A PROBLEM OF EXPRESSIBILITY IN SOME AMALGAMATED PRODUCTS OF GROUPS

VALERIĬ FAĬZIEV
(Received 1 February 1999; revised 13 November 2000)

Communicated by R. B. Howlett

Abstract

Let S be a subset of a group G such that $S^{-1}=S$. Denote by $\operatorname{gr}(S)$ the subgroup of G generated by S, and by $l_{S}(g)$ the length of an element $g \in \operatorname{gr}(S)$ relative to the set S. Suppose that V is a finite subset of a free group F of countable rank such that the verbal subgroup $V(F)$ is a proper subgroup of F. For an arbitrary group G, denote by $\bar{V}(G)$ the set of values in G of all the words from the set V. In the present paper, for amalgamated products $G=A *_{H} B$ such that $A \neq H$ and the number of double cosets of B by H is at least three, the infiniteness of the set $\left\{l_{s}(g) \mid g \in \operatorname{gr}(S)\right\}$, where $S=\bar{V}(G) \cup \bar{V}(G)^{-1}$, is established.

2000 Mathematics subject classification: primary 20E06, 20 F22.
Keywords and phrases: Group, verbal subgroup, the width of verbal subgroup.
Let G be an arbitrary group and let S a subset of G such that $S^{-1}=S$. Denote by $\operatorname{gr}(S)$ the subgroup of G generated by S. We say that the width of the set S is finite if there is $k \in \mathbb{N}$ such that any element g of $\operatorname{gr}(S)$ is representable in the form

$$
\begin{equation*}
g=s_{1} s_{2} \cdots s_{n}, \quad \text { where } \quad s_{i} \in S \quad \text { and } \quad n \leq k . \tag{1}
\end{equation*}
$$

The minimal k with this property is called the width of the set S in G, and we denote it by wid (S, G). If for each $k \in \mathbb{N}$ there is an element $g_{k} \in \operatorname{gr}(S)$ that cannot be expressed in the form (1), we say that the width of S in G is infinite. Many papers are devoted to investigating widths of various subsets: see [1-3, 6-9].

In this paper we consider widths of verbal subgroups. Specifically, let V be a finite subset of the free group F of countable rank. We say that V is proper if $V(F)$ is a proper subgroup of F. By the width of the verbal subgroup $V(G)$ of an arbitrary group G we mean the width of the set $\bar{V}(G) \cup \bar{V}(G)^{-1}$ in G. Widths of verbal subgroups have been investigated in a series of papers (see [2,8,9] and references
(C) 2001 Australian Mathematical Society 0263-6115/2001 \$A2.00 +0.00
therein). In the present paper, for amalgamated products $G=A *_{H} B$ such that $A \neq H$ and the number of double cosets of B by H is at least three, the infiniteness of the width of the verbal subgroup $V(G)$ is established.

DEFINITION 1. A quasicharacter of a semigroup S is a real-valued function f on S such that the set $\{f(x y)-f(x)-f(y) \mid x, y \in S\}$ is bounded.

DEFINITION 2. By a pseudocharacter of a semigroup S (or group S) we mean a quasicharacter f satisfying the following condition: $f\left(x^{n}\right)=n f(x)$ for all $x \in S$ and all $n \in \mathbb{N}$ (and all $n \in \mathbb{Z}$ if S is group).

The set of quasicharacters of a semigroup S is a vector space (with respect to the usual operations of addition of functions and their multiplication by numbers) which will be denoted by $K X(S)$. The subspace of $K X(S)$ consisting of pseudocharacters will be denoted by $P X(S)$, and the subspace consisting of real additive characters of S will be denoted by $X(S)$.

DEFINITION 3. By a quasicharacter of a semigroup S with involution $*$ we mean a quasicharacter φ such that $\varphi\left(v^{*}\right)=-\varphi(v)$ for all $v \in S$.

The set of quasicharacters of a semigroup S with involution will be denoted by $K X(S, *)$.

Let $G=A *_{H} B$ be the amalgamated product of two nontrivial groups A and B. Let $B=H \cup\left(\bigcup_{i \in I} H b_{i} H\right)$ be the decomposition of the group B into double cosets. We assume that $|I| \geq 2$. Let \mathscr{F} be the free monoid with free generators $X=\left\{x_{i} \mid i \in I\right\}$. Define $\xi: B \backslash H \rightarrow X$ by $\xi(b)=x_{i}$ whenever $b \in H b_{i} H$. The mapping $b \mapsto b^{-1}$ on B induces a permutation $*$ of order two on the set X, as follows: if $b_{i}^{-1} \in H b_{j} H$ we set $x_{i}^{*}=x_{j}$. Now we extend $*$ to an involution on the entire semigroup \mathscr{F}, that is, for $v=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ set $v^{*}=x_{i_{n}}^{*} \cdots x_{i_{2}}^{*} x_{i_{1}}^{*}$. Let $A_{0}=A \backslash H$ and $B_{0}=B \backslash H$.

