgroup of K* generated by pix and by all the norms
NH.“/H..‘F]K(Em(n))a
where m is any nonzero proper ideal of O and 7 is any element of . By definition,
&k =P NOZ.

At the end of section [ we give another description of Ek as a group of elliptic
units.

3 The Weak Gras Conjecture for £

Let p { g be a prime number, and let Z(,) be the localization of Z at p. Let O, be
the integral closure of Z,) in Q.(,). Remark that O, is a (semi-local) principal ring.
Moreover, if { € jug is such that ¢ # 1, then (1—() € O;. Let us set Voo (2) := —In 2|
forall z € C*. Let {x: K* — R[G] be the G-equivariant map defined by

le(x) =D voox)o

oceG

Let G be the group of complex irreducible characters of G.

Lemma 3.1 Letyx € G be such that X # 1. Let Xpr be the character of Gal(H;, /k)
defined by x, where §,, is the conductor of the fixed field K, ofker(x). Then the following
equality holds in C[G]

(3.1) Opli(Ex)ey, = 0,TkL! (0, Xpr)ey.
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Proof Formula (B.) is a direct consequence of (2.I) and can be proved in the same
way as [13 formula (3.2)]. Indeed, let m be a nonzero proper ideal of Oy, and let
1N € Jn,. Let

exm = Ny, /a,nk(Em)  and  exm(n) := N, /1,0 (Em(0).

Then
H|“

WmEK(EK.,m(n)) = resy (77)£K(5K,m)a
where resy": Fp, — Fx is the natural restriction map. Since this map is surjective
we can proceed now exactly as in the proof of the [13} formula (3.2)]. [ |

To prove formula (LLI) we shall use the generalized index of Sinnott; see [10, §1,
page 187]. Let V be an [F-vector space of finite dimension d, where F = Q or F = R.
Let M and N be two lattices of E, that is, two free Z-submodules of E, of rank d such
that FM = FN = V. Then we define the index (M : N) by

(M : N) = | det()],

where -y is any automorphism of the [F-vector space E such that y(M) = N. If N C
M, then (M : N) coincides with the usual index [M : N]. We also have the following
transitivity formula:

(M:P)=(M:N)(N:P).
This leads to the identity

[M+N:N]
(M : N) = )
[M+ N : M]
which may be used as a definition of (M : N). We refer the reader to [10] for more
details about this generalized index.

Remark 3.2 By the Dirichlet Theorem we know that ¢x(OF) is a lattice of
R[G](1 — e;), where ¢; is the idempotent associated with the trivial character of G. In
particular, for every nontrivial, irreducible, rational character ¥ of G, the Z-module
Lk (OF ey is a lattice of R[G]ey. This implies that for every nontrivial Y € G, the
O,-module O,k (OF )e, is free of rank one. Thus, there exists R, € C* such that

Oplk(Og)ey = R, Ope,.

Lemma 3.3 Let V be a nontrivial irreducible rational character of G. Then there exists
u € O, such that

(Z[G]eq, : @K(Oé)e\p) =u[]R,.

x|
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Proof Lety be an automorphism of the R-vector space egR[G] such that 0 < det(~)
and Y(Z[Gley) = lx(OF )ey. Let (by)yw be a Z-basis of Z[G]ey. Then (by ),y is

an O,-basis of 0,[Gley. Since (e, )|y is also an O -basis of O,[G]ey, the automor-
phism S of the C-vector space C[G]ey, defined by

ﬂl(bx) = €y, X|\Ilv

is such that det(5,) € O;. In the same manner, since ((by)) v and (Re, )|y both
are O-basis of OPEK(Oé )ew, the automorphism 3, of C[G]ey, defined by

BZ(’Y(bx)) :Rxexv X|\Ija

is such that det(3,) € O;. Let 7' be the automorphism of C[G]ey defined by
v'(ey) = Rye, for all x|U. Then det(y') = Hxl‘l’ R,. Let us extend u to C[Gley

by linearity. Since (Z[Gley : ¢x(OF)ey) = det(y) and yo 37! = B;' o/, the
lemma follows. [ |

Lemma 3.4 Let F C K be an extension of k, and let Ry be the regulator of F. We
denote by Ef the set of x € G such that x is trivial on Gal(K/F). Then there exists
v e Oy such that

