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A WEIGHTED RANDOM WALK
MODEL, WITH APPLICATION TO
A GENETIC ALGORITHM

C. DOMBRY,∗ Université Claude Bernard Lyon 1

Abstract

We consider a weighted random walk model defined as follows. An n-step random walk
on the integers with distribution Pn is weighted by giving the path S = (S0, . . . , Sn)

a probability proportional to
∏n
k=1 f (Sk)Pn(S), where the function f is the so-called

fitness function. In the case of power-type fitness, we prove the convergence of the
renormalized path to a deterministic function with exponential speed. This function is
a solution to a variational problem. In the case of the simple symmetric random walk,
explicit computations are done. Our result relies on large deviations techniques and
Varadhan’s integral lemma. We then study an application of this model to mutation–
selection dynamics on the integers where a random walk operates the mutation. This
dynamics is the infinite-population limit of that of mutation–selection genetic algorithms.
We prove that the population grows to ∞ and make explicit its growth speed. This is
a toy model for modelling the effect of stronger selection at ∞ for genetic algorithms
taking place in a noncompact space.
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1. Introduction and motivations

1.1. The weighted random walk model and its heuristic

Let �n be the set of paths of length n:

�n = {S = (S0, . . . , Sn) ∈ Z
n+1}.

Let π and δ be probability measures on Z. We suppose that π and δ have finite supports. Let Pn
be the probability measure on�n corresponding to the random walk with initial distribution π
and independent increments identically distributed according to δ. The probability of S ∈ �n
is given by

Pn(S ∈ �n, S0 = s0, . . . , Sn = sn) = π(s0)

n−1∏
k=0

δ(sk+1 − sk).

We denote by En the associated expectation. Let f : Z → [0,∞) be a fitness function. The
weight of a path S ∈ �n is defined by

�
f
n (S) =

n∏
k=1

f (Sk).
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The object of our study is the probability measure Pfn on �n defined by

Pfn (S) = 1

Z
f
n

�
f
n (S)Pn(S),

where
Z
f
n = En[�fn (S)]

is a partition function that we suppose to be nonzero. For any φ : �n → R, the associated
expectation, Efn , satisfies

Efn [φ] = 1

Z
f
n

En[φ(S)�fn (S)].

In other words, the weighted random walk model gives to a path S a probability Pfn (S)
proportional to �fn (S) Pn(S).

We are interested in the asymptotic properties of Pfn as the length n goes to infinity, i.e. its
convergence (law of large numbers) and its fluctuations (central limit theorem). Note that the
sequence of probability measures Pfn , n ≥ 1, is well defined if the following assumption holds.

Assumption 1. For every n ≥ 1, Zfn is nonzero.

This assumption is satisfied if f is positive. In the case where f vanishes on the set of
negative integers, it is satisfied if there exist n1 > 0 and n2 ≥ 0 such that π(n1) > 0 and
δ(n2) > 0.

Remark 1. The system (�n,Pfn ) is not projective, in the sense that there is no measure on the
set of infinite paths whose finite-dimensional distributions are Pfn . Furthermore, if the fitness
function f vanishes on the set of nonpositive integers, then the probability Pfn forces the paths
to remain positive.

We now give some heuristics and simple examples. In the case of the constant fitness function
f ≡ c > 0, all paths have the same weight and Pfn = Pn. Suppose that the increments have drift
m (i.e. δ has meanm) and finite variance σ 2. Then the distribution of Sn has mean E[S0] + nm
and variance var(S0) + nσ 2. In the zero-drift case the random walk is said to be diffusive;
otherwise it is said to be ballistic. In the case of the fitness function f (x) = 1(0,∞)(x), the
effect of the weight is conditioning on strictly positive paths: let

�+
n = {S ∈ �n : Sk > 0 for all k ∈ {1, . . . , n}};

then the weighted random walk distribution is Pfn (·) = Pn(· | �+
n ). Intuitively, if the drift m

is nonpositive, then the weighted random walk will have diffusive behaviour, with Sn/n going
to 0 as n goes to ∞. If the drift is positive, then the weighted random walk will have ballistic
behaviour with speed m, i.e. Sn/n has limit m as n goes to ∞. In the sequel, we focus on
nondecreasing fitness functions. If the fitness is nondecreasing, then higher paths have greater
weight and hence are enhanced in the weighted random walk model. We are interested in the
case of fitness functions which are stronger at infinity, i.e. such that f (x) → ∞ as x → ∞.
The central question is: how does a stronger fitness function modify the limit speed of the
walk? This will depend on how fast the fitness function goes to ∞, according to the following
definition.
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Definition 1. Let f : Z → [0,∞) be a nondecreasing fitness function such that limx→∞
f (x) = ∞. We say that

• f is a subpower fitness function if, for all γ > 0, f (x)x−γ → 0 as x → ∞; that

• f is a power fitness function of type β ∈ (0,∞) if there exists some l > 0 such that
f (x)x−β → l as x → ∞; and that

• f is an overpower fitness function if, for all γ > 0, f (x)x−γ → ∞, as x → ∞.