DEFINITION 4. Let $g \in G \backslash H$. By a canonical (or reduced) form of the element g we mean an expression of the form

$$
\begin{equation*}
g=c_{1} c_{2} \cdots c_{k} \tag{2}
\end{equation*}
$$

where $c_{i} \in A_{0} \cup B_{0}$ and $c_{i} c_{i+1} \notin A_{0} \cup B_{0}$.
Given a canonical form as above, we put $\dot{g}=c_{1}$ and $\ddot{g}=c_{k}$. Now we define $\xi: G \rightarrow \mathscr{F}$ as follows. If $g \in A$ we set $\xi(g)=1$. If $g \notin A$ and (2) is a canonical form for g, we set $\xi(g)=\xi\left(c_{1}\right) \xi\left(c_{2}\right) \cdots \xi\left(c_{k}\right)$. It is clear that the mapping ξ is well defined. Now for each word v from the semigroup \mathscr{F} we introduce the set
of 'beginnings' $H(v)$ and the set of 'endings' $K(v)$ as follows. If $v \in X$, we put $H(v)=K(v)=\emptyset$. If $v=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, where $i_{j} \in I$ and $n>1$, we set

$$
\begin{aligned}
H(v) & =\left\{x_{i_{1}}, x_{i_{1}} x_{i_{2}}, \ldots, x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-2}}, x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}}\right\}, \\
K(v) & =\left\{x_{i_{2}} \cdots x_{i_{n-1}} x_{i_{n}}, x_{i_{3}} \cdots x_{i_{n-1}} x_{i_{n}}, \ldots, x_{i_{n-1}} x_{i_{n}}, x_{i_{n}}\right\} .
\end{aligned}
$$

It is evident that $H(w) \cap K(w)=\emptyset$ if and only if $H\left(w^{*}\right) \cap K\left(w^{*}\right)=\emptyset$.
DEFINITION 5. Two elements v and w of \mathscr{F} are called conjugate if either $v=w$ or there exist elements a and b in \mathscr{F} such that $v=a b$ and $w=b a$. The conjugacy relation will be denoted by \sim.

Denote by P^{+}the set of words w of length at least two in the alphabet X with the property that $H(w) \cap K(w)=\emptyset$ and $w \nsim w^{*}$. For any word $w \in P^{+}$and any $v \in \mathscr{F}$ denote by $\psi_{w}(v)$ the number of occurrences of w in v. Note that two occurrences of w in v cannot overlap, since the overlapping portion would lie in $H(w) \cap K(w)$. For each pair of elements x, y from \mathscr{F} we define a measure $\mu_{x, y}$ on P^{+}as follows: we set $\mu_{x, y}(w)=1$ if $w=a b$ for some $a \in K(x) \cup\{x\}$ and $b \in H(y) \cup\{y\}$; otherwise we set $\mu_{x, y}(w)=0$. It is easy to verify that $\psi_{w}(x y)-\psi_{w}(x)-\psi_{w}(y)=\mu_{x, y}(w)$ for all $w \in P^{+}$and $x, y \in \mathscr{F}$. Now for $w \in P^{+}$and $v \in \mathscr{F}$ we put

$$
\eta_{w}(v)=\psi_{w}(v)-\psi_{w^{*}}(v) .
$$

Let $\Delta_{u, v}(w)=\mu_{u, v}(w)-\mu_{u, v}\left(w^{*}\right)$. We obtain the following equality

$$
\eta_{w}(u v)-\eta_{w}(u)-\eta_{w}(v)=\Delta_{u, v}(w) .
$$

It is obvious that the relations $\eta_{w}\left(v^{*}\right)=-\eta_{w}(v)$ and $\left|\Delta_{u, v}(w)\right| \leq 1$ hold; hence the function η_{w} is an element of the space $K X(\mathscr{F}, *)$.

Next we define a metric $d(\cdot, \cdot)$ on the semigroup \mathscr{F}. By an elementary transformation of a word v in the alphabet X we mean an insertion or deletion of some $a \in X$. It is clear that any two words u and v from \mathscr{F} can be connected by some sequence of elementary transformations; we define the distance $d(u, v)$ between u and v to be the minimal number of elementary transformations required to connect them. It is clear that the function $d(u, v)$ is a metric, and that it is preserved by the left and right actions of \mathscr{F}.