(3.2) Rr=v [[ R,.
Proof It is easy to see that Rp = (Ir : £r(OF)), where Ir is the augmentation ideal of
Z[Gal(F/k)]. Let
D:=Gal(K/F) and s(D):= Z o,0 €D.
Let corg - 7[Gal(F/k)] — Z|G] be the corestriction map. Then we have
(1 : £6(07)) = ((corgseIp) : corye(£6(0)) ) = (D : €x(05))
But the group lx (07 )/s(D)lx(OF) is finite and is annihilated by #D. Thus,

(Ir : €6(07)) = w(s(D)Ik : s(D)k(OF)),

for some unit w € 0. To get formula (3.2)) we proceed now exactly as in the proof
of Lemma[3.3] [ |

Theorem 3.5 Let V be a nontrivial, irreducible, rational character of G. Then

lew (Zlg™"1 @7 0F) rew(Z[g™ ") @7 Ek) ]| = #(ew(Zlg™"] @7 CUK))) .
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Proof Since K, does not depend on the choice of x|, let us set K, := K. Let Ey
be the set of x € G such that ker() strictly contains Gal(K/Ky). For any I C Ey,

we define

Ky ifl = o,

K[ = .

Nyer By ifI1# 2.
For any I C Zy let (x, (resp. (k) be the Dedekind zeta function of K; (resp. k), and
let Cx,(0) be the first nonzero coefficient of the Taylor expansion of (k,(s) at s = 0.
We also set Zj := Ek,. It is well known that (x, has a zero of order [K; : k] — 1 at 0,
and that for any nontrivial x € G, s — L; (s, xpr) has a zero of order 1 at 0. Then

(3.3) I G (0) = G0 TT L (0, X,
wr XEE]
X#1

where h; := # (CI(K})), wy := # (/LKI), and Ry is the regulator of K;. For any x € é,
let h, € O, and w, € O, be such that

Oph, = Fitto, (eX(Op Ry Cl(K))) and O,w, = Fitt@p(ex(op Q7 uK)) .

By the inclusion-exclusion principle, as in the proof of [13} Proposition 3.2], we ob-
tain from (3.3) and Lemma [3.4] the formula

(3.4) Op [T L (0, %pr) = Op T ywy 'Ry
xe x|

Let us remark that
(3.5) 0,Fkey = Opwyey

forall y € G. Indeed, since pik is a cyclic Z [G]-module, we have Fx = Fittyq) (1),
and then

0,k = Fitto,(6](0, ®z pux) = @ Fitto, (ey (0, @z px)) ey,
XE€G

which implies (B3). Therefore, proceeding as in the proof of Lemma [3.3] one can
show from Lemma[3.Iland (3.5) that

(3.6) 0, (Z[Gley : lx(Ex)er) = O, 1|‘[ wyL{ (0, Xpr)-
x|

From (3.6)) and (3.4)), we obtain

(3.7) Op(Z[Gley : lx(Ex)ew) = Op TT bRy = Op#(ew(Z(p) @7 CUK))) T Ry.

x| x|
From (3.7) and Lemmal[3.3] we have
(3.8) 0, [éK(O;é)eq, : éK(EK)eq,] = OP#(eq,(Z(p) ®z CI(K))) )
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Since p is prime to g, (3.8)) gives
O, [ 2181 (07 Jew : ZIg~ 1k (Ex)ew] = Op#(ew(Z[g™"] @7 CUK)).

This being true for every prime p 1 g, and since the integers we are comparing are
prime to g, we have

(2187160 ew : Zlg™ Uk (Ex)en] = #(ew(Zlg™] @2 CIK))).