The heuristic is the following. In the subpower case the fitness is not great enough at infinity
to have an important effect, and its effect will be negligible. In the overpower case its effect
will be very strong, and it will force all the increments to be maximal. Finally, the power case
will be the interesting one, where an equilibrium is found between the entropy of the random
walk and the force of the weighting.

Example 1. For the sake of clarity, throughout the paper we develop an example with different
explicit fitness functions. We focus on the case of the symmetric simple random walk starting
from point 1, i.e. in which δ = 1

2 (δ1 + δ−1) and π = δ1.

• The case of a power fitness function of type β > 0 will be illustrated by the reference
fitness function fβ defined by

fβ(x) =
{
xβ if x ≥ 0,

0 if x < 0.

We will show in the sequel that the normalized weighted random walk (1/n)S[nt]
converges on [0, 1] to a deterministic function ψβ that we compute explicitly (see
Theorem 1 and Proposition 1).

• The case of a subpower fitness function will be illustrated by the reference fitness function
f0 defined by

f0(x) =
{

log(1 + x) if x ≥ 0,

0 if x < 0.

In this case, the author believes that the normalized weighted random walk (1/n)S[nt]
converges on [0, 1] to the deterministic function ψ0 ≡ 0 (see the simulations in Subsec-
tion 1.2). This is reminiscent of the behaviour of the simple random walk conditioned to
remain positive. The effect of the weight vanishes.

• The case of an overpower fitness function will be illustrated by the reference fitness
function f∞ defined by

f∞(x) =
{

exp(x)− 1 if x ≥ 0,

0 if x < 0.

In this case, the author believes that the normalized weighted random walk (1/n)S[nt]
converges on [0, 1] to the deterministic function ψ∞(t) = t (see the simulations in
Subsection 1.2). The weight is very strong and forces almost all the increments to
equal 1.
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It is worth noting that, intuitively, the subpower case corresponds to the limit of the power
fitness case as β → 0: we can prove that, for any t ∈ [0, 1], ψβ(t) has limit ψ0(t) = 0 as β
goes to 0. In the same way, the overpower case corresponds to the limit of the power fitness case
as β → ∞: we can prove that, for any t ∈ [0, 1], ψβ(t) has limit ψ∞(t) = t as β goes to ∞.
Hence, the parameter β is understood to represent the strength of the weight in the model.

1.2. Simulation

Let n, π, δ, and f be fixed. The aim of this section is to explain how to sample from the
distribution Pfn . We make use of the Hasting–Metropolis algorithm. We denote by 
k =
Sk − Sk−1, 1 ≤ k ≤ n, the kth increment of the path S. We represent a path by its initial value
and its increments, so that S ∼= (S0,
1, . . . , 
n) is the path defined by Sk = S0+
1+· · ·+
k .
The algorithm runs as follows.

1. Start from any configuration S0 such that Pfn (S0) > 0.

2. With St ∼= (St0,

t
1, . . . , 


t
n), construct S̃t as follows.

(a) Choose k ∈ {0, . . . , n} uniformly.

(b) For k = 0, draw S̃0 according to distribution π and let S̃t be the path obtained by
replacing St0 by S̃0.

(c) For k ≥ 1, draw 
̃ according to distribution δ and let S̃t be the path obtained by
replacing 
tk by 
̃.

3. Compute

p = Pfn (S̃t )

Pfn (St )
= π(S̃t0)

π(St0)

n∏
k=1

f (S̃tk)δ(S̃
t
k − S̃tk−1)

f (Stk)δ(S
t
k − Stk−1)

.

4. Draw u randomly in (0, 1). If u ≤ p then let St+1 be equal to S̃t . Otherwise, let St+1 be
equal to St .

The sequenceSt forms an irreducible Markov chain on the state space {S ∈ �n : Pfn (S) > 0}.
This Markov chain admits the measure Pfn as a reversible measure. Hence, Pfn is the unique
stationary distribution of the Markov chain, and St converges in distribution to this stationary
distribution as t goes to ∞. Thus, to sample from distribution Pfn , just run this Markov chain
for a long time. What ‘a long time’ actually means is not so clear and is an active subject of
research in the theory of Markov chains. There are also more complex methods based on the
Propp–Wilson algorithm which could give perfect simulations. This point will not be discussed
further here.

1.2.1. Numerical simulations. In order to illustrate the previous discussion about the heuristics
of the model, we here present some simulations obtained using the Hasting–Metropolis algo-
rithm. The settings are those described in Example 1. We focus on four cases: the linear case
(with fitness function f1; see Figure 1), the square root case (with fitness function f1/2; see
Figure 2), the overpower case (with fitness function f∞; see Figure 3), and the subpower case
(with fitness function f0; see Figure 4). In each case we plot three samples of the weighted
random walk (in the left-hand graph) and the expected limit (in the right-hand graph). We draw
paths with n = 1000 steps. To obtain the samples, we ran the Hasting–Metropolis algorithm
for 105 iterations.
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Figure 1: The power fitness function of type β = 1 (fitness f = f1): three samples from the weighted
random walk (left) and the deterministic limit ψ1(t) = (2/π) sin(πt/2) (right).
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Figure 2: The power fitness function of type β = 1
2 (fitness f = f1/2): three samples from the weighted

random walk (left) and the deterministic limit ψ1/2(t) = t − 1
2 t

2 (right).
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Figure 3: The overpower fitness function (fitness f = f∞): three samples from the weighted random
walk (left) and the deterministic limit ψ∞(t) = t (right).
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Figure 4: The subpower fitness function (fitness f = f0): three samples from the weighted random walk
(left) and the deterministic limit ψ0 ≡ 0 (right).