Lemma 1. Suppose that $u, v \in \mathscr{F}$ with $d(u, v) \leq 1$. Then there exists a set of at most three pairs of elements $z_{i}, s_{i} \in \mathscr{F}$ such that for all $w \in P^{+}$we have

$$
\eta_{w}(u)-\eta_{w}(v)=\sum_{i} \Delta_{z_{i}, s_{i}}(w) .
$$

Furthermore, $\left|\eta_{w}(u)-\eta_{w}(v)\right| \leq 2$.

Proof. We may assume that v is obtained from u by the insertion of one letter. Thus we have $u=u_{1} u_{2}$ and $v=u_{1} a u_{2}$, where $a \in X$. Hence, $\psi_{w}(v)=\psi_{w}\left(u_{1} a u_{2}\right)=$ $\psi_{w}\left(u_{1}\right)+\psi_{w}(a)+\psi_{w}\left(u_{2}\right)+\mu_{u_{1}, a u_{2}}(w)+\mu_{a, u_{2}}(w)$ and $\psi_{w}(u)=\psi_{w}\left(u_{1}\right)+\psi_{w}\left(u_{2}\right)+$ $\mu_{\mu_{1}, u_{2}}(w)$. Therefore,

$$
\begin{aligned}
\psi_{w}(v)-\psi_{w}(u) & =\psi_{w}(a)+\mu_{u_{1}, a u_{2}}(w)+\mu_{a, u_{2}}(w)-\mu_{u_{1}, u_{2}}(w) \\
& =\mu_{u_{1}, a u_{2}}(w)+\mu_{a, u_{2}}(w)-\mu_{u_{1}, u_{2}}(w)
\end{aligned}
$$

It is easy to see that $\mu_{u_{1}, a u_{2}}(w)+\mu_{a . u_{2}}(w) \in\{0,1\}$ and so it follows that $\psi_{w}(v)-$ $\psi_{w}(u) \in\{0, \pm 1\}$. Since the same holds for w^{*}, we have $\eta_{w}(v)-\eta_{w}(u) \in\{0, \pm 1, \pm 2\}$. Moreover,

$$
\begin{aligned}
\eta_{w}(v)-\eta_{w}(u)= & \psi_{w}(v)-\psi_{w^{*}}(v)-\psi_{w}(u)+\psi_{w^{*}}(u) \\
= & \psi_{w}(v)-\psi_{w}(u)-\psi_{w^{*}}(v)+\psi_{w^{*}}(u) \\
= & \mu_{u_{1}, a u_{2}}(w)+\mu_{a, u_{2}}(w)-\mu_{u_{1}, u_{2}}(w) \\
& -\mu_{u_{1}, a u_{2}}\left(w^{*}\right)-\mu_{a, u_{2}}\left(w^{*}\right)+\mu_{u_{1}, u_{2}}\left(w^{*}\right) \\
= & \Delta_{u_{1}, a u_{2}}(w)+\Delta_{a, u_{2}}(w)-\Delta_{u_{1}, u_{2}}(w)
\end{aligned}
$$

and the lemma is proved.
COROLLARY 1. Let $u, v \in \mathscr{F}$ with $d(u, v) \leq k$. There exists a set of at most $3 k$ pairs of elements $z_{i}, s_{i} \in \mathscr{F}$ such that for all $w \in P^{+}$we have

$$
\eta_{w}(u)-\eta_{w}(v)=\sum_{i} \Delta_{z_{i}, s_{i}}(w)
$$

Furthermore, $\left|\eta_{w}(u)-\eta_{w}(v)\right| \leq 2 k$.
Definition 6. Let $g \in G$ with $g \neq 1$. By subdivision of g we mean an expression the form

$$
g=g_{1} g_{2} \cdots g_{m}
$$

where the g_{i} are canonical forms for each i, and $\ddot{g}_{i} \dot{g}_{i+1} \notin A_{0} \cup B_{0}$.
Lemma 2. Suppose that the elements $g, t \in G$ satisfy $\ddot{g} i \notin H$. Then

$$
d(\xi(g t), \xi(g) \xi(t)) \leq 3 .
$$

Proof. It is clear that $\xi(g t)=\xi(g) \xi(t)$ unless \ddot{g} and \dot{i} are both in B. Writing $g=g_{1} b_{1}$ and $t=b_{2} t_{1}$, where $b_{1}=\ddot{g}$ and $b_{2}=\dot{t}$, we see that $\xi(g) \xi(t)=$ $\xi\left(g_{1}\right) x_{1} x_{2} \xi\left(t_{1}\right)$, where $x_{1}=\xi\left(b_{1}\right)$ and $x_{2}=\xi\left(b_{2}\right)$ are elements of X. Furthermore, $\xi(g t)=\xi\left(g_{1}\right) x_{3} \xi\left(t_{1}\right)$, where $x_{3}=\xi\left(b_{1} b_{2}\right) \in X$. Now $\xi(g) \xi(t)$ can be transformed into $\xi(g t)$ by deleting x_{1} and x_{2} and inserting x_{3}.