But O /€x ~ lx(OF)/lk(Ek), and the theorem follows. [ ]

4 The Euler System

For any finite abelian extension F of k, and any fractional ideal a of k prime to the
conductor of F/k, we denote by (a, F/k) the automorphism of F/k associated with a
by the Artin map. If a C Oy, then we denote by N(a) the cardinality of O /a. Let J be
the group of fractional ideals of k, and let us consider its subgroup P := {xO, x €
k*}. Let H := H(y) C C be the Hilbert class field of k. Then the Artin map gives an
isomorphism from Cl(k) := J/P into Gal(H/k). Let p be a prime number such that
p|wk, and let Cl, (k) be the p-part of Cl(k). Then fix aj, .. ., aj, a finite set of ideals of
Oy such that

Clp(k) = (ar) x - -+ x (@),

where (a;) # 1 is the group generated by the class &; of a; in Cl(k). If n; is the order
of (a;), then (a;)" = a;Of with a; € Ok. If Cl,(k) = 1, then we sets = 1, a; = O,
and a; = 1.

Let p|wy be a prime number as above, and let M be a power of p. Let yy be the
group of M-th roots of unity in C. Then we define

K = K (puar, (0)VM) .

Moreover, we denote by £ the set of prime ideals ¢ of Oy such that ¢ splits completely
in the Galois extension KM(ai/M, . 7asl/M)/k. Exactly as in [9) Lemma 3] or in [2}
Lemma 3.1], we have the following lemma.

Lemma 4.1 For each prime { € L there exists a cyclic extension K(¢) of K of degree
M, contained in the compositum K.Hy, unramified outside ¢, and such that K(£) /K is
totally ramified at all primes above (.

Proof See, for instance, the proof of [2, Lemma 3.1]. [ ]

Let 8 be the set of squarefree ideals of Oy divisible only by primes ¢ € L. If
a=4¥¢--¢, €8, then we set K(a) := K(¥¢;)---K(¥,) and K(Oy) := K. Ifgis
an ideal of Ok, then we denote by 8(g) the set of ideals a € § that are prime to g.
Following Rubin we define an Euler system to be a function a: 8(g) — C*, such
that
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El a(a) € K(a)*;

E2 a(a) € (‘)Iﬁ(a); ifa# O

E3 Ni(o)/k((o(al)) = a(a)=FO™" where Fr(¢) is the Frobenius of ¢ in
Gal(K(a)/k);

E4 a(al) = a(a)FebO WO=D/M nodulo all primes above £.

For the convenience of the reader we recall now the construction of Euler systems
by using elliptic units. To this end we use the elliptic functions ¥(-;L,L"): z —
U(z; L, L") introduced by G. Robert in [4,[6]], where L C L’ are lattices of C such that
the index [L’ : L] is prime to 6. As proved by Robert, for instance in [3}[5], if m is a
nonzero proper ideal of Oy and g is an ideal of O prime to 6m, then ¥(1;m, g~ 'm) €
Hy. Let us denote by r, the order of the kernel of the natural map ;. — (Ox/m)*,
and let m’ be a nonzero proper ideal of Oy such that m|m’, m’ is divisible by the same
prime ideals that divide m and r,,» = 1, then

— m — m/k
Nig, /i (L0, g7 Im)) ™ = g (@ /0,
In particular, Pk is generated as an abelian group by ux and by all the norms
U (8) := N, jar,nxc (P (1;m, g7 '),

where m and g are any nonzero ideals of Oy such that m # Oy and g is prime to 6m1.
If m = nq, where n # Oy and q is a prime ideal of Oy, then

_ n P(1;1, g n) if qn
N, T(1;m, g~ tm))m = ’ .
1, (U g=m) {\If(l;n, gl @/ g g,
Moreover, if q { 11, then W (1;m, g~ 'm)N@ = ¥(1;1n, g~ 1) modulo all primes above
q. Therefore, the map a: 8(mg) — C*, defined by

a(a) == Ngp, ko (¥(1;ma, g~ 'ma)),

is an Euler system satisfying a(1) = W, (g). In particular, we have the following
corollary.

Corollary 4.2 If u € E, then there exists an ideal | of Oy and an Euler system
a: 8(f) = C* such that (1) = u

Proof In view of the discussion above we only have to check the corollary for the
roots of unity in K. We leave this as an exercise or direct the reader to the proof of
(8} Proposition 1.2]. [ |

Remark 4.3 We recall that the group of elliptic units considered by Rubin in [8}9]
is the subgroup of Of generated by ux and by all ¥,,(g)” !, where ¢ € G and m
and g are as above. Let us denote this group by Ck. It is clear that Cx C Eg and
(Ex)® C Ck, and thus

2lg " @z &k = Z[g™ '] @y Ck.
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5 The Gras Conjecture

Exactly as in [[8, Proposition 2.2], one can prove that for any Euler system a: $(g) —
C* there is a natural map

(5.1) Kot 8(8) — KX /(KM k,(a) = a(a)’ modulo (K*)M.