In the case of a power fitness function (Figures 1 and 2), it seems that the three trajectories
are not very far from the expected deterministic functions. However, small fluctuations appear,
and it would be very nice to control them via a functional central limit theorem (like Donsker’s
theorem). The author is presently working on this question. In the case of an overpower fitness
function (Figure 3), it seems that the convergence is very fast: we can hardly distinguish the
three paths from the deterministic function ψ1. On the other hand, in the case of a subpower
fitness function (Figure 4), the paths are very far from the expected limit function ψ0. We
believe the convergence to be very slow. A heuristic argument is that, for n = 1000, log(n) is
equal to nβ with β = log(log(n))/log(n) ≈ 0.28. Hence, in the graph the regime β ≈ 0 is not
reached.

1.3. Theoretical results

In the present work, we propose a functional convergence theorem. The proof is based on a
functional large deviations principle for the weighted random walk.

Let � be the space of càdlàg, real-valued functions defined on [0, 1], endowed with the
topology of the uniform norm ‖ · ‖∞, and let AC be the subspace of absolutely continuous
functions. Let �n : �n → � with S �→ �n(S) be the renormalization map defined by

�n(S) : t �→

⎧⎪⎪⎨
⎪⎪⎩

1

n
S[nt]+1 if 0 ≤ t < 1,

1

n
Sn if t = 1.

Let P̃n = Pn ◦�−1
n and P̃

f

n = Pfn ◦�−1
n be the image probability measures on �.

Let us state the main result of this paper. LetF : � → [−∞,∞) be the functional defined by

F(φ) =
⎧⎨
⎩

∫ 1

0
log(φ(t)) dt if φ is almost everywhere positive,

−∞ otherwise.

We define the Laplace transform, �, of the increment distribution δ by

�(t) =
∑
x∈Z

etxδ(x).
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We believe that our results hold if� is finite on a neighbourhood of 0. However, at the moment,
our results are proven under the following stronger hypothesis.

Assumption 2. δ has finite support.

(Note that Assumption 2 is needed only in the proof of Lemma 6, and that we are thus highly
interested in a proof of this lemma in the general case.)

We denote by � : R → [0,∞] the Cramer transform of the distribution δ, defined by

�(y) = sup
t∈R

{ty − log(�(t))}.

According to Cramer’s theorem, under Pn the sequenceSn/n satisfies a large deviations principle
with good rate function �. Define the functional I : � → [0,∞] by

I (φ) =
⎧⎨
⎩

∫ 1

0
�(φ̇(t)) dt if φ ∈ AC and φ(0) = 0,

∞ otherwise.

According to Mogulskii’s theorem, the sequence P̃n = Pn ◦�−1
n satisfies a functional large

deviations principle in � with good rate function I .

Theorem 1. Let f be a power fitness function of type β ∈ (0,∞) and suppose that Assump-
tions 1 and 2 are satisfied.

1. The sequence of probability measures P̃
f

n satisfies the following large deviation upper bound:
for any closed set A ⊂ �,

lim sup
n→∞

1

n
log(P̃

f

n (A)) ≤ − inf
φ∈A

{
I − βF − inf

φ∈�{I − βF }
}
. (1)

2. The functional I − βF has a unique minimizer on �, denoted by ψβ . The function ψβ is
absolutely continuous, nonnegative, and concave. It vanishes at 0, is strictly positive on (0, 1),
and satisfies ψ̇β(0) > 0.

3. The sequence of probability measures P̃
f

n converges exponentially fast to δψβ . More precisely,
for all ε > 0 there exists a δ = δ(ε) > 0 such that, for all sufficiently large n,

P̃
f

n (‖φ − ψβ‖∞ > ε) ≤ e−nδ.

In the following proposition we characterize the minimizer ψβ by the Euler–Lagrange
equation associated with the minimization of the functional I − βF . As an application, we do
exact computations in the case of the simple symmetric random walk, i.e. where δ = 1

2 (δ1+δ−1),
and we make explicit the limit function ψβ .

Proposition 1. (Identification of the minimizer ψβ .) Let ψ : [0, 1] �→ R be a twice differen-
tiable function such that ψ(0) = 0 and, for any t > 0, ψ(t) �= 0. Suppose that ψ satisfies the
differential equation

d

dt
[(�)′(ψ̇(t))] + β

ψ(t)
= 0 (2)

on (0, 1], with limit condition
(�)′(ψ̇(1)) = 0. (3)

Then ψ = ψβ is the unique minimizer of the functional I − βF .

https://doi.org/10.1239/aap/1183667623 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667623


Weighted random walks and genetic algorithms 557

Corollary 1. (The simple symmetric random walk.) Let δ = 1
2 (δ1 +δ−1) and let f be a power

fitness function of type β ∈ (0,∞). Then

ψβ(t) = 1

Gβ(1)
G−1
β (Gβ(1)t),

where

Gβ(y) =
∫ y

0

dx√
1 − x2β

.