COROLLARY 2. Suppose that the elements $g, t \in G$ satisfy $\ddot{g} \dot{\not} \notin H$. Then

$$
\left|\eta_{w}(\xi(g t))-\eta_{w}(\xi(g) \xi(t))\right| \leq 6
$$

for all $w \in P^{+}$. Further, there is a set of at most nine pairs of elements z_{i}, s_{i} from \mathscr{F} such that

$$
\eta_{w}(\xi(g t))-\eta_{w}(\xi(g) \xi(t))=\sum_{i} \Delta_{z_{i}, s_{i}}(w)
$$

for all $w \in P^{+}$. Since $\eta_{w}(\xi(g) \xi(t))-\eta_{w}(\xi(g))-\eta_{w}(\xi(t))=\Delta_{\xi(g), \xi(t)}(w)$, there is a set of at most ten pairs of elements z_{i}, s_{i} such that

$$
\eta_{w}(\xi(g t))-\eta_{w}(\xi(g))-\eta_{w}(\xi(t))=\sum_{i} \Delta_{z_{i}, s_{i}}(w)
$$

For each $w \in P^{+}$we define a function $\rho_{w}: G \rightarrow \mathbb{R}$ by $\rho_{w}(g)=\eta_{w}(\xi(g))$ for all $g \in G$. Our next result shows that ρ_{w} is a quasicharacter.

Proposition 1. For any x, y from G there exists a set of at most twelve pairs of elements g_{i}, t_{i} from G such that the relation

$$
\rho_{w}(x y)=\rho_{w}(x)+\rho_{w}(y)+\sum_{i} \Delta_{\xi\left(g_{i}\right), \xi\left(t_{i}\right)}(w)
$$

holds for all $w \in P^{+}$. Hence, we have the following estimate

$$
\left|\rho_{w}(x y)-\rho_{w}(x)-\rho_{w}(y)\right| \leq 12 .
$$

PROOF. If $\ddot{x} \dot{y} \notin H$ the result follows immediately from Corollary 2 above. So we may assume that $\ddot{x} \dot{y} \in H$. Now let $x=g z_{1}$ and $y=z_{2} t$ be subdivisions of x and y such that $z_{1} z_{2} \in H$ and $\ddot{g} z_{1} z_{2} \dot{t} \notin H$. Then $\xi(x)=\xi(g) \xi\left(z_{1}\right), \xi(y)=\xi\left(z_{2}\right) \xi(t)$ and $\xi\left(z_{2}\right)=\xi\left(z_{1}\right)^{*}$. Hence, we obtain the following relations

$$
\begin{aligned}
\eta_{w}(\xi(x)) & =\eta_{w}\left(\xi(g) \xi\left(z_{1}\right)\right)=\eta_{w}(\xi(g))+\eta_{w}\left(\xi\left(z_{1}\right)\right)+\Delta_{\xi(g), \xi\left(z_{1}\right)}(w), \\
\eta_{w}(\xi(y)) & =\eta_{w}\left(\xi\left(z_{2}\right) \xi(t)\right)=\eta_{w}(\xi(t))+\eta_{w}\left(\xi\left(z_{2}\right)\right)+\Delta_{\xi\left(z_{2}\right), \xi(t)}(w), \\
\eta_{w}(\xi(x))+\eta_{w}(\xi(y)) & =\eta_{w}(\xi(g))+\eta_{w}(\xi(t))+\Delta_{\xi(g), \xi\left(z_{1}\right)}(w)+\Delta_{\xi\left(z_{2}\right), \xi(t)}(w) .
\end{aligned}
$$

Now $\xi\left(g z_{1} z_{2}\right)=\xi(g)$, since $z_{1} z_{2} \in H$, and so $\eta_{w}(\xi(x y))-\eta_{w}(\xi(x))-\eta_{w}(\xi(y))$ equals

$$
\eta_{w}\left(\xi\left(g z_{1} z_{2} t\right)\right)-\eta_{w}\left(\xi\left(g z_{1} z_{2}\right)\right)-\eta_{w}(\xi(t))-\Delta_{\xi(g), \xi\left(z_{1}\right)}(w)-\Delta_{\xi\left(z_{2}\right), \xi(t)}(w)
$$

Hence by Corollary 2 (applied with $g z_{1} z_{2}$ in place of g) there is a set of twelve or fewer pairs g_{i}, t_{i} such that $\eta_{w^{\prime}}(\xi(x y))-\eta_{w}(\xi(x))-\eta_{w}(\xi(y))=\sum_{i} \Delta_{\xi\left(g_{i}\right), \xi\left(t_{i}\right)}(w)$.