Let J = @®)Z\ be the group of fractional ideals of K written additively. If ¢ is a
prime ideal of Oy, then we define J, := @yZ\. If y € K*, then we denote by
(»)e € Iy, ly] € I/MT and [y], € J;/MI; the projections of the fractional ideal
() :== yOk. Let us suppose that £ € L. Let A’ be a prime ideal of Ok above ¢, and
let m € A — (\)%. Then 7'~ has exact order M in the cyclic group (O /\')%,
because K(¢)/K is cyclic, totally ramified at A := A’ N Ok. In particular, using the
isomorphism Og(y/A =~ Ok/), there exists x5 € (Ox/A\)* such that the image of
7177 in (Og/A)* is equal to (xy)4, where d := (N(¢) — 1)/M. Let us remark that
the projection of x, in (Ox/\)* /((Og/A)*)M is well defined, does not depend on T,
and, in fact, has exact order M. Thus, the isomorphism Ok /¢Og ~ @® A ¢Ok /X allows
us to define a G-equivariant isomorphism

Bo: (Ox/€0K)* /(O /€OK) M — I, /M,

such that the image of an element x := ©,,(x\)* is P¢(x) := Dyex. Let us
consider the map

Pe: K(0)* — (Ox /€0k)* J((Ok [£Ox) )M,

which associates with z the sum @)z such that the image of Z'7% in (Og /A)* is
equal to (zy)?. Let ¢y := —@y, then

(e 0 ) (x) = [Nreoyx(x)]e-

The map ¢, induces a homomorphism {y € K*/(K*)M, [y], = 0} — J,/MJ,,
which we also denote by ¢,. Then, as in 8, Proposition 2.4], one can prove that for
any Euler system a: 8(g) — C*, and any a € 8(g), such that a # 1

_Jo ifl1a,
(5.2) [Ka(@)]e = {W(%(a/@) if fla.

In the sequel, if p is a prime number such that p t [K : k], x a nontrivial irreducible
Z,-character of G, and II is a Z,[G]-module, then we define I, := e, IL. If I is a
Z[G]-module, then we define IT, := e, (Z, ®; II). Before proving Theorem [L.T we
first need to prove the analogue of [9, Theorem 4] and [8, Theorem 3.1]. For this, if
P |wy is a prime number and M is a p-power, then we set

K= KM(a}/M,...,a}/M).
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Lemma 5.1 Let p be a prime number such that p |wy, and let M > p be a power of p.
Let us consider the natural map

O: K* /(KM — K/ (Ky)M.

(i) Ifp=3or(p=2andp, CK)orM =2, thenker(©) = O, /(O ).

(i) If 4|M and wy € {2,6}, then ker(©) is generated by the projections in
K> /(K*)M of O and 2M/?

In particular, ker(©) is annihilated by [K : k] — s(G), where s(G) := > 0,0 € G.

Furthermore, since K’ /Ky is a Kummer extension and ay, . . ., a, are elements of k, the

kernel of the natural map

KX/(KX)M N K/X/(K/X)M
is also annihilated by [K : k] — s(G).

Proof Letx € K* N (Ky)M. If p = 3, then Kyy = K(u3pm)- By [7, Lemma 5.7(i)] we
have x* € (K*)*M, that is to say, x € pu3(K*)M C p(K*)M. If p = 2 and wy = 4,
then Kyy = K(uan). Again by [7, Lemma 5.7(i)] we deduce that x € pu(K*)M.
Suppose now that p = 2 and wy € {2,6}. Then Kyy = K(um). By using the
same arguments as before, we see that x € pp(K(ug))M. If g € Kor M = 2,
we are done. Let us assume that yy ¢ K and 4|M, and write x = zM(, for some
z € K(uq) and ¢ € py. Let o be the unique nontrivial automorphism of K(4)/K.
If 227! € py, then it is easy to check that x € ux(K*)M. Suppose we have the case
z°7' = i, where i* = —1. Since 0(i) = —i and z = a + ib, where a,b € K,
the equation a — ib = o(z) = i(a + ib) implies that b = —a, z = a(1 — i) and
x = aM2M/2(—1)M/4¢. The complex number (g := (1 + i)y/2/2 is a root of unity
of order 8. An easy computaion shows that we can not have z7~! = (;. This proves
assertions (i) and (ii). The rest of the lemma is straightforward. [ |