For β = 1 and β = 1
2 , the limit has simple expressions: respectively,

ψ1(t) = 2

π
sin

(
π

2
t

)
,

ψ1/2(t) = t − 1

2
t2.

Remark 2. Equation (2) is the Euler–Lagrange equation corresponding to the minimization of
the functional I − βF .

1.4. Infinite-population genetic algorithm

Finite-population genetic algorithms, introduced by Holland [10], are widely used in appli-
cations. They are relevant in many areas, for instance biology, computer science, optimization,
etc. The task of a genetic algorithm is to search a fitness landscape for maximal values. A
population of individuals, considered as candidate solutions to the given problem, is evolved
under steps of mutation and steps of selection. The dynamics of the genetic algorithm simulates,
supposedly like in natural systems, the survival of the fittest among the individuals.

Despite their numerous heuristic successes, mathematical results describing the behaviour
of genetic algorithms are rather sparse. Among the exceptions are those in [3], [4], [13], [12],
[5], [6], [7], [1], and [2].

Mathematically speaking, genetic algorithms are Markov chains on the product space Ep,
where E is the state space and p ≥ 1 is the size of the running population. The dynamics
is produced by the combination of two basic operators: mutation and selection. Mutation is
driven by an ergodic Markov transition kernel Q(·, ·) on E. Let x = (xi)1≤i≤p ∈ Ep be a
population. The effect of mutation on x is modelled by the random choice of a new population
with probability

Q(x1, ·)⊗Q(x2, ·)⊗ · · · ⊗Q(xp, ·).
Selection uses a function f ≥ 0 onE, usually called the fitness. Given a population x, consider
the probability measure πx on {x1, . . . , xp} defined by

πx = 1

〈f (x)〉
p∑
i=1

f (xi)δxi ,

where

〈f (x)〉 =
p∑
i=1

f (xi).

The population after selection is randomly chosen in {x1, . . . , xp}p with probability π⊗p
x .
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Del Moral and Guionnet [5], [6] studied the infinite-population limit of mutation–selection
algorithms, in connection with nonlinear filtering. In particular, those authors showed that the
empirical law onE of x(n), the population at time n, converges toward a deterministic measure
µn as the population size, p, goes to ∞. They also investigated the large deviations properties
of this convergence. The sequence of limit measures µn forms a measure-valued dynamical
system:

µn+1 = T (µn).

Here the operator T = W ◦M is the combination of the mutation operator,M , and the selection
operator, W , with fitness f ≥ 0. The mutation operator is defined by M : µ �→ µQ, where Q
is the mutation kernel. For a given measure µ such that µ(f ) ∈ (0,∞), the selection operator
W replaces µ by W(µ) = µ̂, such that, for any bounded function,

µ̂(g) = µ(fg)

µ(f )
.

The link between genetic algorithms and weighted random walks comes from the following
expression for the law µn.

Lemma 1. Let (Yn)n≥0 be a Markov chain with transition kernel Q and initial probability
measure µ0. Then, for all x ∈ E,

µn(x) = Eµ0 [1{Yn=x}�
f
n ]

Eµ0 [�fn ]
,

where

�
f
n =

n∏
k=1

f (Yk).

Hence, the random walk model is linked with the class of genetic algorithms in which the
state space, E, is the integer set Z, the mutation kernel, Q, is given by Q(x, y) = δ(y − x),
and the initial distribution satisfies µ0 = π . In this case the measure at time n in the mutation–
selection dynamics is the same as the distribution of the final value, Sn, in the model of weighted
random walks of length n. In other words, the measure µn is equal to the distribution of Sn
under Pfn .

Note that this class of genetic algorithms is a family of toy models used in studying the
effect of stronger selection at ∞ for genetic algorithms running in a noncompact space. Our
study focuses on the effect of increasing fitness at ∞. The finite-population model is also used
in biology to describe the evolution of populations of RNA viruses [14], [11]. Its long-time
behaviour was studied by Bérard and Bienvenüe [1], [2]. In [12] the authors investigated the
infinite-population model in the case in which β = 1 and proved a law of large numbers, a
central limit theorem, and a large deviations principle. More precisely, let µ0 = δ1 and let Xn
be a random variable of law µn; then Xn/n converges to 2/π almost surely, and the reduced
random variable

1√
n

(
Xn − 2

π
n

)

converges in law to a centred Gaussian law of variance 4/π2. The proof in [12] is based on a
precise estimate of the Laplace transform of Xn, itself based on series calculus. This method
does not extend to the case of nonlinear fitness. As a by-product of our results on the weighted
random walks, we prove a law of large numbers valid for all power fitness functions.
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Theorem 2. In the mutation–selection dynamics on the integers with mutation based on the
simple symmetric random walk and fitness of power type β ∈ (0,∞), the population at time
n is located around the point vβn. More precisely, Xn/n converges almost surely to vβ . The
speed is given by

vβ =
(∫ 1

0

dx√
1 − x2β

)−1

.