Definition 7. An element $v \in \mathscr{F}$ is said to be simple if there is no integer $m \geq 2$ such that $v=w^{m}$ for some $w \in \mathscr{F}$.

Obviously for any $u \in \mathscr{F}$ there is an $n \in \mathbb{N}$ and a simple element w such that $u=w^{n}$. It is clear that if $u \sim v$, then u is simple if and only if v is simple, and $u^{m} \sim v^{m}$ for all $m \in \mathbb{N}$.

In [5] the following result was obtained.
Lemma 3. If v is a simple element from \mathscr{F}, then there is $w \in \mathscr{F}$ such that $v \sim w$ and $H(w) \cap K(w)=\emptyset$.

Lemma 4. Let $v \in \mathscr{F}$ be an element of length at least two with $v \nsucc v^{*}$. Then there exist $w \in P^{+}$and $n \in \mathbb{N}$ such that $v \sim w^{n}$.

Proof. Suppose that $v=w_{1}^{n}$, where w_{1} is simple. It is clear that $w_{1} \nsucc w_{1}^{*}$. Now by Lemma 3 we obtain that there is $w \sim w_{1}$ such that $H(w) \cap K(w)=\emptyset$.

In [4] the following result was obtained.
Theorem 2. Let S be a semigroup, and f a quasicharacter of S such that $\mid f(x y)$ -$f(x)-f(y) \mid<c$ for all $x, y \in S$. Then the function

$$
\widehat{f}(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(x^{2^{\prime \prime}}\right)
$$

is well defined and is a pseudocharacter, with $|\widehat{f}(x y)-\widehat{f}(x)-\widehat{f}(y)|<4 c$ for all $x, y \in S$.

Corollary 4. Let G be a group, and f a quasicharacter of G such that $\mid f(x y)-$ $f(x)-f(y) \mid<c$ for all $x, y \in G$. Then the function

$$
\widehat{f}(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(x^{2^{n}}\right)
$$

is well defined and is a pseudocharacter, with $|\widehat{f}(x y)-\widehat{f}(x)-\widehat{f}(y)|<4 c$ for all $x, y \in G$.

PROOF. By Theorem 2 it suffices to show that for each $x \in G$ the equality $\widehat{f}\left(x^{-1}\right)=$ $-\widehat{f}(x)$ holds. Since $\widehat{f}\left(x^{n}\right)=n \widehat{f}(x)$ for all $x \in G$ and $n \in \mathbb{N}$, we obtain $\widehat{f}(1)=0$. Hence $\left|\widehat{f}(1)-\widehat{f}(x)-\widehat{f}\left(x^{-1}\right)\right|<4 c$ becomes $\left|\widehat{f}(x)+\widehat{f}\left(x^{-1}\right)\right|<4 c$ for all $x \in G$, whence it follows that

$$
n\left|\widehat{f}(x)+\widehat{f}\left(x^{-1}\right)\right|=\left|\widehat{f}\left(x^{n}\right)+\widehat{f}\left(\left(x^{-1}\right)^{n}\right)\right|<4 c
$$

for all $x \in G$ and $n \in \mathbb{N}$. This is possible only if $\widehat{f\left(x^{-1}\right)}=-\widehat{f}(x)$. Now for each $k>0$ we have $\widehat{f}\left(x^{-k}\right)=\widehat{f}\left(\left(x^{k}\right)^{-1}\right)=-\widehat{f}\left(\left(x^{k}\right)\right)=-k \widehat{f}(x)$, and the corollary is proved.

In particular, it follows from Corollary 4 that $\widehat{\rho}_{w}$ is a pseudocharacter of G whenever $w \in P^{+}$.

Proposition 2. Let $C \triangleleft G$ and $C \nsubseteq H$. Then there exists a pseudocharacter φ of G such that $\left.\varphi\right|_{C} \not \equiv 0$.

Proof. By Theorem 1 there is $g \in C$ of the form $g=\alpha_{1} \beta_{1} \cdots \alpha_{k} \beta_{k}$ with $\alpha_{i} \in$ $(A \backslash H)$ and $\beta_{i} \in(B \backslash H)$ for each i, such that if $v=\xi(g) \in \mathscr{F}$ then $v \nsim v^{*}$.

Replacing g by a conjugate of itself if necessary, by Lemma 4 we may assume that $v=w^{n}$ for some $w \in P^{+}$and $n \in \mathbb{N}$. The pseudocharacter $\widehat{\rho}_{w}$ then has the desired property, since $\rho_{w}\left(g^{k}\right)=n k$ for all $k \in \mathbb{N}$, and thus $\widehat{\rho}_{w}(g)=n \neq 0$. This completes the proof.