Lemma 5.2 Suppose p is a prime number such that p t [K : k] and p|wy. Let M be
a power of p. Let x be a nontrivial irreducible /,-character of G. Let HX be the abelian
extension of K corresponding to the x-part CI(K),. Then HX N K’ = K.

Proof The group G acts trivially on Gal(HX N Kj;/K) because K is abelian over
k. On the other hand, Gal(HX N Kj/K) is a G-quotient of Gal(HX/K) =~ CI(K),.
This implies that HX N Kyy = K, since x # 1. In addition, if p 1 [H : k], then
K’ = Ky In particular we have proved that HX N K’ = K in case p { [H : k]. Let
E := Ky (HX N K’). By Kummer theory we deduce from the inclusion E C K’ that
E = Ky (V'/M), where V is a subgroup of the multiplicative group (ay, ..., a;) C k*.
If p|[H : k], then G acts on Gal(E/K)) via the trivial character. This implies that
Gal(E/Ky) = 1 because this group is isomorphic to Gal(HX N K’/K) on which G
acts via x # 1. The proof of the lemma is now complete. ]

Theorem 5.3  Suppose p is a prime number such that p t [K : k] and p |wi. Let M be a
power of p. Let x be a nontrivial irreducible Z,-character of G. Let 3 € (K* /(K*)M),
and A be a 1,|G]-quotient of CI(K),. Let m be the order of 3 in K* /(K* WM W the G-
submodule of K* /(K*)M generated by 3, H the abelian extension of K corresponding
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to A, and L := HNK'(W'M), Then there is a Z[G] generator ¢’ of Gal(L/K) such that
for any ¢ € A whose restriction to L is ¢, there are infinitely many prime ideals \ of Og
of degree one such that

(i)  the projection of the class of X in A is ¢;

(i) ifl:=AN0Okthentl c L;

(iii) [Ble = 0 and thereisu € (Z/MZ[G]); such that p.(8) = (M/m)u.

Proof We follow [8, Theorem 3.1]. Since W C (K*/(K*)M), and x # 1,
we deduce from Lemma [5.]] that the Galois group of the Kummer extension
K'(WYM)/K' is isomorphic as a Z[Gal(Ky/k)]-module to Hom(W, up). But
W =~ (Z/mZ[G]),, which is a direct factor of (Z/mZ)[G]. On the other hand,
Hom((Z/mZ7)[G], pu) is Z[Gal(Ky /k)]-cyclic, generated for instance by the group
homomorphism U: (Z/mZ)[G] — pu defined by ¥(1) = ¢ and ¥(g) = 1, for
g # 1, where ( € py is a primitive m-th root of unity. Therefore, we can find
7 € Gal(K'(W'M)/K"), which generates Gal(K’(W'/M)/K") over Z[Gal(Ky/k)].
The restriction ¢ of 7 to L is a Z[G]-generator of Gal(L/K) ~ Gal(LK’/K’) by
Lemmal[5.2] Let ¢ € Gal(H/K) = A be any extension of ¢/ to H. Then one can find
o € Gal(HK'(W'/M) /K) such that

0'||-| = ¢ and O'lK/(Wl/M) =T.

