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The dynamics and parameterization of mixing in temporally evolving turbulent
open-channel flow is investigated through direct numerical simulations as the flow
transitions from an initially neutral state to stable stratification. We observe three distinctly
different mixing regimes separated by transitional values of turbulent Froude number
Fr: a weakly stratified regime for Fr > 1; an intermediate regime for 0.3 < Fr < 1;
and a saturated regime for Fr < 0.3. The mixing coefficient Γ = B/εK , (where B is
the buoyancy flux and εK is the dissipation rate of kinetic energy), is well predicted
by the parameterization schemes of Maffioli et al. (J. Fluid Mech., vol. 794, 2016) and
Garanaik & Venayagamoorthy (J. Fluid Mech., vol. 867, 2019, pp. 323–333) across all
three regimes through instantaneous measurements of Fr and the ratio LE/LO, where LE
and LO are the Ellison and Ozmidov length scales, respectively. The flux Richardson
number Rf = B/(B + εK) shows linear dependence on the gradient Richardson number
Rig up to a transitional value of Rig = 0.25, past which it saturates again to a constant
value independent of Fr or Rig. By examining the flow as a balance of inertial, shear
and buoyancy forces, we derive physically based scaling relationships to demonstrate
that Rig ∼ Fr−2 and Rig ∼ Fr−1 in the weakly and moderately stratified regimes and
that Rig becomes independent of Fr in the saturated regime. Our results suggest that the
LE/LO ∼ Fr−1 scaling of Garanaik & Venayagamoorthy (J. Fluid Mech., vol. 867, 2019,
pp. 323–333) in the intermediate regime manifests due to the influence of mean shear. The
differences in the relationships between Fr and LE/LO for non-sheared flows within this
regime are discussed.
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1. Introduction

Due to the ubiquity of geophysical turbulent flows under the effect of stable density
stratification, investigation into the mechanisms and accurate quantification of diapycnal
mixing has been and remains a fundamental area of research within the stratified
turbulence community. Reviews of past work include Ivey, Winters & Koseff (2008),
Peltier & Caulfield (2003) and Caulfield (2020). In particular, mixing within wall-bounded
stratified flows creates a unique and interesting set of mixing dynamics as the inherent
spatial inhomogeneity allows for the simultaneous coexistence of various energetic mixing
regimes within a single flow (Taylor, Sarkar & Armenio 2005; García-Villalba & del
Álamo 2011; Williamson et al. 2015). In this study we investigate the mixing dynamics
within temporally evolving open channel flow through its transition from an initially
neutral to a stably stratified state. The emphasis of our study falls on two key ideas:
the accurate parameterization of mixing efficiency in the context of our spatiotemporally
inhomogeneous flow; and a robust investigation into the dynamics and relationship
between key non-dimensional parameters within the varying flow regimes.

Central to the quantification and estimation of mixing in stratified flows are the diapycnal
diffusivity KP and the mixing efficiency coefficient Γ , which are linked through the
relation

KP = Γ
εK

N2 , (1.1)

where Γ = Rf /(1 − Rf ), Rf is the mixing efficiency or flux Richardson number, εK
is the dissipation rate of turbulent kinetic energy and N is the buoyancy frequency.
Historically, Osborn (1980) argued that under equilibrium conditions Γ can be assumed
to have a constant value of 0.2, however, it has since been demonstrated that Γ can
significantly vary with respect to the energetic state of the flow (Shih et al. 2005; Ivey et al.
2008; Venayagamoorthy & Koseff 2016). As such, numerous parameterization schemes
have been proposed in the literature to estimate Γ based on relevant non-dimensional
parameters. However, as summarized in Gregg et al. (2018), a significant challenge within
the study of stratified turbulence is the plethora of varied parameterization schemes for Γ

and the subsequent ambiguity in the relationship between the different parameters. Further,
as outlined by Caulfield (2021), a limitation of numerous parameterization frameworks is
that they are derived under the assumptions of homogeneity and stationarity and further
tested within idealized triply periodic domains where such homogeneity and stationary is
enforced and the statistics are correlated after appropriate spatial and temporal averaging.
Although such flows are extremely useful for evaluating flow properties in a precise
parameter range, real flows, however, can exhibit significant variability in time and space,
often resulting in disparity between instantaneous correlations of flow properties to their
respective non-dimensional parameters relative to a statistically stationary case. In this
context, our spatiotemporally inhomogeneous channel flow in which no local parameters
are externally enforced or known a priori, presents a robust testing ground for such
schemes as well as a distinct opportunity to investigate the relationships and similarities
between the varied parameterization frameworks.

Historically, due to the relative ease of measuring mean gradients, parameterization
of the mixing efficiency in wall-bounded and shear flows has focused on the gradient
Richardson number Rig = N2/S2, where S is the mean shear. Throughout numerous
studies it has been repeatedly shown that for stationary shear flows and within the
upper limit of Rig � 0.25, the mixing efficiency displays a monotonic, essentially linear
dependence on Rig (Armenio & Sarkar 2002; Taylor et al. 2005; García-Villalba & del
Álamo 2011; Chung & Matheou 2012; Deusebio, Caulfield & Taylor 2015; Karimpour &
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Parameterization of mixing in stratified open channel flow

Venayagamoorthy 2015; Zhou, Taylor & Caulfield 2017a). Although the deviation of a
monotonic relationship between Γ and Rig at Rig = 0.25 is conceptually consistent with
the idea of critical gradient Richardson number Rig,c = 0.25 proposed in the seminal work
of Miles (1961) as the idealized threshold for the formation of local shear instabilities,
however, it remains unclear if stability is in fact the mechanism for the departure from
monotonic behaviour or the value of Rig = 0.25 is simply ‘fortuitous’ (Salehipour, Peltier
& Caulfield 2018). The critical value itself as applied to real three-dimensional flows is
an area of debate in itself (Galperin, Sukoriansky & Anderson 2007). As summarized
in Caulfield (2021), there, however, exists no singular behaviour for Γ in the very stable
limit of high Rig, with multiple evolution paths available in so-called ‘right flank’ of the
flux-gradient curve of Phillips (1972).

In a recent study Maffioli, Brethouwer & Lindborg (2016) (henceforth referred to
as MBL16) presented scaling arguments to propose an alternative parameterization
framework through the turbulent Froude number Fr = εK/NEK , where EK is the turbulent
kinetic energy. In their paper and under the assumption of sufficiently high Reynolds
number, they classify stratified turbulence into the ‘strongly stratified’ – Fr � O(1) –
and ‘weakly stratified’ – Fr � O(1) – regimes with Γ ∼ const. and Γ ∼ Fr−2 scaling
relationships, respectively. Garanaik & Venayagamoorthy (2019) (henceforth referred to
as GV19) expand upon this idea to propose a separate ‘moderately stratified’ – Fr = O(1)

– regime where both buoyancy and inertial forces are significant, and derive scaling
arguments to propose a novel Γ ∼ Fr−1 relationship within this regime. Expanding on
similar concepts from past works such as Ivey & Imberger (1991) and Smyth, Moum &
Caldwell (2001), they further propose that Fr and subsequently Γ can be inferred from
the ratio of LE/LO across all three regimes; where LE is the overturning Ellison length
scale and LO is the Ozmidov length scale, with the underlying concept being that LE has
been proven to correlate directly to the easily measurable overturning Thorpe length scale
LT (Smyth & Moum 2000; Mater, Schaad & Venayagamoorthy 2013), thus inferring the
mixing efficiency through field measurements of LT/LO becomes a conceivably easier
task rather than directly through Fr. As Fr is a parameter composed of fundamental
turbulent flow properties that inherently exist in stratified turbulence irrespective of
physical boundaries or mean shear, MBL16 and GV19 hence both argue that an Fr-based
framework may present a degree of universality across a broad range of stratified flows.
However, the testing of its applicability to wall-bounded and shear flows remains relatively
limited, in particular for stronger stratification levels of Fr < 1.

The concept of a single unifying parameterization scheme becomes somewhat
complicated when considering that in the presence of mean shear, Rig and Fr may not
be independent parameters, in fact it has been suggested that a multiparameter framework
may be necessary to accurately describe the mixing dynamics when both shear and
buoyancy forces are present within the flow (Mater & Venayagamoorthy 2014). The two
frameworks are reconciled for weakly stratified flow (Fr � O(1) or Rig � O(1)) as it
can readily be shown that Rig ∼ Fr−2 (Zhou et al. 2017a). However, in the moderately
and strongly stratified regimes the relationship between Rig and Fr remains unclear. The
underlying basis for the scaling in the strongly stratified regime of MBL16 draws directly
from established strongly stratified turbulence theory of a regime defined by Fr � O(1)

and ReB � O(1) (Billant & Chomaz 2001; Riley & de BruynKops 2003; Lindborg 2006;
Brethouwer et al. 2007), where ReB = εK/N2ν is the buoyancy Reynolds number and ν is
the kinematic viscosity. As summarized in the review of Caulfield (2021), it is, however,
still an open question whether sheared stratified turbulence can access this regime in the
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sense described. For instance, Thorpe & Liu (2009) hypothesize that sheared stratified
turbulence inherently self-regulates within a loop between states of marginal stability
and instability. Recent studies have shown support for such self-regulatory behaviour that
appears to drive sheared Holmboe instability or ‘scouring’ driven turbulence towards a
state described by the classic Miles and Osborne estimates of a critical gradient Richardson
number Rig,c ≈ 0.25 and mixing efficiency Γc ≈ 0.2 (Salehipour et al. 2018; Smyth,
Nash & Moum 2019). The matter becomes even further complicated if we consider that
in weakly stratified flows, Rig and ReB can also become deeply correlated such that
Rig ∼ Re−1

B (Riley & de BruynKops 2003; Hebert & de Bruyn Kops 2006; Chung &
Matheou 2012), where ReB itself has been a parameter widely used to parameterize mixing
(Shih et al. 2005); thus creating a complex multiparameter space in which Γ, Rig, Fr, ReB
may all conceivably be interdependent in varying ways across varying energetic regimes.

