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symplectic geometry will find in this book a lot of useful information which has never been given
in such detail before.

Here is an outline of the contents.

Part 1. Multiplication on the Tangent Bundle

(1) Introduction.

(2) Definition and first properties of F -manifolds (finite-dimensional algebras; vector bundles
with multiplication; decomposition of F -manifolds; examples; potentiality).

(3) Massive F -manifolds and Lagrange maps (Lagrange property; existence of Euler fields;
Lyashko–Looijenga maps and graphs of Lagrange maps; miniversality).

(4) Discriminants and modality of F -manifolds (two-dimensional F -manifolds; logarithmic
vector fields; discriminants and modality of germs of F -manifolds; analytic spectrum).

(5) Singularities and Coxeter groups (hypersurface singularities; boundary singularities; Cox-
eter groups and F -/Frobenius manifolds; three-dimensional F -manifolds).

Part 2. Frobenius Manifolds, Gauss–Manin Connections, and Moduli Spaces for
Hypersurface Singularities

(6) Introduction.

(7) Connections over the punctured plane (flat vector bundles on the punctured plane; (sat-
urated) lattices; Riemann–Hilbert–Birkhoff problem; spectral numbers).

(8) Meromorphic connections (logarithmic vector fields and differential forms; logarithmic
poles along divisors).

(9) Frobenius manifolds and second structure connections (this chapter reviews some basic
properties of Frobenius manifolds).

(10) Gauss–Manin connections for hypersurface singularities (semi-universal unfoldings and
F -manifolds; Gauss–Manin connections; higher residue pairings; polarized mixed Hodge
structures and opposite filtrations; the Brieskorn lattice).

(11) Frobenius manifolds for hypersurface singularities.

(12) µ-constant stratum (canonical complex structure; period map and infinitesimal Torelli
theorem).

(13) Moduli spaces for singularities (compatibilities, symmetries, and global moduli spaces for
singularities).

(14) Variance of the spectral numbers.

S. MERKULOV

Peller, V. V. Hankel operators and their applications (Springer, 2003), 784 pp., 0 387 95548 8
(hardback), £63 (US$99.95).

A Hankel operator on a Hilbert space with orthonormal basis (en)∞
n=0 is a linear mapping

T such that 〈Tem, en〉 = am+n for some sequence of numbers (an)∞
n=0. Thus, if the operator is

represented as an infinite matrix, then the entries are constant on stripes going from the bottom
left to the top right—this should be contrasted with a Toeplitz matrix, where the stripes go
from top left to bottom right.

https://doi.org/10.1017/S0013091503234714 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503234714


254 Book reviews

Hankel operators have been around for over 120 years: one of the earliest results in the subject
is the 1881 theorem of Kronecker, characterizing the finite-rank Hankel operators. However, it is
the 1957 result of Nehari characterizing the boundedness of these operators which leads to the
use of the Hardy spaces of analytic functions in the unit disc, and brings out the link between
the operator theory and function theory that is so important in this area.

There have already been several short texts and survey articles written about Hankel oper-
ators, and these mappings have played a key part in more general works on operator theory,
function theory and control theory. However, this is the first major monograph on the subject,
and it covers far more ground.

The first chapter of this book, which is introductory, already shows some of the many appli-
cations of Hankel operators. For example, they appear inevitably in the solution of classical
interpolation problems associated with Nevanlinna, Pick, Carathéodory and Fejér; they are also
seen in the Hamburger moment problem, and as integral operators on the half-line. The theory
of Hankel operators is closely linked with work on Toeplitz operators, to which a chapter is
devoted, giving their basic properties.

Beyond that, Peller has chosen a wide selection of applications, in most of which he also
appears as a major contributor to the theory: over 30 of the author’s own papers are cited. The
celebrated Adamjan–Arov–Krein theory, which links approximation by meromorphic functions
with the approximation of a Hankel operator by operators of a fixed rank, leads into topics
such as membership of the Schatten–von Neumann classes, continuity of the (nonlinear) best
uniform approximation mapping A (and the notion of a ‘decent’ function space, which is a
Banach algebra satisfying certain axioms that guarantee continuity of A), and then applications
to rational approximation.

The book covers two important applications outside what is normally regarded as mainstream
functional analysis. First, there is the theory of stationary Gaussian processes, and the intriguing
notion usually expressed poetically as the ‘angle between past and future’, which is well known
in harmonic analysis: the past is the span of a sequence of random variables (Xj)j<0, while the
future is the span of (Xj)j�0. It turns out that problems involving regularity of processes may
be formulated in the language of Hankel operators, as explained in a complex 80-page paper of
Peller and Khruschev published in 1982.