This method is robust enough to deal with more general mutation operators. We are interested
in, and are working on, other mutation operators: mutation can be induced by more general
random walks, namely dynamic random walks (see [9]). Dealing with other fitness functions
would also be very interesting. Central limit theorems are expected to hold but have not been
proved to the author’s knowledge.

Remark 3. The linear growth might come as a surprise, since the mean position of the random
walk, with a constant selection, is of order

√
n . This clarifies the strong effect of stronger

selection at ∞. In a loose sense, selection takes advantage of the fluctuations that the mutation
operator yields.

Remark 4. Our method is robust enough to deal with other mutation operators. We can obtain
a law of large numbers giving the speed. It would be of great interest to study how the speed
depends on the mutation operator and on the fitness function. In the sequel, we give some
numerical simulations exploring this direction.

Remark 5. As shown in the introduction, we expect the speed to equal 0 in the case of subpower
fitness (for example logarithmic fitness). There might arise a new type of behaviour between
the diffusive and the ballistic one, with a new rescaling order, between

√
n and n.

1.4.1. Numerical simulations. We use numerical simulations to evaluate the speed of evolution
of the genetic algorithm. We consider the following two cases.

• The mutation operator is fixed and the selection operator is varying. We take as mutation
operator Q(x, x + 1) = Q(x, x − 1) = 1

2 , i.e. a mutation corresponds to a step of a
simple symmetric random walk. The fitness function is the power function fβ(x) = xβ .
The parameter β can be seen as the strength of the selection operator. We evaluate the
speed vβ as a function of β. The results appear in the left-hand graph in Figure 5. When
β = 0 there is no selection, and the speed is equal to 0. The vertical tangent at β = 0
indicates the strength of selection, which is high even for small values of β. The limit
v∞ = 1 shows that a strong selection forces almost every mutation step to be +1.

• The selection operator is fixed and the mutation operator is varying. We take as selection
operator the selection with linear fitness function f1. The mutation operator is

Q(x, x + 1) = 1 −Q(x, x − 1) = 1 + α

2

with α ∈ (−1, 1), i.e. a mutation corresponds to a step of a simple random walk with
drift α. The parameter α can be seen as the strength of mutation. We evaluate the speed
vα as a function of α. The results appear in the right-hand graph in Figure 5. Note that
for −1 < α < 0 the random walk is transient with negative speed, yet the strength of
selection yields a positive speed vα > 0.
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α

vβvα

β

Figure 5: The speed vβ as a function of the selection strength β (left) and the speed vα as a function of
the mutation strength α (right).

2. Proof of the theorems

2.1. Proof of Theorem 1

The main result of Theorem 1 is the large deviation upper bound.
For every path S ∈ �n, the weight �fn (S) can be written

�
f
n (S) =

n∏
i=1

f (Si) = exp

(
n

1

n

n∑
i=1

log

(
fn

(
Si

n

))
+ n log(f (n))

)

= f (n)n exp(nFn(ψn(S)))

where fn : R → R is the function

fn(x) = f ([nx])
f (n)

and Fn : � → [−∞,∞) is the functional

Fn(φ) =
∫ 1

0
log(fn(φ(t))) dt.

For any Borel set A ⊂ �, the probability P̃
f

n satisfies

P̃
f

n (A) =
∫
A

exp(nFn(φ)) dP̃n(φ)∫
�

exp(nFn(φ)) dP̃n(φ)
.

In this setting, Varadhan’s integral lemma is an adequate tool to derive the large deviations

properties of the measures P̃
β

n from the large deviations properties of P̃n (see [8, Section 4.3]).
The difficulty comes from the irregularity of the functionals Fn, which are neither bounded nor
continuous. In order to prove (1) we have to prove that, if the fitness function f is a power
function of type β ∈ (0,∞), then both of the following inequalities hold:

lim sup
n→∞

1

n
log

(∫
A

exp(βnFn(φ)) dP̃n(φ)

)
≤ − inf

φ∈A{I − βF }(φ) (4)
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for any closed set A ⊂ � and

lim inf
n→∞

1

n
log

(∫
�

exp(βnFn(φ)) dP̃n(φ)

)
≥ − inf

φ∈�{I − βF }(φ). (5)

For the sake of clarity, we begin the proof with some preliminary lemmas. The proof of (5),
which requires more technicalities, is relegated to Appendix A.

2.1.1. Preliminaries: some properties of the functionals. The following lemma states some
convergence properties of the functions fn and the functionals Fn.

Lemma 2. Suppose that f is a fitness function of power type β ∈ (0,∞).

1. The sequence of functions fn converges pointwise to the power function fβ as n → ∞, and
the convergence is uniform on the compact sets of R. Furthermore, there exist real numbers α1
and α2 such that, for all real numbers t and eventually all integers n,

log(fn(t)) ≤ α1|t | + α2.

2. If φn is a sequence in � such that φn → φ as n → ∞, then

lim supFn(φn) ≤ βF(φ).

Furthermore, for all φ ∈ � and eventually all integers n,

Fn(φ) ≤ α1‖φ‖ + α2.