In particular, the dynamics and relationships between these key parameters in
the intermediate Fr = O(1) regime remains relatively uninvestigated in the literature.
Motivated by oceanic and atmospheric flows, recent high-resolution body-forced
numerical studies have predominantly focused on the ‘strongly stratified’ regime
(Brethouwer et al. 2007; Maffioli et al. 2016; Portwood et al. 2016; Maffioli 2017; Taylor
et al. 2019). Meanwhile, studies with temporally evolving simulations tend to traverse this
regime temporarily between states of weak and strong stratification, or vice versa (Shih
et al. 2005; Maffioli & Davidson 2016; Garanaik & Venayagamoorthy 2018) rather than
in a forced quasi-stationary state. However, a key study by Portwood, de Bruyn Kops &
Caulfield (2019) demonstrated that in stationary sheared stratified turbulence with a broad
range of ReB, and where Fr and Rig were allowed to evolve as free parameters, the flow
‘tuned’ to fixed values of Rig ≈ 0.16, Fr ≈ 0.5 and Γ ≈ 0.2, independent of ReB. In the
context of the self-regulatory behaviour described previously, such results suggest that the
Fr = O(1) regime may have significant relevance across a variety of sheared stratified
flows and warrants deeper investigation.

In light of the discussion presented above, we summarize the main concepts and
subsequent open questions we aim to address within this study.

(i) In the context of our highly spatiotemporally inhomogeneous flow, can Γ be
accurately parameterized through instantaneous measurements of Fr, Rig, LE/LO or
ReB?

(ii) Are these frameworks interconnected and if so how are they and the relationships
between their relative parameters reconciled across the different mixing regimes?

(iii) What are the limitations on their applicability to open channel flow?

To that end, the remainder of the paper is structured as follows. In § 2 we present our
flow configuration and numerical method. In § 3 we present a brief qualitative overview
of our flows evolution and demonstrate the local parameter range of Fr and ReB available
within our flow. In § 4 we demonstrate the initial time-dependence of our flow on the
development of the buoyancy field and demonstrate that after this period, the mixing
properties within the flow become insensitive to global temporal effects and can be
described by local processes. In § 5 we examine the applicability of Fr, Rig, LE/LO and
ReB-based parameterization frameworks for both the mixing efficiency as well as the
energetic state of the flow itself and subsequently derive relationships between all four
non-dimensional parameters across the varying flow regimes within the channel. Finally,
in § 6 we discuss our main findings within the study and their direct implications to the
parameterization of mixing within stratified turbulence.
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2. Numerical methodology

2.1. Problem formulation
We formulate our flow configuration in the same framework as Williamson et al. (2015)
and their simulations of stationary radiatively heated open channel flow. A similar
framework has been used for the destratifying open channel simulations of Kirkpatrick
et al. (2019) and Kirkpatrick et al. (2020). A schematic of the flow is presented in figure 1.
The flow is periodic in the streamwise (x) and spanwise (y) directions with no-slip and
free-slip adiabatic bottom and top boundaries, respectively, and driven by a constant
pressure gradient in x. The flow is heated through a depth varying volumetric heat source
qI(z) on the principle of Beer–Lambert’s law, defined as

qI(z) = Isαe(z−δ)α, (2.1)

where Is is the radiant surface heat flux, α is the absorption coefficient and δ is the channel
height. Hence we can define domain-averaged mean heat source and normalized heat flux
terms

〈q〉 = 1
δ

∫ δ

0
qI(z) dz, qN = 1

δ2

∫ δ

0
(〈q〉 − qI(z))(z − δ) dz. (2.2a,b)

The dimensional temperature Θ at time t is decomposed into the statistically steady
temperature fluctuation deviating from a domain-averaged mean, defined as

Θ(x, t) = Θ(x, t)′ + 〈Θ(t)〉 (2.3)

and, under the assumption that no heat is lost through the boundaries, it follows that

∂〈Θ(t)〉
∂t

= 〈q〉
ρ0Cp

, (2.4)

where ρ0 is the reference fluid density and cp is the specific heat. By defining the initial
equilibrium friction velocity uτ,0 and channel depth δ as the characteristic velocity and
length scales, respectively, we can then define a characteristic temperature scale

ΘN = qNδ

ρ0cpuτ,0
. (2.5)

Hence we can define a non-dimensional temperature and heat source

θ(x, t) = Θ(x, t) − 〈Θ(t)〉
ΘN

, q(z) = qI(z) − 〈q〉
qN

. (2.6a,b)

Our flow is then fully defined by four non-dimensional parameters: the initial friction
Reynolds number Reτ,0; the Prandtl number Pr; the turbidity profile αδ; and an initial
bulk stability parameter λ0, defined as

Reτ,0 = uτ,0δ

ν
, Pr = ν

κ
, αδ, λ0 = δ

L , (2.7a–d)

where ν and κ are the kinematic viscosity and thermal diffusivity, respectively. Also
note that in our framework, αδ ⇒ ∞ is analogous to a heat flux at the top surface
similar to the simulations of Taylor et al. (2005). The stability of our flow is defined in
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the Monin–Obhukov framework as the ratio of the domain confinement scale δ to bulk
Obhukov length L defined as

L = u3
τ,0

gβIs/ρ0Cp

(
1
2

− 1
αδ

)−1

, (2.8)

where g is the gravitational acceleration and β is the coefficient of thermal expansion. Note
that L is analogous to the standard definition of the Obhukov length L = u3

τ /κb∗ where b∗
is the surface buoyancy flux (Flores & Riley 2011). Thus we define our non-dimensional
buoyancy scale as

b = λ0θ. (2.9)

We non-dimensionalize time around the initial advection time scale Tτ,0 = δ/uτ,0 such
that

t = T/Tτ,0, (2.10)

where T is the dimensional time. Thus, under the Oberbeck–Boussinesq assumption, the
non-dimensional governing equations for our flow are

∇ · u = 0, (2.11)

∂u
∂t

+ u · ∇u = −∇p + 1
Reτ,0

∇2u + bez + ex, (2.12)

∂b
∂t

+ u · ∇b = 1
PrReτ,0

∇2b + λ0q, (2.13)

with our boundary and initial conditions explicitly defined as

z = 0; u = v = w = 0,
∂b
∂z

= 0, (2.14)

z = δ; ∂u
∂z

= ∂v

∂z
= w = 0,

∂b
∂z

= 0, (2.15)

t = 0; b = 0. (2.16)

We have selected this open channel flow configuration for three reasons. Firstly, the use of
an adiabatic bottom boundary has been shown to ensure that while the bulk flow becomes
stratified, the near-wall turbulence structure remains relatively unchanged by the effects of
buoyancy (Taylor et al. 2005; Williamson et al. 2015), allowing for simulations to be run at
significantly higher levels of buoyancy strength than isoflux or fixed buoyancy boundary
conditions where the relaminarization and collapse of turbulence inherently occurs at the
wall (Flores & Riley 2011; García-Villalba & del Álamo 2011; Deusebio et al. 2015;
Zhou et al. 2017a). Secondly, relative to a surface flux boundary condition, use of the
volumetric heat source shifts the pycnolcine deeper into the channel away from the upper
boundary, creating an appreciable region in the central bulk flow of significantly stronger
stratification (Williamson et al. 2015). This subsequently allows us to access regimes of
lower Fr farther away from the top boundary, where confinement effects may influence
mixing dynamics (Flores, Riley & Horner-Devine 2017). Thirdly, our direct numerical
simulation (DNS) configuration of a stratified open channel flow heated through radiative
surface heating is a canonical representation of stratified river flow and in particular the
regulated river flows in inland Australia, where the accurate estimation and prediction of
diapycnal mixing remains an important task (Williamson et al. 2015; Kirkpatrick et al.
2019).
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Free-slip, adiabatic

Lz = δ

Lx

z, w

y, v

x, u
No-slip, adiabatic

u (z)

q (z)

Figure 1. Schematic diagram of the flow configuration; the domain is periodic in x and y.

2.2. Notation and presentation of statistics
Within our temporally varying and vertically inhomogeneous flow, we define that any flow
variable at a spatial location x and time t can be decomposed into a horizontally averaged
mean and fluctuating components denoted with an overbar and prime, respectively, such
that

f (x, t) = f̄ (z, t) + f ′(x, t) (2.17)

and where the mean at a vertical location of z is calculated through a volumetric integral
across the horizontal plane at time t, as follows:

f̄ (z, t) = 1
LxLy

∫ Lx

0

∫ Ly

0
f (x, t) dx dy. (2.18)

Similarly, we define that unless otherwise explicitly stated, it is implicit that flow statistics
composed out of the velocity and buoyancy fields (e.g. εK, EK, S, N etc) are presented as
horizontal averages of that quantity at location z and time t as defined in (2.18).

2.3. DNS
Equations (2.11), (2.12), (2.13) were solved using a fractional-step finite-volume solver as
outlined in Armfield et al. (2003) and Williamson et al. (2015). The advective spatial
derivatives are discretized using fourth-order central differencing, whilst other spatial
derivatives are calculated using second-order central differencing. Cell-face velocities
are calculated using Rhie–Chow momentum interpolation and the time advancement is
performed using a second-order Adams–Bashforth scheme.

We present our simulation parameters in table 1. Our simulations cover two friction
Reynolds numbers, Reτ,0 = 400, 900. As we are primarily interested in the low Fr (high
Rig) regimes, our simulations cover a range of stability parameters, from moderately to
extremely stable (λ0 = 0.5–5). We limit all simulations to Pr = 1 for numerical efficiency
and set αδ = 8 for all simulations with a single control case of αδ = 16.