Second, Hankel operators appear throughout modern control theory, since various fundamen-
tal problems to do with designing stabilizing controllers for linear systems can be reformulated
as approximation problems, which have their solution in terms of Hankel operators. Peller’s
treatment is not exhaustive, but he gives a good introduction to some of the main questions
considered.

Other topics covered in some detail include spectral theory (and inverse spectral problems,
where the idea of a realization, taken from control theory, plays an important role), Wiener–
Hopf factorizations, and superoptimal approximation of analytic matrix-valued functions—it is
certainly pleasing that one now has a complete account of some of these subjects in one place
for the first time.

The final chapter contains one recent and unexpected application of Hankel operators. The
Halmos problem from 1970 asked whether a power-bounded Hilbert space operator (i.e. one
such that whenever p is a polynomial, ‖p(T )‖ is dominated by the supremum of |p(z)| on
the unit disc, at least to within an absolute constant) is necessarily similar to a contraction.
(The condition of power-boundedness is necessary because of the von Neumann inequality.) The
question stimulated a great deal of research, and the answer was eventually shown to be ‘no’,
with the first counterexamples constructed using the theory of Hankel operators.

The book has two brief appendices: the first gives the necessary background on Hilbert space
operators; the second presents the function spaces (Hardy spaces, BMO, Besov spaces, etc.) that
are required in the study of Hankel operators.

For reasons of space (the book is already nearly 800 pages long), the author deliberately
restricts himself to ‘classical’ Hankel operators on the Hardy space H2, although vector-valued
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spaces are included in this scheme. Thus much fine work on Hankel operators on Bergman spaces
and multivariable Hardy spaces is necessarily omitted. Indeed, this lengthy book contains a huge
amount of interesting material, but even so there are other major topics which one is sorry not
to see here: the reviewer’s own personal choice would have included the very influential L∞ ‘sum
of the tail’ model reduction results of Glover, the explicit formulae for Hankel singular values of
delay systems obtainable by solving two-point boundary-value problems, and the recent strik-
ing link between Bonsall’s theorem on boundedness of Hankel operators and the admissibility
of control and observation operators for semigroups. Further applications in non-commutative
geometry and perturbation theory must also be sought elsewhere. Nonetheless, this is a very
clear and well-written book, which will be a major source of reference for many years to come.

J. R. PARTINGTON

Peletier, L. A. and Troy, W. C. Spatial patterns: higher order models in physics and mechan-
ics (Birkhäuser, 2001), 320 pp., 0 8176 4110 6 (hardback), £47.

One of the best-understood objects in the theory of nonlinear partial differential equations is
the scalar reaction–diffusion equation in one space dimension:

ut = duxx + f(u), (1.1)

where either x ∈ I, a bounded interval, in which case boundary conditions would be prescribed,
or on the whole real axis R.

Work of Kolmogorov, Fife, Henry, Hale, Temam and others (see, for example, [1,2] or, for a
short overview, Chapter 1 of this book) has provided decisive answers to questions such as the
asymptotic behaviour of solutions; dynamics of transients; structure of the set of equilibria and,
remarkably, of stable and unstable manifolds of equilibria; existence and structure of compact
attractors; existence of inertial manifolds, of travelling waves, etc.

In obtaining these results, one is helped by two facts. First of all, for stationary solutions
of (1.1) phase-plane techniques are available, and, secondly, the maximum principle severely
constrains the possibilities of dynamical behaviour and of static patterns.

While models of the type of (1.1) crop up in a number of applications (simplified models of
combustion, population dynamics, etc.), one is often naturally led to parabolic equations more
complicated than (1.1). Frequently, systems of reaction–diffusion equations are encountered. In
addition, many different types of consideration, such as of viscous effects, lead to higher-order
parabolic equations. The book under review is, to the present reviewer’s knowledge, the first
monograph dedicated to the analysis of fourth-order scalar parabolic equations in one space
dimension.

From the above it should be clear that analysis of this class of equations, which include the
Kuramoto–Sivashinsky, the Swift–Hohenberg and the elastic beam equations (the two latter
ones are briefly covered in Chapters 9 and 10), as well as the Cahn–Hilliard equations and the
thin-film equations, among many others (for a review, see Chapter 1), is much more difficult
than that of (1.1), since the phase space of stationary solutions is now four dimensional and the
maximum principle does not apply. Hence one should not expect universally applicable tools,
and at this stage analysis has to be conducted on a case-to-case basis. How this can be done in
practice is shown in an admirable way in this book.

The ‘canonical equation’ considered in detail in the present book is

uxxxx + quxx + f(u) = 0, x ∈ R. (1.2)

To see how (1.2) arises, consider, for example, the extended Fisher–Kolmogorov (EFK) equation:

ut = −γuxxxx + uxx + u − u3.
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