Proof. Let t ∈ R. If t ≤ 0 then, since f is nondecreasing, f ([nt]) ≤ f (0). Since
f (n) → ∞ as n → ∞, the quotient

fn(t) = f ([nt])
f (n)

≤ f (0)

f (n)

has limit fβ(t) = 0 as n → ∞. The convergence is uniform on (−∞, 0]. If t > 0 then the
equivalence f (n) ∼ lnβ implies the limit fn(t) → fβ(t) = tβ . More precisely, let ε > 0 and
N ∈ N be such that, for every n ≥ N , ∣∣∣∣f (n)lnβ

− 1

∣∣∣∣ ≤ ε.

If t ≥ t0 then, for any n ≥ N/t0 + 1,

−2ε

1 + ε

(
t − 1

n

)β
+

[(
t − 1

n

)β
− tβ

]
≤ fn(t)− tβ ≤ 2ε

1 − ε
tβ .

This proves uniform convergence on the compact sets of R.
Furthermore, for n ≥ N we have the following majorizations:

fn(t) ≤
⎧⎨
⎩

1 if x ≤ 0,

max

(
1,
l + ε

l − ε
tβ

)
if x > 0.
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Let α1 = β and α2 = log((l + ε)/(l − ε)). For all real numbers t and all integers n ≥ N ,

log(fn(t)) ≤ α1|t | + α2.

Let φn → φ in �. Since uniform convergence implies pointwise convergence, φn(t) → φ(t)

and fn(φn(t)) → fβ(φ(t)) for any t ∈ R. This implies that log(fn(φn(t))) → β log(φ(t)),
and we can apply Lebesgue’s convergence theorem to the positive part (which is uniformly
bounded) and Fatou’s lemma to the negative part, to obtain

lim sup
n→∞

∫ 1

0
log(fn(φn(t))) dt ≤

∫ 1

0
lim sup
n→∞

log(fn(φn(t))) dt = β

∫ 1

0
log(φ(t)) dt.

Furthermore, for all φ ∈ �, all t ∈ [0, 1], and eventually all n,

log(fn(φ(t))) ≤ α1|φ(t)| + α2 ≤ α1‖φ‖ + α2.

Integrating this inequality over [0, 1] yields

Fn(φ) ≤ α1‖φ‖ + α2.

The domain of a functional J : � → (−∞,∞] is the set where J < ∞.

Lemma 3. The functionals I , −βF , and I −βF are lower semicontinuous and strictly convex
on their domains.

Proof. Since the functions � and −β log are strictly convex on their domains and lower
semicontinuous, so are the functionals I , −βF , and I − βF .

Lemma 4. In any nonempty closed set A ⊂ �, there exists a point φ0 such that

I (φ0)− βF(φ0) = inf
φ∈A{I (φ)− βF(φ)}.

Proof. The previous lemma states that βF is upper semicontinuous. Furthermore, the
inequality log(x) ≤ x− 1 implies that F(φ) ≤ ‖φ‖− 1 for any φ ∈ �. We can thus apply [15,
Lemma 4.2], which yields Lemma 4.

2.1.2. Proof of Theorem 1, part 1: the large deviation upper bound. We first prove (4). We
apply [15, Theorem 4.1]. Let A ⊂ � be a closed set, let Fn,A : � → [−∞,∞) be the
functionals defined by

Fn,A(φ) =
{
Fn(φ) if φ ∈ A,
−∞ if φ /∈ A,

and let

FA(φ) =
{
F(φ) if φ ∈ A,
−∞ if φ /∈ A.

By Lemma 2, if φn → φ in � then

lim sup
n→∞

Fn,A(φn) ≤ FA(φ).

Furthermore, the following tail condition holds:

lim
M→∞ lim sup

n→∞
1

n
log

(∫
�

enFn,A(φ) 1{Fn,A(φ)≥M} dP̃n(φ)

)
= −∞
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(this is proved as in [15] as a consequence of the inequalityFn,A(φ) ≤ α1‖φ‖∞+α2). The large
deviation upper bound holds for P̃n with the good rate function I : � → [0,∞]. Applying [15,
Theorem 4.1] then yields (4).

As remarked above, the proof of (5) is relegated to Appendix A.

2.1.3. Proof of Theorem 1, part 2: existence and unicity of the minimizer ψβ . The existence
and unicity of the minimizer, ψβ , of the functional I −βF on� is a consequence of Lemmas 3
and 4. Its existence follows from Lemma 4 with A = �, and its unicity is ensured by the strict
convexity of I − βF stated in Lemma 3.

We investigate some properties of the minimizer ψβ . The domain of I is included in the set
of absolutely continuous functions vanishing at 0. The domain of −βF is included in the set
of nonnegative functions. The function ψβ belongs to the domain of the functional I − βF ,
which is included in the set of absolutely continuous, nonnegative functions vanishing at 0. Let
ψ̂β be the concave function defined by

ψ̂β(t) = sup

{∫
E

ψ̇β(u) du : E ⊂ [0, 1], |E| = t

}
.