Following past studies of stratified wall-bounded turbulence (García-Villalba & del
Álamo 2011; Deusebio et al. 2015; Williamson et al. 2015), we discretize our domain
as follows. For all simulations the streamwise and spanwise grid size in initial viscous
wall units is kept constant at �x+

0 = 5 and �y+
0 = 2.5. The vertical grid size for the
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Case Reτ,0 λ0 Pr αδ Lx × Ly × Lz Nx × Ny × Nz

R400L05 400 0.5 1 8 2πδ × πδ × δ 512 × 512 × 150
R400L1 400 1 1 8 2πδ × πδ × δ 512 × 512 × 150
R400L2 400 2 1 8 2πδ × πδ × δ 512 × 512 × 150
R900L1 900 1 1 8 2πδ × πδ × δ 1152 × 1152 × 450
R900L1AD16 900 1 1 16 2πδ × πδ × δ 1152 × 1152 × 450
R900L2 900 2 1 8 2πδ × πδ × δ 1152 × 1152 × 450
R900L5 900 5 1 8 2πδ × πδ × δ 1152 × 1152 × 450

Table 1. List of DNS performed, and relevant parameters.

Reτ,0 = 400 simulations is logarithmically stretched from �z+
0 = 0.4 at the wall to �z+

0 =
4 at z = 0.25 where it stays constant to the half-channel height z = 0.5. The vertical grid
spacing in the top half of the channel is then set as symmetrical about the midpoint axis
to ensure accurate resolution of viscous near-surface mechanics (Calmet & Magnaudet
2003). A similar procedure for the vertical grid size of the Reτ,0 = 900 simulations was
employed with a further refinement of �z+

0 = 2.5 in the bulk of the flow. To maintain
accurate resolution of the viscosity affected near-wall and near-surface regions, we ensure
that we have more than 10 grid points within a �z+

0 = 10 distance from either boundary.
We keep the domain size constant at Lx × Ly × Lz = 2πδ × πδ × δ across all

simulations. We acknowledge that the size of the domain may affect the intermittent
regime where laminar and turbulent patches coexist, as it has been shown that a smaller
domain often leads to earlier laminarization for the same set of bulk parameters and can
exhibit strong temporal intermittency (Flores & Riley 2011; García-Villalba & del Álamo
2011; Brethouwer, Duguet & Schlatter 2012; Deusebio et al. 2015). In this study, however,
we are primarily interested in instantaneously correlating local turbulent mixing properties
to appropriate local non-dimensional parameters within fully turbulent regions of the flow.
Furthermore, our adiabatic bottom boundary condition ensures that the near-wall region
remains fully turbulent, hence we do not expect the domain size to significantly influence
the results presented in this study.

The initial simulation field is of fully developed statistically stationary neutral open
channel flow at a given Reτ,0. For all simulations we then initialize the isothermal
buoyancy field b = 0 at t = 0 and simultaneously switch on the volumetric heat source
and the effects of buoyancy. All simulations have been run for tfinal = 10 time units. For
all simulations, transient data has been recorded at intervals of �t = 0.02 time units to
ensure accurate representation of temporal effects within the flow.

3. Flow overview

3.1. Qualitative description and local parameter range
A defining feature of our DNS configuration is that as the channel transitions from a neutral
to stratified state, the local flow at any given vertical location z evolves through a broad
range of non-dimensional parameters such that, at any point in time, the flow contains
regions of both high and low Fr simultaneously. This creates a data set that traverses a
variety of energetic regimes within a single simulation and where the flow, both mean
and fluctuating, evolves in a relatively natural way without external imposition. We briefly
present the local parameter range available within our data set through figure 2 showing
the temporal evolution of Fr and ReB as a function of z for case R900L2 which shows
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(b)(a)

Fr

0

0.2

0.4

0.6

z

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

10–3 10–2 10–1 100 101 102

ReB

10–2 100 102 104

t = 0.5

t = 1

t = 2

t = 5

t = 10

106

Figure 2. Evolution in time of key local parameters as a function of z for case R900L2. (a) Turbulent Froude
number Fr, vertical dotted lines left to right represent Fr = 0.02 (as the upper limit for the strongly stratified
regime outlined in Lindborg 2006) and Fr = 1; (b) buoyancy Reynolds number ReB, vertical dotted line
represents ReB = 1.

behaviour typical of our flow, where we redefine

Fr = εK

NEK
, ReB = εK

N2ν
, (3.1a,b)

where εK = ν(∂u′
i/∂xj)

2, EK = 1/2(u′
iu

′
i) and N = (∂ b̄(z)/∂z)1/2. From figure 2(a) we

observe that the flow obtains an Fr range that encapsulates all three energetic mixing
regimes proposed by GV19. Of particular interest is that within the central portion of the
channel, Fr stabilizes within approximately one eddy turnover unit (t ≈ 1) and obtains an
appreciable depth range for the so-called ‘moderately stratified regime’ where Fr = O(1)

in an energetically ‘quasi-stationary’ state such that turbulent properties adapt rapidly to
the evolving buoyancy gradient N in order to obtain energetic equilibrium. As outlined
in § 1, in previous numerical studies this regime is only often temporarily traversed as a
transient state and subsequently there is a lack of data points in the available literature
within this regime. As such our flow and extensive data set of Fr = O(1) allows us to
examine the mixing properties and scaling relationships within this regime in much greater
detail than has been previously reported.

Although the flow achieves Fr < 0.02 close to the free surface, our simulations are not
able to access the ‘strongly stratified regime’ in the same sense as outlined in Billant
& Chomaz (2001) or Brethouwer et al. (2007). This is made evident in figure 2(b),
which demonstrates that for our flow configuration as we approach the free surface, the
stratification grows stronger and a reduction in Fr inevitably leads to a reduction in ReB,
leading to the relaminarization of the flow. Subsequently at our parameter range, regions
within our flow of very low Fr are more indicative of a diffusive regime as described by
Brethouwer et al. (2007), where ReB < 1 and the flow is dominated by viscous effects and
strong vertical shearing at large scales.

This is made clear if we consider the instantaneous visualizations of the buoyancy b and
enstrophy |ω2| fields in the vertical (x, z) plane at t = 5 in figure 3 for case R900L2. We can
clearly observe that the flow is separated into three distinct regimes relative to the vertical
coordinate z: a lower near-wall regime, where due to the adiabatic boundary condition
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x

Figure 3. Instantaneous flow visualizations in the vertical (x, z) plane at t = 5 for case R900L2 of (a) the
buoyancy field b and (b) enstrophy field |ω2|. Flow is moving left to right.

the boundary layer turbulence structure remains relatively unchanged by the effects of
stratification; a central region within which turbulent structures exhibit the characteristic
‘lean’ of sheared stratified turbulence and where we observe the formation of distinctly
classic Kelvin–Helmholtz instability (KHI) overturning structures within the shear layer,
causing highly vigorous and energetic mixing; an upper quasi-laminar or diffusive regime
where turbulence is essentially suppressed by the effects of buoyancy and separated by
a sharp buoyancy interface that experiences sporadic overturning by turbulent structures.
Thus, the turbulence structure visually observed in figure 3 corresponds closely to the
three regimes defined by Fr and ReB in figure 2.

3.2. A note on the mixing efficiency
Throughout this study we defer to a definition of the instantaneous mixing efficiency
through Rf and Γ as defined in Ivey & Imberger (1991),

Rf = B
B + εK

, Γ = Rf

1 − Rf
= B

εK
, (3.2a,b)

where B = −b′w′ is the buoyancy flux. The vertical buoyancy flux, however, not only
incorporates the small-scale irreversible mixing rate (the quantity of interest) but also
large-scale reversible stirring processes (Caulfield & Peltier 2000; Peltier & Caulfield
2003). As such, for linearly stratified flows a more robust definition of the irreversible
mixing rate is usually defined through the destruction rate of buoyancy variance χ

(Maffioli et al. 2016; Venayagamoorthy & Koseff 2016; de Bruyn Kops & Riley 2019;
Howland, Taylor & Caulfield 2020), where

χ = κ

N2

(
∂b′

∂xj

)2

. (3.3)

For χ to accurately represent the irreversible conversion of kinetic to available potential
energy, a fundamental condition is that the local buoyancy period N(z) must be invariant
in both space and time (Caulfield 2020), a condition that is inherently unsatisfied within
our temporally evolving inhomogeneous channel flow.
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Parameterization of mixing in stratified open channel flow

An alternative framework is through the adiabatic resorting of the buoyancy in the z∗
coordinate space of Winters et al. (1995) to obtain an irreversible mixing rate M and
subsequently an irreversible mixing efficiency η = M/(M + εK) (Caulfield & Peltier
2000). In past studies, Zhou et al. (2017b) and Smith, Caulfield & Taylor (2021) have
shown that the framework may be also applied to inhomogeneous shear flows to evaluate
irreversible mixing across a midplane shear interface through appropriate spatial and
temporal integration over the shear layer. However, in stratified open-channel flow where
we are interested in investigating the correlation between mixing efficiency and local flow
parameters across a broad range of vertical locations, rather than a single central shear
layer, the z∗ framework presents obvious limitations. We note, the aim of this study is not
to quantify an exact measure of the irreversible mixing efficiency, but rather to investigate
its behavioural trends across different mixing regimes and the subsequent implications on
the relationships between varying non-dimensional parameters at a given vertical location.
Furthermore, as shown in Venayagamoorthy & Koseff (2016), we expect that in the weakly
and moderately stratified regimes the differences in the definitions of mixing efficiency to
be relatively small and the qualitative behaviour to remain similar. As such, our definition
of mixing efficiency through (3.3) still accurately captures the dynamics of interest in our
study.