By the Chebotarev density theorem there exist infinitely many primes A of Ox whose
Frobenius in Gal(HK’(W'/M)/K) is the congugacy class of o, and such that ¢ :=
ANOy is unramified in K’/ (W'/M) /k. Now it is immediate that (i) and (ii) are satisfied.
The rest of the proof is exactly the same as the proof of [8, Theorem 3.1]. ]

Theorem 5.4 Suppose p is a prime number such that p 1 [K : k] and p |wy. Let x be
a nontrivial irreducible 7,,-character of G. Then we have

(5.3) #CI(K) | #(0F /€x)y-

Proof We proceed exactly as in the proofs of [8, Theorem 3.2] or 2} Theorem 4.4].
Let X be a (Qp-irreducible character of G such that X|x, and let X(G) := {X(0), 0 €
G}. Then the ring R := Z,[G], is isomorphic to Z,[X(G)], which is the ring of
integers of the unramified extension Q) [X(G)] of Q. Thus, R is a discrete valuation
ring. Moreover, the R-torsion of any R-module is equal to its Z,-torsion. Since x #
1, Dirichlet unit theorem implies that the quotient (O ), /(1x), is a free R-module
of rank 1. Let us define

Let 11, U, and V be the images of ux, OF, and € in K* /(K*)M, respectively. We
deduce from the above, that U, /1, is a free R/MR-module of rank 1. But since

(5.4) U, /Vy >~ (08)y/(Ek)y ~ R/tR

for some divisor ¢ of M, there exists { € U, giving an R-basis of U, /u, and such
that & € (€x),. In particular,  has order M in K* /(K*)M. By Corollary 42
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there exists an ideal g of O and an Euler system «: 8(g) — C*, such that the map
K := Kq defined by (5] satisfies k(1) = &'. We define inductively classes ¢y, . .., ¢; €
Cl(Ok)y» prime ideals Ay, ..., A; of Ok, coprime with g, and ideals a, . .., a; of Ok

such that ¢ = 1 and aqy = 1. Leti > 0, and suppose that ¢y, ..., ¢;and Ap,..., A\
(if i > 1) are defined. Then we set a; = [[,.,«; ¢s (ifi > 1), where £, := A, N Ox.
Moreover: o

o If Cl(Ok)y # (Co,...,¢)G where (co,..., ()¢ is the G-module generated
by ¢,..., ¢, then we define ¢;y; to be any element of Cl(Ox), whose image in
Cl(Ok)y/{¢0o, - .-, ti)g is nontrivial and is equal to a class ¢ which restricts to the

generator ¢’ of Gal(L/K) in Theorem[5.3]applied to 5 := k(a;),, the image of x(a;)
in (K*/(K*)M),, and to A := Cl(Ok),/ (¢, - - -, ;). Also we let \;1; be any prime
ideal of O prime to g and satisfying Theorem[5.3] with the same conditions.

o IfCl(Ok)y = (o, - - -, i), then we stop.

This construction of our classes ¢; implies that the ideals £; := X; N O € 8(g). Let
m; be the order of r(q;), in K> /(K*)™, and let t; := M /m;. By Theorem[5.3(iii) we
have ¢y, (k(a;)y) = ut;Aj;1 for some u € Z/MZ[G];. But a;;; = q;¢;4;. Thus

(5.5) (K1) ] = utidiz,

thanks to (52). Now, by the definition of #;,, the fractional ideal of Og generated
by k(ajs1)y is a ti1-th power. Thus, we must have t;,;|t;. Actually, we can say more.
Indeed, there exist { € pg and z € K* such that k(a;+;), = (Z*'. Therefore, (5.2)

and (53] imply
(5.6) 20k = (higp)" /5 (j];[1 X ) phle,

where u; € 7,[G] forall j € {I,...,i} and b is a fractional ideal of Og. But we
see from (5.4) that to|#(Of /Ek),, and since t;41]to, the integer M/f;,; annihilates
Cl(Ok)y. The identity then implies

(5.7) (ti/tiv1)Civ1 € (Co5 - .., i)

Let dim(x) := [Q,[X(G)] : Q], then (57) implies
#CU(Ok) | TL(tj—1/t)m00 | 1m0 — (9% /€ ). n
j=1

Proof of Theorem[I.T] Let the hypotheses and notation be as in Theorem [[1l Let
U be the irreducible rational character of G such that x|¥. Formula (L) may be
written as follows

[T #CU(K)y = [T #(OF /€k)y»
x| X

where x’ runs over the irreducible Z,-characters of G such that x'|¥. Moreover, the
formula (5.3) is satisfied for such characters x’, since x # 1. This implies (13). M
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