Then I (ψβ) = I (ψ̂β), and ψ̂β ≥ ψβ implying that F(ψ̂β) ≥ F(ψβ). This implies the equality
ψ̂β = ψβ and the concavity of ψβ . If there exists some point u such that 0 < u < 1 and
ψβ(0) = ψβ(u) = 0, then, because it is concave, ψβ ≤ 0 must be nonpositive on [u, 1] and
such that F(ψβ) = −∞. This contradicts the fact that ψβ minimizes I − βF . In the same
way, if ψ̇β(0) ≤ 0, then the concavity implies that ψβ ≤ 0 and F(ψβ) = −∞, also yielding a
contradiction.

2.1.4. Proof of Theorem 1, part 3: the law of large numbers for P̃
f

n . Let us apply the large
deviation upper bound to the closed set

A = {φ ∈ � : ‖φ − ψβ‖∞ ≥ ε}.
This yields

lim sup
n→∞

1

n
log(P̃

f

n (‖φ − ψβ‖∞ ≥ ε)) ≤ −2δ

with
2δ = inf

φ∈A

{
I − βF − inf

φ∈�{I − βF }
}
.

Lemma 4 and the fact that ψβ /∈ A implies that δ > 0. Hence, for n large enough,

P̃
f

n (‖φ − ψβ‖∞ ≥ ε) ≤ e−nδ.

2.2. Proof of Proposition 1 and Corollary 1

2.2.1. Proof of Proposition 1. Let ψ ∈ � be a twice differentiable function satisfying (2) and
(3), and let φ ∈ �. We suppose that ψ(0) = φ(0) = 0 and that ψ(t) > 0 for 0 < t ≤ 1. By
the convexity of �,

�(φ̇(t)) ≥ �(ψ̇(t))+ (�)′(ψ̇(t))(φ̇(t)− ψ̇(t)),

and the convexity of −β log,

−β log(φ(t)) ≥ −β log(ψ(t))− β

ψ(t)
(φ(t)− ψ(t)).
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Adding the preceding two inequalities and integrating over (0, 1] yields

(I − βF)(φ) ≥ (I − βF)(ψ)+
∫ 1

0

[
(�)′(ψ̇(t))(φ̇(t)− ψ̇(t))− β

ψ(t)
(φ(t)− ψ(t))

]
dt.

Using an integration by parts, we obtain

(I − βF)(φ)− (I − βF)(ψ) ≥ [(�)′(ψ̇(t))(φ(t)− ψ(t))]1
0

−
∫ 1

0

(
d

dt
[(�)′(ψ̇(t))] + β

ψ(t)

)
(φ(t)− ψ(t)) dt.

By (2), the integral vanishes. By (3), the bracket also vanishes. Hence,

(I − βF)(φ) ≥ (I − βF)(ψ)

and ψ minimizes I − βF .

2.2.2. Proof of Corollary 1. After some computations, we can prove that (2) is equivalent to

1

1 − ψ̇(t)2
ψ̈(t)+ β

ψ(t)
= 0.

Let us define the function

ψ(t) = 1

Gβ(1)
G−1
β (Gβ(1)t), t ∈ [0, 1],

where

Gβ(y) =
∫ y

0

dx√
1 − x2β

.

We now apply Proposition 1 and prove thatψ minimizes I−βF . Let p = Gβ(1). The relevant
derivatives of ψ are

ψ̇(t) =
√

1 − (pψ(t))2β,

ψ̈(t) = −βp(pψ(t)2β−1).

Using these expressions, we can show that (2) is satisfied.
Equation (3) holds since ψ̇(1) = 0 and (�)′(0) = 0.

Remark 6. Note that any function of the form φ(t) = (1/p)G−1
β (pt) is a solution to the

Euler–Lagrange equation (2) and vanishes at 0. The solution with p = Gβ(1) is the one
satisfying (3).

2.3. Proof of Theorem 2

Theorem 2 is a direct consequence of Theorem 1. By the contraction principle, a large
deviation upper bound for the sequence µn can be deduced from the large deviation upper
bound for P̃µ0,n. Alternatively, and more directly,

µn

(∣∣∣∣ tn − ψβ(1)

∣∣∣∣ > ε

)
= Pβµ0,n

(∣∣∣∣Snn − ψβ(1)

∣∣∣∣ > ε

)
= P̃

β

µ0,n
(|φ(1)− ψβ(1)| > ε).
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Hence, by Theorem 1 there exists a δ = δ(ε) > 0 such that, for n large enough,

µn

(∣∣∣∣ tn − ψβ(1)

∣∣∣∣ > ε

)
≤ P̃

β

µ0,n
(‖φ − ψβ‖ > ε) ≤ e−nδ.

Let Xn be a random variable of law µn. The previous inequality implies that Xn/n converges
almost surely to vβ . The speed vβ = ψβ(1) is given explicitly by

vβ =
(∫ 1

0

dx√
1 − x2β

)−1

.

Appendix A. Proof of (5)

The function F is not lower semicontinuous, so we are not able to use [8, Lemma 4.3.4] to
establish the lower bound.