4. Initial time dependence

We first briefly consider the initial time dependence exhibited by our flow properties
related to the buoyancy field due to our idealized initial condition of b = 0 by plotting
Γ as a function of time across a range of vertical locations and simulations in figure 4.
From the results we observe that Γ initially grows proportional to t2 and shows clear
time dependence up to approximately one eddy turnover time unit (t ≈ 1). We consider
the transport equation for the horizontally averaged mean buoyancy b̄, which under the
assumptions of homogeneity in x and y, becomes

∂ b̄
∂t

= ∂B
∂z

+ κ
∂2b̄
∂z2 + λ0q. (4.1)

We can further take the vertical derivative ∂/∂z to obtain the evolution equation for N2 as
follows:

∂N2

∂t
= ∂2B

∂z2 + κ
∂3b̄
∂z3 + ∂

∂z
λ0q. (4.2)

For our simulations with initial condition b = 0 we make the assumption that the turbulent
and diffusive terms (first and second terms on the right-hand side) are negligible at the start
of the simulation and the equation reduces to

∂N2

∂t
= ∂

∂z
λ0q. (4.3)

Integrating forward in time from the initial reference time of t = 0 we arrive at an estimate
of N2(t) at a given horizontal plane∫ t

0

∂N2

∂t
dt =

∫ t

0

∂

∂z
λ0q(z) dt ⇒ N2(t) = ∂

∂z
λ0qt. (4.4)

Hence it is clear that initially N2 ∼ t. For the remainder of this section, in the interest
of simplification, we drop the notation (t), however, the dependence on time of flow
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properties remains implicit. In the same framework as GV19, consider the turbulent
vertical displacement of a fluid parcel Ldisp = w′t. The fluctuating buoyancy b′ can
therefore be estimated as

b′ ∼ LdispN2 = w′N2t = w′ ∂

∂z
λ0qt2 ∼ t2. (4.5)

If we take one further assumption that buoyancy initially acts as a passive scalar, then
it follows that flow properties related to the velocity field are not a strong function of t
and remain unchanged by the introduction of the buoyancy field. We can thus construct
an initial time dependant expression for any flow property that incorporates the buoyancy
field. Consider for example the buoyancy flux such that

B = −b′w′ ∼ t2. (4.6)

By similar logic we can obtain an expression for Γ such that

Γ = B
εK

∼ t2, (4.7)

as clearly demonstrated in figure 4 for all cases where Γ ∼ t2, until approximately one
tenth of the characteristic eddy turnover time unit (t ≈ 0.1), corresponding to the estimate
for the time taken for energy injected at large scales to travel down the energy cascade
to the dissipative range and hence affect the flow field (see Pope 2000). Past this time
scale, buoyancy begins to affect the flow, nullifying our assumption of buoyancy acting
as a passive scalar. Meanwhile we expect the turbulent and diffusive terms in (4.2)
to become appreciable and influence the growth of N2, causing it to diverge from a
linear N2 ∼ t growth. This creates a set of complex dynamics, causing the buoyancy
field to exhibit nonlinear time-dependence as the flow adjusts to the sudden imposition
of buoyancy. This time dependence lasts of the order of one eddy turnover time unit
(t ≈ 1) across all simulations and vertical locations, suggesting the adjustment to the
buoyancy field is a global rather than local process. For t � 1 temporal variability becomes
negligible and Γ begins to evolve at a quasi-steady rate. We note similar dependence on
the initial eddy turnover time scale has been observed in previous studies with distinctly
different flow configurations, yet with a similar b = 0 initial condition (Métais & Herring
1989; Venayagamoorthy & Stretch 2006; Maffioli & Davidson 2016), suggesting some
universality on the eddy turnover time scale for the nonlinear adjustment of the flow.
Subsequently we can expect that for t � 1, B and hence Γ become independent of time
and evolve relative to local processes. Thus it follows that for t � 1 we can expect locally
based parameterization schemes for Γ to become applicable to our flow.

5. Parameterization of mixing efficiency, applicability and comparison

We now turn to the main theme of this study. In this section we explore the
parameterization of mixing efficiency in our temporally evolving inhomogeneous flow
through the Fr, Rig, LE/LO and ReB methods. We then use the Fr-based framework of
MBL16 and GV19 as a base case scenario to further investigate the relationships and
similarities between the varying frameworks and relevant non-dimensional parameters
across the varying mixing regimes.
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Figure 4. Mixing coefficient Γ plotted against non-dimensional time t (a) at varying vertical locations for case
R900L2 (b) at a vertical location of z = 0.5 for all simulations. Vertical dashed lines in both figures represent
t = 0.1 and t = 1; the diagonal dashed line represents a line proportional to t2.

5.1. Fr − Γ framework and moderately stratified regime scaling
To begin we first explicitly test the novel Γ − Fr−1 scaling relationship derived in GV19
for the Fr = O(1) regime. The authors argue that the pertinent time scales for B and εK
are the buoyancy and inertial time scales TN = 1/N and TL = EK/εK , respectively. Under
the assumption of a stationary linearly stratified flow they obtain

B ∼ χ ∼ w′2

TN
, εK ∼ w′2

TL
. (5.1a,b)

Thus they obtain the new scaling for the irreversible mixing coefficient Γ = B/εK ∼
χ/εK ∼ TL/TN = Fr−1. For the purpose of generality we make one further assumption,
that at Fr = O(1) the separation of vertical and horizontal velocity scales is still relatively
small and hence we can approximate w′2 ∼ EK . We can thus rewrite (5.1) in the classic
form of velocity and length scales ε ∼ u3/l as

B ∼ χ ∼ EK

TN
∼ E3/2

K
LN

, εK ∼ EK

TL
∼ E3/2

K
LI

, (5.2a,b)

where

LN = E1/2
K
N

, LI = E3/2
K
εK

. (5.3a,b)

Here LN is an energetic buoyancy length scale constructed as a result of dimensional
analysis and can be taken to represent the conceptual size of large energy-containing
eddies when the effects of buoyancy are significant. Now LN has also been shown to be
an accurate indicator of the size of overturns when Fr < 1 (Mater et al. 2013). Here LI is
the well known inertial energy-containing turbulent length scale (Pope 2000). Such that
for the moderately stratified regime we obtain Γ = B/εK ∼ χ/εK ∼ LI/LN = Fr−1, the
same scaling as GV19. If considered in the context of the strongly stratified turbulence
theory of Billant & Chomaz (2001) and Lindborg (2006) it can be readily seen that LN and
LI have physical analogues in the vertical and horizontal integral scales lv ∼ uh/N and
lh ∼ u3

h/εK , respectively, where uh is the horizontal velocity scale.
As discussed in § 3, the definition of χ as an irreversible mixing rate in the derivation

above is not equivalent to that of an instantaneous local χ(z) as measured within our
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Figure 5. Buoyancy flux B normalized by E3/2
K /LN , (a) as a function of time t for all simulations at a vertical

location of z = 0.5, (b) as a function of the turbulent Froude number Fr presented as a two-dimensional
probability density function (p.d.f.) for t > 1 and 0.2 � z � 0.8. Vertical dashed lines indicate Fr = 0.3 and
Fr = 1. Dashed horizontal line in both figures indicates an empirical constant of 0.08.

flow, hence, and without loss of generality, we explore these scaling proposals through the
buoyancy flux B instead. Figure 5(a) shows B normalized by E3/2

K /LN as function of time at
a vertical location of z = 0.5, corresponding to a location in the flow where Fr = O(1) and
ReB � O(1) for all simulations. For the proposed scaling to hold, we expect the former
ratio to approach a constant value of O(1). We further note that it is sufficient to show
the B scaling alone to validate the Γ ∼ Fr−1 assumption; as it can readily be shown that
εK/(E3/2

K /LI) = (εK/E3/2
K )/(εK/E3/2

K ) = 1.
In agreement with our analysis in § 4 we observe that the scaling does not hold for

t < 1 during the transient adjustment period, past which the results clearly show an
agreement with the scaling in (5.2) such that B/(E3/2

K /LN) approaches a constant value of
approximately 0.08 across all simulations and appears invariant in time. When considered
in the context of our temporally inhomogeneous flow where not only the turbulent
properties but also the background stratification N2 is evolving in time, the result implies
that the above scaling for B in (5.2) is both valid and relatively robust. This is further
made evident in figure 5(b) which shows the two-dimensional p.d.f. of Fr and the ratio
B/(E3/2

K /LN) for all simulations. Due to the initial time dependence observed in § 4 we
exclude the data for t < 1 in the construction of the p.d.f. Furthermore, as the confinement
effects of the top and bottom boundaries are outside the scope of this study we also exclude
the data for z < 0.2 and z > 0.8. The vertical limits of z = 0.2 and z = 0.8 have been
chosen as the approximate values within which fully developed open channel flow has
been shown to obtain local energetic equilibrium (Williamson et al. 2015; Kirkpatrick et al.
2019). It is indeed clear from the results that B/(E3/2

K /LN) ≈ 0.08 and remains constant
only for a regime within the bounds of 0.3 � Fr � 1, presenting further strong evidence
for the argument of GV19 for the existence of a separate intermediate energetic regime
that exists in a quasi-stationary state and not as a transient transition between the weakly
and strongly stratified regimes. We note that the value of Fr = 0.3 is in direct agreement
with the transitional value observed in MBL16 towards the asymptotic Γ regime within
their study, suggesting some level of universality to this transitional value.

We now turn our attention to the Fr-based parameterization of the mixing efficiency.
Figure 6(a) shows the two-dimensional p.d.f. of Fr and Γ for all simulations constructed
out of the data within the range of t > 1 and 0.2 � z � 0.8.
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Figure 6. (a) Two-dimensional p.d.f. of the turbulent Froude number Fr and the mixing coefficient Γ

constructed out of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. The
axes on the insert within the figure are presented on a linear scale. (b) The Fr bin-averaged mixing coefficient
〈Γ 〉 plotted against bins of corresponding turbulent Froude number 〈Fr〉 for all data points within t > 1
and z > 0.2. Solid lines indicate the proposed scaling of MBL16 and GV19 as well as empirically observed
Γ = 0.3. Vertical dashed lines indicate Fr = 0.3 and Fr = 1.