Lemma 5. Let $\varphi \in P X(G)$, and suppose that $|\varphi(x y)-\varphi(x)-\varphi(y)|<\varepsilon$ for all $x, y \in G$. Then:
(A) The inequality $\left|\varphi\left(x_{1} x_{2} \cdots x_{n+1}\right)-\sum_{i=1}^{n+1} \varphi\left(x_{i}\right)\right|<n \varepsilon$ holds for any positive integer n and any $x_{1}, x_{2}, \ldots, x_{n} \in G$.
(B) If φ is a bounded function, then $\varphi \equiv 0$.
(C) $\varphi\left(a^{-1} b a\right)=\varphi(b)$ for any $a, b \in G$.

Proof. Assertion (A) is easily proved by induction on n. Let us prove (B). If δ is a positive number such that $|\varphi(x)|<\delta$ for all $x \in G$, then for any positive integer n we have $n|\varphi(x)|=\left|\varphi\left(x^{n}\right)\right|<\delta$. Therefore $\varphi(x)=0$, as required.

From (A) it follows that $\left|\varphi\left(a^{-1} b^{n} a\right)-\varphi\left(a^{-1}\right)-\varphi\left(b^{n}\right)-\varphi(a)\right|<2 \varepsilon$. Hence $\left|\varphi\left(a^{-1} b^{n} a\right)-\varphi\left(b^{n}\right)\right|=\left|\varphi\left(\left(a^{-1} b a\right)^{n}\right)-\varphi\left(b^{n}\right)\right|<2 \varepsilon$, and so $n\left|\varphi\left(a^{-1} b a\right)-\varphi(b)\right|<2 \varepsilon$. Since the latter inequality holds for all $n>1$, we obtain $\varphi\left(a^{-1} b a\right)=\varphi(b)$. The lemma is proved.

Let i and j be distinct elements of I, and put $w_{k}=x_{i}^{3 k} x_{j}^{2 k} x_{i}^{k} x_{j}^{k}$, for each $k \in \mathbb{N}$. Consider the set $\mathscr{M}=\left\{w_{k} \mid k \in \mathbb{N}\right\}$. It can easily be checked that w_{l} is not a subword of w_{k} for $k \neq l$, and also that

$$
\begin{equation*}
H\left(w_{k}\right) \cap K\left(w_{l}\right)=\emptyset \quad \text { for all } \quad k, l \in \mathbb{N} . \tag{3}
\end{equation*}
$$

Hence $\left|\mathscr{M} \cap \operatorname{supp} \mu_{\mu, v}\right| \leq 1$ for all $u, v \in \mathscr{F}$ and

$$
\begin{equation*}
\left|\mathscr{M} \cap \operatorname{supp} \Delta_{u, v}\right| \leq 2 \quad \text { for all } \quad u, v \in \mathscr{F} . \tag{4}
\end{equation*}
$$

By Proposition 1 it follows that for any pair of elements x, y from G there are at most 24 elements w in \mathscr{M} such that $\rho_{w}(x y) \neq \rho_{w}(x)+\rho_{w}(y)$. For each $g \in G$ and each integer $m \geq 2$, the set

$$
O_{m}(g)=\left\{w \in \mathscr{M} \mid \rho_{w}(g) \not \equiv 0 \quad(\bmod m)\right\}
$$

is finite. Denote by $\gamma_{m}(g)$ the cardinality of $O_{m}(g)$. Evidently,

$$
O_{m}(x y) \subseteq O_{m}(x) \cup O_{m}(y) \cup\left\{w \in \mathscr{M} \mid \rho_{w}(x y) \neq \rho_{w}(x)+\rho_{w}(y)\right\}
$$

Hence

$$
\begin{equation*}
\gamma_{m}(x y) \leq \gamma_{m}(x)+\gamma_{m}(y)+24 . \tag{5}
\end{equation*}
$$

Similar arguments establish the following assertions (for all $x, y \in G$).
(a) There is a set of at most 36 pairs y_{i}, t_{i} such that

$$
\rho_{w}\left(x^{-1} y^{-1} x y\right)=\rho_{w}\left(x^{-1}\right)+\rho_{w}\left(y^{-1}\right)+\rho_{w}(x)+\rho_{w}(y)+\sum_{i} \Delta_{\xi\left(y_{i}\right), \xi\left(t_{i}\right)}(w),
$$

and since $\rho_{w}\left(x^{-1}\right)+\rho_{w}\left(y^{-1}\right)+\rho_{w}(x)+\rho_{w}(y)=0$ we see that there are at most 72 elements $w \in \mathscr{M}$ such that $\rho_{w}\left(x^{-1} y^{-1} x y\right) \neq 0$. So

$$
\begin{equation*}
\gamma_{m}\left(x^{-1} y^{-1} y x\right) \leq 72 \tag{6}
\end{equation*}
$$