Proof of (5). Let Bε = {φ ∈ � : φ > ψβ on [ε, 1]}. Then

Ẽn[exp(βnFn)] =
∫
�

exp(nFn(φ)) dP̃n(φ)

≥
∫
Bε

exp(nFn(φ)) dP̃n(φ)

=
∫
Bε

exp

(
n

∫ 1

0
log(fn(φ(t))) dt

)
dP̃n(φ)

≥ exp

(
n

∫ 1

ε

log(fn(ψβ(t))) dt

)

×
∫
Bε

exp

(
n

∫ ε

0
log(fn(φ(t))) dt

)
dP̃n(φ). (6)

In the last integral, let us condition on φ(ε) and apply the Markov property. This yields

∫
Bε

exp

(
n

∫ ε

0
log(fn(φ(t))) dt

)
dP̃n = Ẽn[Y1Y2], (7)

where

Y1 = Ẽn[1Bε |φ(ε)],
Y2 = Ẽn

[
exp

(
n

∫ ε

0
log(fn(φ(t))) dt

) ∣∣∣∣ φ(ε)
]
.

If φ(ε) ≤ ψβ(ε) then Y1 = 0. Let us define

Kε
n = inf

y≥ψβ(ε)
Ẽn

[
exp

(
n

∫ ε

0
log(fn(φ(t))) dt

) ∣∣∣∣ φ(ε) = y

]
.

Then Y1Y2 ≥ Y1K
ε
n and

Ẽn[Y1Y2] ≥ Kε
n Ẽn[Y1] = Kε

n P̃n(Bε). (8)
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Equations (6), (7), and (8) together yield

lim inf
n→∞

1

n
log(Ẽn[exp(nFn)]) = lim inf

n→∞
1

n
log

(∫
�

exp(nFn(φ)) dP̃n(φ)

)

≥ lim inf
n→∞

∫ 1

ε

log(fn(ψβ(t))) dt + lim inf
n→∞

1

n
log(P̃n(Bε))

+ lim inf
n→∞

1

n
log(Kε

n). (9)

The function ψβ is positive on [ε, 1]. Lemma 2 implies that log(fn(ψβ(t))) converges to
β log(ψβ(t)) uniformly on [ε, 1]. Hence,

lim
n→∞

∫ 1

ε

log(fn(ψβ(t))) dt = β

∫ 1

ε

log(ψβ(t)) dt.

The set Bε is open, so the large deviation lower bound and Lemma 5, below, imply that

lim inf
n→∞

1

n
log(P̃n(Bε)) ≥ − inf

φ∈Bε
I (φ) ≥ −I (ψβ).

Letting ε → 0, (9) yields

lim inf
n→∞

1

n
log(Ẽn[exp(nFn)]) ≥ βF(ψβ)− I (ψβ)+ lim sup

ε→0
lim inf
n→∞

1

n
log(Kε

n).

By Lemma 6, below, the term in Kε
n vanishes. Hence, (5) holds.

Lemma 5. The open set Bε = {φ ∈ � : φ > ψβ on [ε, 1]} is such that

inf
φ∈Bε

I (φ) ≤ I (ψβ).

Proof. For any δ ∈ (0, 1), consider the function φδ defined by

φδ(t) = 1

δ
ψβ(δt).

Since ψβ is strictly concave on (0, 1), the function φδ belongs to the set Bε (since φδ(0) =
ψβ(0) = 0 and φ̇δ(t) = ψ̇β(δt) > ψ̇β(t) for t > 0). Furthermore, as δ → 1, I (φδ) → I (ψβ).
This proves Lemma 5.

Lemma 6. The quantity

Kε
n = inf

y≥ψβ(ε)
Ẽn

[
exp

(
n

∫ ε

0
log(fn(φ(t))) dt

) ∣∣∣∣ φ(ε) = y

]

satisfies

lim sup
ε→0

lim inf
n→∞

1

n
log(Kε

n) ≥ 0.
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Proof. Let y ≥ ψβ(ε) be such that P̃n(φ(ε) = y) > 0. Let us define

Kε
n(y) = Ẽn

[
exp

(
n

∫ ε

0
log(fn(φ(t))) dt

) ∣∣∣∣ φ(ε) = y

]
.

Since we are dealing with discrete probabilities, this conditional expectation can be written

Kε
n(y) = 1

P̃n(φ(ε) = y)

∑
φ

exp

(
n

∫ ε

0
log(fn(φ(t))) dt

)
P̃n(φ),

where the sum is taken over the finite set of functions φ ∈ � such that φ(ε) = y and P̃n(φ) > 0.
The sum is underestimated by the contribution of the paths φ ∈ U , where U is defined by

U =
{
φ ∈ � : φ(t) ≥ y

ε
t on [0, ε], φ(ε) = y

}
.

For all paths φ ∈ U ,

exp

(
n

∫ ε

0
log(fn(φ(t))) dt

)
≥ exp

(
n

∫ ε

0
log

(
fn

(
y

ε
t

))
dt

)

≥ exp

(
n

∫ ε

0
log

(
fn

(
ψβ(ε)

ε
t

))
dt

)
.

The probability of the set U can be underestimated by

P̃n(U) ≥ uv[nε],

where u = min(π(k)) > 0 for k in the support of π and v = min(δ(k)) > 0 for k in the support
of δ. The probability P̃n(φ(ε) = y) is less than 1. This yields the underestimation

1

n
log(Kε

n) ≥ 1

n
log(uv[nε])+

∫ ε

0
log

(
fn

(
ψβ(ε)

ε
t

))
dt,

and the lemma follows.
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