From the results we observe that Γ collapses well across all three energetic regimes
and respective scaling relationships proposed by MBL16 and GV19. Although we only
access a very small section of the weakly stratified regime, we observe a distinct Fr−2

slope developing in the high Fr range similar to that observed in the Couette flow studies
of Zhou et al. (2017a,b). Crucially, in agreement with our analysis above, we observe
that within a range of 0.3 � Fr � 1 where the majority of our data is concentrated,
Γ collapses across all simulations and depths with a distinct Fr−1 scaling, providing
further strong evidence for the existence of a distinctly separate intermediate regime
as proposed by GV19. Unlike MBL16, however, who find that Fr = 0.3 corresponds
to a peak in mixing efficiency, we observe no non-monotonic behaviour in Γ , rather
the transition at Fr = 0.3 corresponds to a saturation of the mixing efficiency, with Γ

displaying independence of Fr and trending towards an empirically observed asymptotic
value of Γ ≈ 0.3. The asymptotic value being significantly higher than the upper limit of
0.2 proposed by Osborn (1980), is more reminiscent of the higher values of cumulative
mixing efficiency seen in studies of KHI-induced mixing (Salehipour & Peltier 2015;
Mashayek, Caulfield & Peltier 2017; Salehipour et al. 2018), seemingly in agreement
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with our visual observations of highly energetic KHI-driven mixing events within our
flow.

With further decreasing Fr we observe a significant amount of scatter in the data.
This can be explained as the flow transitions towards the diffusive regime and both B
and εK grow very small and a minor change in either of the two quantities causes large
variation in Γ . Additionally, as has been reported in the study García-Villalba & del Álamo
(2011), channel flow within this regime becomes increasingly affected by the propagation
of internal gravity waves as well as counter-gradient fluxes resulting from convective
instabilities in the flow (Taylor et al. 2005). This results in instantaneous measurements
of B becoming strongly susceptible to contamination from these reversible processes,
subsequently causing our measurements of Γ within this regime to show significant
scatter about its asymptotic mean value. Furthermore, as discussed in Venayagamoorthy
& Koseff (2016) the presence of the counter-gradient fluxes may cause the observed
saturated mean value of Γ = 0.3 to underestimate the true irreversible mixing efficiency.
However, as can be observed from the insert in figure 6(a) which presents the same data
on a linear–linear axes, the observed frequency of counter-gradient fluxes is relatively
negligible in comparison with the full data set. As such the significant takeaway from
the results presented within this regime is not the precise value for the saturated mixing
efficiency but rather the observation that Γ appears to grow independent of Fr within this
regime.

To investigate this further we sort and average our instantaneous measurements of
horizontal plane measurements of Γ (z, t) across bins of constant Fr to obtain the binned
data set of 〈Γ 〉. Avoiding near-wall mechanics we consider all data for z > 0.2 and
t > 1. We note that for this case we include the data near the free-surface boundary to
highlight the departure point from the saturated regime towards the diffusive regime.
Figure 6(b) shows 〈Γ 〉 plotted against bins of corresponding 〈Fr〉 for all simulations under
the conditions described above. A colour bar depicting 〈ReB〉 is also shown for reference.
When presented in this manner, it becomes clear that for Fr � 0.3 the mixing efficiency
indeed saturates towards a constant value for all simulations, independent of Fr, a detail
that is somewhat less clear in the scattered data presented in figure 6(a). Furthermore,
it is clear that the transition from a saturated mixing efficiency to the Γ ∼ Fr−1 regime
at Fr ≈ 0.3 occurs irrespective of Reτ , λ, αδ or vertical location z within the channel,
again suggesting a degree of universality for this transitional value as argued by MBL16.
Conversely no singular value of Fr appears for the transition away from the constant
Γ regime within the ‘left flank’ of the curve. Rather, as seen from the results, this
corresponds to a transition to the diffusive regime at low ReB as will be demonstrated
in further detail in § 5.5.

We note that within the ‘left flank’ of figure 6(b), following the saturated regime, case
R900L5 displays a further increase in Γ with a clear peak before dropping away. The exact
mechanism of this is unknown, and may be attributed to a number of influencing factors
that fall outside the scope of this study such as large vertical displacement of fluid parcels
through internal gravity waves, surface confinement effects and strong spatiotemporal
intermittency of turbulence as the flow approaches the diffusive regime. Furthermore, as
can be observed from the colour bar, this behaviour occurs for flows where ReB � O(1),
which can be considered essentially laminar such that the vertical transfer of buoyancy
through the turbulent flux B is significantly smaller than that of molecular diffusion.
Subsequently, our definition of a ‘turbulent’ mixing efficiency through Γ begins to lose
relevance. We further note that similar behaviour has been observed at low ReB in the
studies of Zhou et al. (2017b) and Smith et al. (2021), suggesting that as εK goes to zero
the diapycnal flux is not fully suppressed within this regime.
935 A17-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1159


Parameterization of mixing in stratified open channel flow

100

10–1

10–2

10–3

Rf
Rf

10–3 10–2 10–1 100 101

Rig

p
.d

.f
.

14

10

12

8

6

4

2

(×10–4)

0.5

0.25

0
1.0

Rf = 0.25(1 – e –7Rig)

Rf = Rig
Rig

Figure 7. Two-dimensional p.d.f. of the gradient Richardson number Rig and the flux Richardson number Rf
constructed out of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. Solid
line indicates the proposed empirical fit model of Venayagamoorthy & Koseff (2016). Dotted line represents
a linear relationship of Rf = Rig. Vertical dashed line indicates Rig = 0.25. The axes on the insert within the
figure are presented on a linear scale.

5.2. Rig framework
In this section we briefly examine the behaviour of Γ relative to the more established
framework based on Rig, where

Rig = N2

S2 , (5.4)

where S = ∂ ū(z)/∂z. Figure 7 shows the two-dimensional p.d.f. of Rig and Rf constructed
analogously to that of figure 6(a). For reference we also plot the line corresponding to the
linear relationship Rf = Rig (dotted line) as well as the empirical fit corresponding to Rf =
0.25(1 − e−7Rig) of Venayagamoorthy & Koseff (2016) (solid lined). From the results it is
clear that, in agreement with numerous studies of sheared stratified turbulence (see § 1),
the mixing efficiency displays linear monotonic dependence on Rig up to a critical value of
Rig ≈ 0.25, where it can be seen that the majority of our data is concentrated. The results
add to the mounting evidence that in weak/moderate levels of stratification, the diapycnal
and momentum diffusivities are relatively equal, such that the turbulent Prandtl number
PrT ∼ Rig/Rf is approximately unity. A further key observation from the results is that
within our flow we clearly observe sustained turbulence and vigorous KHI-induced mixing
at Rig values significantly higher than the critical ‘Miles–Howard’ limit of Rig,c = 0.25,
suggesting exercising caution in assuming a strict upper limit of KHI stability based on
Rig,c for more complex and initially turbulent flows, as suggested by Galperin et al. (2007).

Within the ‘right flank’ of the curve we again observe no non-monotonic behaviour
in Rf as observed in the high Pr Couette flow simulations of Zhou et al. (2017b), rather
the saturation of the mixing efficiency seems very well described by the empirical fit of
Venayagamoorthy & Koseff (2016) showing clear asymptotic behaviour in the limit of
high Rig. We note in our study that we maintain Pr = 1 for all simulations, rather than
higher values of Pr = 6–7 which are typical of stably stratified river or oceanic flows that
provide the motivation behind this study. Past studies of shear instability driven mixing
(Smyth et al. 2001; Salehipour & Peltier 2015; Salehipour, Peltier & Mashayek 2015)
have shown that at higher Pr the dynamics of a KHI mixing event can vary significantly
to that at lower Pr, particularly the secondary instabilities that form at smaller scales.
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Furthermore, we note our definition of the mixing efficiency through Rf has fundamentally
different behaviour at high Rig compared with its irreversible counterpart used in the
aforementioned studies, making a direct comparison somewhat difficult. It remains unclear
how higher Pr values for our flow configuration would affect the results presented in this
study, and presents direction for future work.

5.3. Influence of mean shear and Fr − Rig scaling
A distinct key observation from the above analysis is that the transition to the saturated
mixing efficiency regime is described well by both Fr ≈ 0.3 and Rig ≈ 0.25. However, for
0.3 � Fr � 1 and Fr � 1 we have observed two distinctly different mixing regimes with
separate scaling for Γ , in contrast to a simple linear dependence of the mixing efficiency
on the gradient Richardson number for Rig � 0.25. Such results imply a more complex
relationship between Fr and Rig within our flow than the Rig ∼ Fr−2 relationship for
weakly stratified flow (Zhou et al. 2017a). To investigate this further, we consider that the
dynamics of our channel flow can be described in the conceptual framework of Mater &
Venayagamoorthy (2014) as a competition of the inertial, buoyancy and shear forces within
the flow, or analogously as a competition of the three respective time scales TL, TN, TS,
where TS = 1/S is the shear time scale. Thus we consider our channel flow within their
S∗ − Fr−1 regime map, where S∗ is the non-dimensional shear rate defined as

Note that S∗ = SEK

εK
. (5.5)

S∗ has been frequently used in the literature to describe sheared turbulence, both with and
without the presence of buoyancy (Rogallo 1981; Shih et al. 2000; Chung & Matheou
2012). Furthermore, It can be readily seen that S∗ = TL/TS, and hence S∗ represents
the competition between the shear and inertial time scales in the same manner that
Fr = TN/TL analogously represents the competition of buoyancy and inertial time scales.
We note that by convention, S∗ is often defined by S∗ = Sq/εK where q = 2EK is twice
the turbulent kinetic energy. For this study, however, we defer to the definition in (5.5) to
maintain consistency in the comparison of the respective three time scales.