(b) By Corollary 3, there are at most $12(m-1)$ elements y_{i}, t_{i} such that

$$
\rho_{w}\left(x^{m}\right)=m \rho_{w}(x)+\sum_{i} \Delta_{\left.\xi\left(y_{i}\right), \xi u_{i}\right)}(w)
$$

Now from (4) we obtain that there are at most $24(m-1)$ elements in the set $O\left(x^{m}\right)$. Hence

$$
\begin{equation*}
\gamma_{m}\left(x^{m}\right) \leq 24(m-1) \tag{7}
\end{equation*}
$$

Theorem 3. Let V be a finite subset of the free group F such that the verbal subgroup $V(F)$ is a proper subgroup of F. Then the verbal subgroup $V(G)$ of G has infinite width.

Proof. Suppose that $V(F) \subseteq F^{\prime}$. Let $\varphi \in P X(G)$ and choose $r \in \mathbb{R}$ such that $|\varphi(x y)-\varphi(x)-\varphi(y)| \leq r$ for all $x, y \in G$. By Lemma 5

$$
\left|\varphi\left(x^{-1} y^{-1} x y\right)\right|=\left|\varphi\left(x^{-1} y^{-1} x y\right)-\varphi\left(x^{-1}\right)-\varphi\left(y^{-1} x y\right)\right| \leq r
$$

for all $x, y \in G$. Since V is finite there is an integer l such that each element of V is a product of at most l commutators, and we deduce that $\varphi(g)<(l-1) r$ for all
$g \in V(G)$. Hence if $\operatorname{wid}(V(G))<\infty$ it follows that the pseudocharacter φ is bounded on $V(G)$. By Lemma 5 we obtain $\varphi \equiv 0$ on $V(G)$, contradicting Proposition 2 .

Now suppose that $V(F) \nsubseteq F^{\prime}$. Let $Z=\left\{z_{1}, z_{2}, \ldots\right\}$ be a set of free generators of F, and let $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then there is positive integer n such that each v_{i} is uniquely expressible in the form

$$
\begin{equation*}
v_{i}=z_{1}^{l_{i}} z_{2}^{l_{i 2}} \cdots z_{n}^{l_{i n}} u_{i} \tag{8}
\end{equation*}
$$

where $l_{i j} \in \mathbb{Z}$ and $u_{i} \in F^{\prime}$, and each u_{i} is a word in the alphabet $\left\{z_{1}, \ldots, z_{n}\right\}$. Let m be the highest common factor of the numbers $\left\{l_{i j} \mid 1 \leq i \leq k, 1 \leq j \leq n\right\}$, and for each i let m_{i} be the highest common factor of the numbers $\left\{l_{i j} \mid l \leq j \leq n\right\}$. It is clear that m is the highest common factor of the numbers $\left\{m_{i} \mid 1 \leq i \leq k\right\}$. Choose integers $\alpha_{i j}$ such that $m_{i}=\sum_{j=1}^{n} \alpha_{i j} l_{i j}$.

We have $u_{i}=u_{i}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. If t is any element of F and k_{1}, \ldots, k_{n} are any integers, then $u_{i}\left(t^{k_{1}}, t^{k_{2}}, \ldots, t^{k_{n}}\right)=1$, since $u_{i} \in F^{\prime}$. Hence we obtain

$$
v_{i}\left(t^{\alpha_{i n}}, t^{\alpha_{i 2}}, \ldots, t^{\alpha_{i n}}\right)=t^{\alpha_{i 1} t_{i 1}} \cdot t^{\alpha_{i 2} l_{i 1}} \cdots t^{\alpha_{i} n l_{i n}}=t^{m_{i}}
$$

and we see that $t^{m_{i}} \in V(F)$ for any $t \in F$. Now as there are integers $\beta_{1}, \ldots, \beta_{k}$ such that $\beta_{1} m_{1}+\cdots+\beta_{k} m_{k}=m$ it follows that for all $g \in F$,

$$
g^{m}=g^{\beta_{1} m_{1}+\cdots+\beta_{k} m_{k}}=g^{\beta_{1} m_{1}} \cdots g^{\beta_{k} m_{k}} \in V(F)
$$

Since $V(F) \neq F$, it follows that $m \geq 2$.
From (8) and (5) we obtain

$$
\begin{equation*}
\gamma_{m}\left(z_{1}^{l_{i}} z_{2}^{l_{i 2}} \cdots z_{n}^{l_{i n}} u_{i}\right) \leq \sum_{j=1}^{n} \gamma_{m}\left(z_{j}^{l_{j}}\right)+\gamma_{m}\left(u_{i}\right)+24 n \tag{9}
\end{equation*}
$$