In this sense, Mater & Venayagamoorthy (2014) propose that stratified shear flow can be
divided into three distinct regimes. An inertia dominated regime where flow tends to revert
to isotropy and is defined by both S∗ < S∗

c and Fr−1 < Fr−1
c , where S∗

c and Frc are some
critical values at which shear and buoyancy forces become significant relative to inertia and
begin to distort the isotropic flow. Meanwhile the buoyancy and shear dominated regimes
are defined by S∗ > S∗

c and Fr−1 > Fr−1
c and separated by the diagonal line of Rig = 0.25

as it can be readily shown that Rig = (TS/TN)2 = (Fr−1/S∗)2. We adopt the critical values
defined in Mater & Venayagamoorthy (2014) of S∗

c = 3.3 and Fr−1
c = 1.65. Furthermore,

we note that the limit of Rig = 0.25 delineating the shear and buoyancy dominated regime
is not a strict limit as in the sense of the ‘Miles–Howard’ criterion but rather an empirical
choice due to the evidence that in forced stratified sheared turbulence Rig tends to an upper
bound of 0.25 in a stationary state (Rohr et al. 1988; Chung & Matheou 2012).

Figure 8 shows the two-dimensional p.d.f. of our flow within the S∗ − Fr−1 regime map
described above, constructed in the same manner as figure 6. From the results we can again
observe three distinct regimes of behaviour separated by Fr = 1 and Fr = 0.3.

In the weakly stratified regime for 1/Fr < 1, buoyancy acts essentially as a passive
scalar and the flow travels along a horizontal path of S∗ ≈ S∗

c where the shear and inertial
forces are in balance, much like in a neutral channel flow.
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Figure 8. Two-dimensional p.d.f. of the inverse of the turbulent Froude number 1/Fr and non-dimensional
shear rate S∗ in the STL − NTL regime map of Mater & Venayagamoorthy (2014) constructed out of the
instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. Solid lines indicate the
separation of the proposed inertia, buoyancy and shear dominated regimes as outlined in § 5.2. Vertical dashed
lines indicate 1/Fr = 1 and 1/Fr = 3.33 corresponding to Fr = 1 and Fr = 0.3, respectively.

Within the moderately stratified regime we observe a transitional regime where
buoyancy begins to change the dynamics of the flow. As Fr decreases and buoyancy
begins to restrict the vertical velocity fluctuation w′ and subsequently the turbulent shear
stress −u′w′, an imbalance appears in the flow between the total local shear stress and
the driving pressure gradient. This causes the flow to accelerate in an effort to obtain
energetic equilibrium, translating into an increase in a local measure of S, such that
S∗ increases accordingly. Thus, it is clear that for our flow this intermediate regime
where both S∗ = O(1) and Fr = O(1) represents a critical state of the flow where inertia,
buoyancy and shear all play a significant and interconnected role in the dynamics of the
flow.

Conversely in the saturated regime for Fr < 0.3 or Rig > 0.25 we observe that with
further increasing stratification, the shear increases accordingly such that S∗ grows large
and Fr grows small. Within this regime we can thus expect inertia to become insignificant
relative to the effects of shear and stratification such that N ∼ S and Fr becomes decoupled
from Rig as the effects of inertia become negligible relative to buoyancy and shear.
Accordingly, although the data in this regime shows some scatter we can observe that
within this regime the flow tends to settle down and evolve along diagonal lines of constant
Rig, with the majority of the data in the ‘right flank’ of the figure again being concentrated
around the ubiquitous value of Rig = 0.25. The scatter in the data can be directly explained
by the relatively slow process that is the acceleration of the mean flow from its initial
state. We note that at tfinal = 10 all the simulations are still significantly distant from
their final equilibrium states. As such the mean shear S is still increasing to obtain shear
stress equilibrium such that Rig is still evolving towards its stationary state. Meanwhile,
the turbulent properties have adapted to the growing background stratification and Fr has
essentially stabilized as observed in figure 2, causing the scattered trajectories of the flow
in S∗ − Fr−1 space within this regime.

From the observations above it is clear that the relationship between the inertial, shear
and buoyancy forces within the flow vary significantly along the three energetic regimes
of the flow. We can hence derive scaling arguments to directly relate Fr to Rig within our
flow across the three regimes.
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Within the weakly stratified, Fr > 1 regime we can relate Fr and Rig with a simple
mixing length argument for S such that

S ∼ U∗
L∗

, (5.6)

where U∗ and L∗ are some characteristic velocity and length scales pertinent to energetic
mixing within the flow. Observing a balance between shear and inertial forces we can
estimate U∗ ∼ E1/2

K and L∗ ∼ LI such that S ∼ εK/EK or conversely TS ∼ TL. Thus we
can obtain

Rig = N2

S2 ∼ N2E2
K

ε2
K

= Fr−2; (5.7)

the same scaling as derived in MBL16 or Zhou et al. (2017a).
Within the moderately stratified, intermediate 0.3 < Fr < 1 regime we can adopt a

similar mixing length argument for S as in (5.6). Having hypothesized that in this critical
regime inertia, buoyancy and shear are all significant, the dimensional group that could
influence the dynamics becomes (N, S, EK, εK). Analogously to our scaling of B within
this regime in (5.2), we make the assumption that the pertinent length scale is the energetic
vertical buoyancy length scale such that L∗ ∼ LN . Hence, dimensional analysis dictates
that a velocity scale constructed out of the remaining dimensional quantities becomes
U∗ ∼ (εK/N)1/2, where (εK/N)1/2 is the velocity scale analogue of the Ozmidov length
scale (Shih et al. 2005). Hence we obtain

S ∼ U∗
L∗

∼ (εK/N)1/2

E1/2
K /N

=
(

εKN
EK

)1/2

. (5.8)

Conversely this can be seen as a comparison of time scales such that

TS ∼ (TLTN)1/2 (5.9)

and we can obtain a scaling relation between Fr and Rig within this regime

Rig = N2

S2 ∼ N2EK

NεK
= NEK

εK
= Fr−1. (5.10)

We note the scaling proposed in (5.8)–(5.10) are new scaling relationships for the
Fr = O(1) regime and thus directly reconcile the observed Γ ∼ Fr−1 and Rf ∼ Rig
scaling for mixing efficiency within this regime.

Finally, in the Fr < 0.3 saturated regime we can directly imply that as TN and TS both
become much smaller than TL, the effects of inertia become negligible such that N ∼ S
and Rig becomes decoupled from Fr.

We first test the new scaling in (5.9) explicitly by plotting the ratio S/(εKN/EK)1/2 as
a function of time at z = 0.5 in figure 9(a) and as a function of Fr, presented in the form
of a two-dimensional p.d.f., in figure 9(b). From the results it is clear that S/(εKN/EK)1/2

approaches a constant value of approximately 0.3 that appears invariant with respect to
both time and space within the defined regime of 0.3 � Fr � 1. Again in the context of
our evolving and inhomogeneous flow, such results suggest that the scaling is reasonably
robust and may pertain to a wider range of stratified shear flows.

To confirm the different scaling across all regimes, we plot the two-dimensional p.d.f. of
Fr and Rig in figure 10(a) for our DNS results as well as from the stationary homogeneous
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Figure 9. Mean shear rate S non-dimensionalized by (εKN/EK)1/2 (a) plotted against time t for all simulations,
horizontal dashed lined indicates empirically observed constant of 0.3, (b) presented in the form of a
two-dimensional p.d.f. with the turbulent Froude number Fr. The p.d.f. is constructed out of the instantaneous
data of all simulations within the range of t > 1 and 0.2 � z � 0.8. Vertical dashed lines indicate Fr = 0.3 and
Fr = 1.

sheared turbulence studies of Shih et al. (2000), Chung & Matheou (2012) and Portwood
et al. (2019). From our instantaneous results it is clear that the flow is again well divided
into the three distinct regimes divided by Fr = 1 and Fr = 0.3, with clear Rig ∼ Fr−2

and Rig ∼ Fr−1 behaviour in the weakly and moderately stratified regimes, respectively.
The results of the three aforementioned studies with distinctly different forcing mechanics
also show clear support for the derived scaling showing excellent agreement across both
regimes, suggesting a degree of universality in their application. Meanwhile the transition
to the saturated regime at Fr ≈ 0.3 and Rig ≈ 0.25 corresponds to a decoupling between
Fr and Rig as the variables become uncorrelated, although this is somewhat obscured by
the scatter in the data.

To demonstrate this result more clearly we plot the Fr bin-averaged data set of 〈Rig〉
plotted against corresponding bins of 〈Fr〉 in figure 10(b) in a similar manner to that of
the process described for figure 6(b). A colour bar showing 〈ReB〉 is again included for
reference. From the results it is again clear that the scaling derived for the weakly and
moderately stratified regimes in (5.7) and (5.10) distinctly collapses on one line and holds
irrespective of external flow parameters of vertical location in the channel, with a clear
transition at Fr ≈ 0.3 or Rig ≈ 0.25 at which point each simulation continues its own
unique trajectory in Fr − Rig space. It is also worth noting the long individual ‘tails’
in the ‘left flank’ of the curve, where Rig � O(1) correspond to low ReB flow that is
essentially laminar and where the scaling derived above on the assumption of turbulent
flow becomes invalid. Furthermore, the data of the aforementioned three studies is again
plotted for visual clarity to highlight the validity of the scaling.

In addition to the stationary runs plotted in figures 10(a) and 10(b) in which Rig is free
to evolve to its stationary state, Shih et al. (2000) also ran non-stationary simulations (see
table 1 in Shih et al. (2000)) in which Rig and subsequently the mean gradients S, N are
kept fixed for a given simulation. These simulations do not follow the proposed scaling
but instead evolve along constant lines of Rig across all three regimes. Conversely, in our
study and the other data sets shown in figures 10(a) and 10(b), neither Fr or Rig are known
a priori and subsequently the both the mean and turbulent flow properties adapt to the
proposed scaling.

The findings discussed in the analysis above present implications for the
parameterization of stratified shear flow. Firstly, it is clear that for Fr > 0.3 or Rig < 0.25,
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Figure 10. (a) Two-dimensional p.d.f. of the turbulent Froude number Fr and the gradient Richardson number
Rig constructed out of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8.
(b) The Fr bin-averaged gradient Richardson number 〈Rig〉 plotted against bins of corresponding 〈Fr〉 for all
data points within t > 1 and z > 0.2. Large blue circles show the data of the stationary runs in table 2 of Shih
et al. (2000). Large diamonds (cyan in (a), black in (b)) show data of Chung & Matheou (2012). Large green
‘X’ shows ‘tuned’ values of Portwood et al. (2019). Solid lines indicate the proposed scaling in (5.7) and (5.10).
Vertical dashed lines indicate Fr = 0.3 and Fr = 1. Horizontal dashed lines indicate Rig = 0.25.

in the weakly and moderately stratified regimes, Fr and Rig become interchangeable in any
parameterization scheme by using the scaling relations in (5.7) and (5.10), respectively.
Such interchangeability allows for more flexible parameterization as relationships derived
through turbulent properties and Fr may be inferred in real flows from relatively
simple measurements of the mean buoyancy and velocity field. Secondly, although very
appealing, the simple division of stratified shear flow into two regimes along a line of
Rig = 0.25 does not accurately capture the subtleties and the differences in dynamics
between the distinctly different 0.3 < Fr < 1 and Fr > 1 regimes. Lastly, care should
be taken in any assumptions on the state of the flow by inferring relationships between
Rig and Fr in the Fr < 0.3 regime; in particular in temporally evolving flow where the
mean fields may exhibit appreciably long adjustment periods as the flow transitions to
energetic equilibrium. Furthermore, in the context of the strongly stratified turbulence
theory of Brethouwer et al. (2007), the apparent decoupling of Fr and Rig within this
regime suggests that even if an upper limit fundamentally exists on the stationary value of
Rig, it does not translate to a lower bound on Fr, suggesting the possibility of accessing
the strongly stratified Fr � O(1) regime within stratified channel flow.
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5.4. Overturning length scale framework
In this section we investigate the applicability of the LE/LO − Γ framework and hence
the more easily measurable LT/LO − Γ framework of GV19 to our temporally evolving
channel flow. Where we define

LE = b′
rms

N2 , LO =
( εK

N3

)1/2
, (5.11a,b)

where LE is the well known Ellison overturning length scale and represents the large
energy containing overturns within the flow. Meanwhile the Ozmidov length LO represents
the maximum conceptual size of an isotropic eddy that is not confined by stable
stratification (Smyth & Moum 2000). In this section we use the overturning length
scales LE and LT interchangeably when referencing different studies, due to their linear
relationship in fully turbulent flow as shown in Mater et al. (2013).

Figure 11 shows the two-dimensional p.d.f. of LE/LO and Γ for the same data set as in
figure 6. It is clear that Γ is accurately described through instantaneous measurements of
LE/LO across all three regimes and scaling relationships described in GV19. Although
accessing only a very small section of the regime, we observe a Γ ∼ (LE/LO)4/3

relationship in the weakly stratified regime in agreement with the observational oceanic
study of Ijichi & Hibiya (2018). However, as LE/LO becomes increasingly small we note
that the results appear to deviate slightly from the proposed scaling for the weakly stratified
regime. We shall return to this shortly in the analysis to come. Again, we observe a distinct
collapse of the data in the moderately stratified regime, showing a Γ ∼ (LE/LO)1 scaling
that holds for almost an entire decade of (LE/LO). A key observation is that the transition
towards the saturated regime occurs at precisely LE/LO ≈ 1. Taking the approximation
of LE ≈ LT and considering the visual observation of vigorous KHI-induced mixing in
figure 3, this is conceptually consistent with the work of Mashayek et al. (2017) who found
that mixing efficiency in a KHI mixing event peaks when LT ∼ LO. That is, when energy
being injected into the downscale energy cascade through the overturning of the KHI
is at a scale corresponding to the upper end of the inertial subrange such that it is not
constricted by the mean stratification. In this sense LE/LO ≈ 1 may offer a somewhat
more conceptually appealing transitional value to the saturated regime in our flow, rather
than the empirically observed Fr ≈ 0.3 or Rig ≈ 0.25.

An important observation from the above results is the appreciably large region of the
channel with a distinct Γ ∼ (LE/LO)1 scaling within a quasi-stationary state as proposed
by GV19. This is in direct contrast to the recent study of Howland et al. (2020) who
instead found that Γ ∼ (LE/LO)2 within this regime. As the LE/LO − Γ framework is
essentially an indirect Fr-based framework, we consider the scaling arguments of GV19
for the relationship between Fr and LE/LO.

In the weakly stratified Fr � O(1) regime, it is expected that the overturning length
scale is well approximated by the inertial energy containing scale LT ∼ LE ∼ LI , hence
GV19 shows that

LT/LO ∼ LE/LO ∼ LI/LO = E3/2
K /εK

ε
1/2
K /N3/2

= E3/2
K N3/2

ε
3/2
K

= Fr−3/2. (5.12)

Conversely in the limit of strong stratification where Fr � O(1) and the effects of
buoyancy strongly influence flow dynamics, the overturning scale will be expected to scale
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Figure 11. Two-dimensional p.d.f. of the length scale ratio LE/LO and the mixing coefficient Γ constructed out
of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. Solid lines indicate the
proposed scaling of GV19 as well as empirically observed Γ = 0.3. Vertical dashed line indicates LE/LO = 1.

as the vertical buoyancy scale such that LT ∼ LE ∼ LN , and GV19 obtains

LT/LO ∼ LE/LO ∼ LN/LO = E1/2
K /N

ε
1/2
K /N3/2

= E1/2
K N1/2

ε
1/2
K

= Fr−1/2. (5.13)

However, in the intermediate regime the relationship between Fr and LE/LO becomes
somewhat ambiguous. For instance, in the decaying homogeneous (unsheared) stably
stratified DNS study of Mater et al. (2013), no such intermediate regime was observed for
any appreciable range of Fr, rather the flow was divided into the two regimes described by
(5.12) and (5.13) with a single critical crossover point of LT/LO ∼ Fr ∼ 1.

We note that the scaling in GV19 makes no assumptions about the presence of mean
shear. However, let us consider that in stratified shear flow it has been shown that the
overturning length scale is well approximated by the turbulent shear length such that LT ∼
LE ∼ LS (Venayagamoorthy & Stretch 2010; Mater & Venayagamoorthy 2014), where

LS = E1/2
K
S

. (5.14)

Here LS is the shear analogue of LN and can be directly related back to the mixing length
LM = −u′w′/S. We note that the LE ∼ LI , LE ∼ LN and LE ∼ LS scaling relationships
can also be derived in the framework of dominant time scales by considering the vertical
displacement of a fluid parcel from its background stratification similar to the analysis
presented in § 4, such that

b′ ∼ w′N2T∗, (5.15)

where T∗ is some time scale pertinent to the evolution of b′ due to overturning of the
buoyancy field. For instance, if we consider that for the buoyancy dominated regime the
pertinent time scale is TN , and by taking the approximation that w′ ∼ E1/2

K , we obtain

LE = b′

N2 ∼ E1/2
K N2TN

N2 ∼ E1/2
K TN = E1/2

K
N

= LN . (5.16)

It can hence be readily shown that a substitution of TL or TS into (5.15) analogously yields
LE ∼ LI and LE ∼ LS, respectively. In this sense and under the assumption that LE ∼ LT ,
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Figure 12. Two-dimensional p.d.f.s of the turbulent Froude number Fr and the length scale ratios: (a) the
ratio of the Ellison length LE to turbulent shear length scale LS; (b) the ratio of LE to the inertial turbulent
length scale LI ; (c) the ratio of LE to vertical buoyancy length scale LN ; (d) the ratio of LE to Ozmidov length
scale LO. All p.d.f.s constructed out of the instantaneous data of all simulations within the range of t > 1 and
0.2 � z � 0.8. Horizontal dashed line for all figures indicates a ratio of unity. Vertical dashed lines indicate
Fr = 0.3 and Fr = 1.

we present physical scaling arguments that provide support to past studies that have shown
correlation between measurements of LT and the three respective energetic length scales
LI, LN, LS across varying flow regimes (Mater et al. 2013; Mater & Venayagamoorthy
2014; Ijichi & Hibiya 2018).

To investigate this further, we plot the two-dimensional p.d.f.s of Fr and the ratios
LE/LS, LE/LI , LE/LN and LE/LO in figure 12.

From figure 12(a) it is clear that within the moderately stratified and saturated regimes
for Fr < 1, the LS or alternatively the TS scaling becomes valid and the ratio LE/LS
becomes a constant of approximately unity. In particular, the excellent correlation within
the moderately stratified regime is conceptually consistent with our visual observations in
figure 3 of vigorous KHI-driven mixing arising from shear instabilities. This is further
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supported by the observation that in the S∗ − Fr−1 regime map in figure 8 the flow
predominantly lies within the ‘shear dominated’ regime and is reflected in the TS ∼
(TLTN)1/2 scaling derived in § 5.3. The scatter in the far ‘left flank’ of the saturated regime
can again be attributed to the relatively slow process that is acceleration of the mean flow
and development of the mean shear profile in our time-varying simulations. For Fr > 1
where we observed the slight disagreement between the Γ ∼ (LE/LO)4/3 scaling and our
results, we observe a small transitional regime where LE/LS grows with Fr before again
appearing to plateau to a constant of O(1); although this behaviour is not fully developed
at our parameter range. To explain this we consider our assumption that for Fr > 1 we
expect the inertial scaling LE ∼ LI such that

LE/LS ∼ LI/LS = E3/2
K /εK

E1/2
K /S

= SEK

εK
= S∗ (5.17)

and multiplying through by N/N we obtain

S∗ N
N

= SEK

εK

N
N

= Ri−1/2
g Fr−1. (5.18)

Now recalling Rig ∼ Fr−2 in the limit of high Fr as derived in (5.7) we obtain

LE/LS ∼ S∗ = Ri−1/2
g Fr−1 ∼ Fr1Fr−1 = const. (5.19)

This is in agreement with our observations in figure 8 that S∗ remains a constant of O(1)

for Fr > 1.
From figure 12(b), however, we observe that within the Fr > 1 regime we do not observe

the expected inertial scaling of LE ∼ LI for an appreciable range of Fr. Rather, we see
continued growth of the ratio LE/LI with increasing Fr. We can explain this under two
considerations. Firstly, for the data presented our highest measurements of Fr are still
of O(1). For comparison, in the study of Mater et al. (2013) (their figure 6), the LT ∼ LI
scaling only appears for flow where Fr = O(10). Secondly, as seen in figure 2, by nature of
our DNS configuration the data for high Fr inevitably occurs close to the bottom wall. At
the lower vertical extent of z = 0.2 for which our p.d.f. results are presented, LE, LI , LN and
LO are all larger than the geometric confinement length scale defined by the distance from
the wall z for all simulations. As discussed in the study Taylor et al. (2005), this creates
an additional confinement scale that changes and further complicates the relationship
between the varying length scales. In this sense we find the absence of a clear LE ∼ LI
scaling unsurprising and we hypothesize that a LE ∼ LI regime would manifest for our
DNS configuration similar to that of Mater et al. (2013) if we were able to access a flow
regime where Fr � O(1), and simultaneously all the relevant length scales were smaller
than the physical confinement scale z. As the confinement effects of physical boundaries
on the parameterization of mixing fall outside the scope of this study – we leave this for
future work.