We have $l_{i j}=m p_{i j}$ for some $p_{i j} \in \mathbb{Z}$; hence by (7)

$$
\begin{equation*}
\gamma_{m}\left(z_{j}^{l_{j}}\right) \leq 24(m-1) \tag{10}
\end{equation*}
$$

It is clear that there is $q \in \mathbb{N}$ such that each u_{i} from (8) is representable as a product of at most q commutators, and then by (6) and (5) we have

$$
\begin{equation*}
\gamma_{m}\left(u_{i}\right) \leq 72 q+24(q-1) \tag{11}
\end{equation*}
$$

Now from (9), (10) and (11) we obtain that there is an $l \in \mathbb{N}$ such that for any $u \in \bar{V}(G)$ the relation $\gamma_{m}(u) \leq l$ holds. This implies that if $V(G)$ has finite width, then the function γ_{m} is bounded on $V(G)$. Indeed, if wid $V(G)=k$, then by (5) for any $g \in V(G)$ we have $\gamma_{m}(g) \leq 24(k-1) l$.

Let us choose $a b_{i}$ and $a b_{j}$ such that $\xi\left(a b_{i}\right)=x_{i}, \xi\left(a b_{j}\right)=x_{j}$, and consider the elements $g_{k}=\left(a b_{i}\right)^{3 k}\left(a b_{j}\right)^{2 k}\left(a b_{i}\right)^{k}\left(a b_{j}\right)^{k}$ and $d_{k}=g_{m} g_{2 m} g_{3 m} \cdots g_{k m}$, where $k \in \mathbb{N}$. It is clear $\xi\left(g_{k}\right)=w_{k}$ and $\xi\left(d_{k}\right)=v_{k}=w_{m} w_{2 m} \cdots w_{k m}$. Obviously, $d_{k} \in V(G)$ for all $k \in \mathbb{N}$. Now from (3) it follows that there is exactly one occurrence of w_{i} in v_{k} if $i \in\{m, 2 m, \ldots, k m\}$, and no occurrence otherwise. It is easy to see that for any $i, j, k \in \mathbb{N}$ the relation $\mu_{w_{k}, w_{j}}\left(w_{i}^{*}\right)=0$ holds. It follows that w_{i}^{*} does not occur in v_{k} for any value of i. Hence $\rho_{w}\left(g_{k}\right)=1$ if $w \in\left\{w_{m}, w_{2 m}, \ldots, w_{k m}\right\}$, and $\rho_{w}\left(g_{k}\right)=0$ for other elements $w \in \mathscr{M}$. So $\gamma_{m}\left(g_{k}\right)=k$ for all $k \in \mathbb{N}$ and we obtain a contradiction. This completes the proof.

Corollary 5 (See [8]). Let V be a finite subset of the free group F such that $V(F) \neq F$. Suppose that A and B are nontrivial groups such that the order of B is at least three, and let $G=A * B$ be the free product. Then the width of the verbal subgroup $V(G)$ is infinite.

Acknowledgment

I wish to express my thanks to the referee for his helpful remarks that essentially improved the paper.

References

[I] S. I. Adjan and J. Mennicke, 'On bounded generation of $S L(n, \mathbb{Z})$ ', Internat. J. Algebra Comput. 2 (1992), 357-355.
[2] V. G. Bardakov, 'To the theory of braid groups', Mat. Sb. 183 (1992), 3-43.
[3] E. W. Ellers, 'Products of transvections in one conjugacy class in the symplectic group over $G F(3)$ ', Linear Algebra Appl. 202 (1994), 1-23.
[4] V. A. Faĭziev, 'Pseudocharacters on semidirect product of semigroups', Mat. Zametki 53 (1993), 132-139.
[5] ——, 'Pseudocharacters on free semigroups', Russian J. Math. Phys. 5 (1995), 191-206.
[6] H. B. Griffiths, 'A note on commutators in free products', Proc. Cambridge Phil. Soc. 50 (1954), 178-188.
[7] M. Newnan, 'Unimodular commutators’, Proc. Amer. Math. Soc. 101 (1987), 605-609.
[8] A. H. Rhemtulla, 'A problem of expressibility in free products', Proc. Cambridge Phil. Soc. 64 (1968), 573-584.
[9] —_, 'Commutators of certain finitely generated solvable groups', Canad. J. Math. 64 (1969), 1160-1164.

Tver Agricultural Academy
Tver

Russia

e-mail: valeriy.fayziev@tversu.ru