Within the moderately stratified regime, we can take the LE ∼ LS scaling derived above
to again obtain

LE/LI ∼ LS/LI = 1/S∗ = Ri1/2
g Fr1, (5.20)

similarly to the derivation in (5.18). Taking the new scaling of Rig = Fr−1 derived in (5.10)
we obtain

LE/LI ∼ Ri1/2
g Fr1 ∼ Fr−1/2Fr1 = Fr1/2. (5.21)
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Our results show clear support for this scaling, with a clear region of LE/LI ∼ Fr1/2

developing in the intermediate regime for an entire decade of Fr. This falls in direct
contrast to the study of Mater et al. (2013) where in the absence of mean shear this
scaling does not manifest, but rather a LT/LI ∼ Fr1 relationship is observed for Fr < 1.
We similarly observe an Fr1 scaling relationship for our results, but only in the far ‘left
flank’ of the figure within the saturated regime, suggesting a buoyancy dominated regime
such that LE ∼ LN and as derived in Mater et al. (2013) we can obtain

LE/LI ∼ LN/LI = E1/2
K /N

E3/2
K /εK

= εK

NEK
= Fr1. (5.22)

From figure 12(c) we observe direct support for this with a clear trend that in the
saturated regime LE/LN becomes a constant of order unity. Furthermore, we note that
it can clearly be shown that

LS/LN = E1/2
K /S

E1/2
K /N

= N
S

= Ri1/2
g . (5.23)

Hence, within the saturated regime for Fr < 0.3 it is clear that both LE/LS and LE/LN
become constant in agreement with the scaling in (5.13) and our observation that as the
flow evolves towards stationarity, Rig will trend towards a constant critical value becoming
independent of Fr. Within the moderately stratified regime, using LE ∼ LS and Rig ∼ Fr−1

as derived in (5.10), we can obtain

LE/LN ∼ LS/LN = Ri1/2
g ∼ Fr−1/2. (5.24)

This intermediate scaling that arises due to the presence of mean shear is again strongly
supported by our results, with a clear collapse of the data across a decade of Fr.

Finally for the weakly stratified regime, as shown in Mater et al. (2013), we can substitute
the expected inertial scaling LE ∼ LI to obtain

LE/LN ∼ LI/LN = E3/2
K /εK

E1/2
K /N

= EKN
εK

= Fr−1. (5.25)

At our simulation parameter range, we cannot, however, confirm this scaling for our results
within this regime for the reasons discussed above.

In light of the results and derivation above we now consider the ratio of LE/LO plotted
against Fr in figure 12(d). Indeed, it is clear that in the saturated regime we observe the
respective LE/LO ∼ Fr−1/2 as proposed by GV19 in (5.13) and shown in the derivation
above. As we barely access the weakly stratified regime we again are unable to definitively
test the LE/LO ∼ Fr−3/2 scaling at our parameter range. For the moderately stratified
regime we now consider that we have explicitly shown LE ∼ LS and also recall our scaling
of S ∼ (εKN/EK)1/2 in (5.8) to obtain

LE/LO ∼ LS/LO = E1/2
K /S

ε
1/2
K /N3/2

∼ EK/ε
1/2
K N1/2

ε
1/2
K /N3/2

= EKN
εK

= Fr−1, (5.26)

which is the scaling proposed by GV19 but explicitly derived for our shear driven flow and
shown to hold only for the intermediate range of 0.3 � Fr � 1 within our flow. Hence we
obtain their scaling for Γ as follows:

LE/LO ∼ Fr−1 ⇒ Γ ∼ Fr−1 ∼ (LE/LO)1; (5.27)

as demonstrated in our results in figure 11.
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Furthermore, due to the relationships between Rig and Fr derived in (5.7) and (5.10) it
can be readily shown that LE/LO is directly related to Rig across the three regimes. Within
the weakly stratified regime we expect

LE/LO ∼ Fr−3/2 ∼ Ri3/4
g . (5.28)

Within the moderately stratified regime we expect

LE/LO ∼ Fr−1 ∼ Ri1g. (5.29)

Within the saturated regime, where Rig and Fr become decoupled, we expect that LE/LO
will become independent of Rig, similar to the results of Rohr et al. (1988) for high Rig.
Figure 13(a) shows the two-dimensional p.d.f. of Rig and LE/LO, with reasonable collapse
for the scaling of the three regimes presented above. Due to the scatter in the ‘right flank’
of the curve we illustrate this point more clearly by plotting the Rig bin-averaged set of
〈LE/LO〉 against corresponding bins of 〈Rig〉 in figure 13(b). A colour bar depicting 〈ReB〉
is again included for reference. From the results it becomes clear that for Rig � 0.25 or
LE/LO � 1 the data collapses well along lines of the proposed scaling derived in (5.28)
and (5.29). Meanwhile, in the ‘right flank’ of the curve we observe that LE/LO grows
independent of Rig in agreement with the analysis above, showing separate horizontal
trajectories for each simulation.

In this sense, for our quasi-steady shear driven flow it becomes clear that the Fr, Rig
and LE/LO frameworks for the parameterization of the mixing efficiency can all be
directly reconciled across the weakly and moderately stratified regimes, with a clear
transition to the saturated regime at Fr ≈ 0.3, Rig ≈ 0.25 or LE/LO ≈ 1, with it being
implicit that these three values are interchangeable for our flow. In light of the above
analysis we find that the results of Mater et al. (2013) or Howland et al. (2020) do not
contradict ours, as their studies inherently have zero mean shear and hence the LE ∼ LS
scaling within the intermediate regime becomes invalid. As such, for non-sheared flows
we expect that the buoyancy scaling of LE ∼ LN to hold across both the intermediate
and saturated regimes for Fr � 1 as in Mater et al. (2013), and accordingly may explain
the Γ ∼ Fr−1 ∼ (LE/LO)2 scaling observed in Howland et al. (2020) for the moderately
stratified regime. Hence in flows where the mean shear is not significant, we expect no
appreciable range of LE/LO to develop a Γ ∼ (LE/LO)1 scaling as in the aforementioned
studies. Such findings suggest that the inference of Fr and hence the state of turbulence
and mixing through direct field measurements of the overturning length scale within the
Fr = O(1) regime may prove a problematic task as it would require additional information
as to the state of the flow.

5.5. ReB framework and transition to diffusive regime
Since the important work of Shih et al. (2005), recent studies have shown that ReB may
not be an optimal parameter in the parameterization of mixing efficiency as it does not
truly describe the strength of stratification within the flow in the same sense as Fr or Rig
(Maffioli et al. 2016; Scotti & White 2016; Garanaik & Venayagamoorthy 2019; Portwood
et al. 2019). Rather, it is argued that since ReB = (LO/LK)4/3, where LK = (ν3/εK)1/4 is
the well known Kolmogorov scale, its use should be restricted to a measure of the size of
the inertial subrange or how ‘energetic’ the flow is.

We explore this by plotting the two-dimensional p.d.f. of ReB and Γ in figure 14(a).
From the results we again observe that our flow is divided into three mixing regimes.
Again we observe a clear saturated regime where Γ trends towards constancy and a
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Figure 13. (a) Two-dimensional p.d.f. of the gradient Richardson number Rig and the length scale ratio LE/LO
constructed out of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. (b) The
Rig bin-averaged 〈LE/LO〉 plotted against bins of corresponding 〈Rig〉 for all data points within t > 1 and
z > 0.2. Solid lines indicate the proposed scaling in (5.28) and (5.29). Vertical dashed line indicates Rig = 0.25.
Horizontal dashed line indicates LE/LO = 1.

distinct regime where Γ ∼ Re−1/2
B , in agreement with the ‘intermediate’ and ‘energetic’

regimes proposed by Shih et al. (2005). Furthermore, we observe a region of the flow
corresponding to the weakly stratified regime with a clear Γ ∼ Re−1

B scaling, in agreement
with the Couette flow results and scaling derived in Zhou et al. (2017a). The results suggest
the validity of an ReB-based parameterization approach of mixing efficiency for our flow
at the parameter range available, albeit with slightly more scatter in the high ReB ‘right
flank’ of the plot with two distinctly separate ‘tails’ emerging in the results. However, as
described in MBL16, ReB can be directly linked to the horizontal Reynolds number Reh

and Froude number Frh through the expression ReB = RehFr2
h. By considering E1/2

K as the
velocity scale instead of uh, a similar expression can be constructed for turbulent Reynolds
number ReT and Fr such that

ReB = ReTFr2, (5.30)

where ReT = E2
K/(νεK) is the turbulent Reynolds number (Mater & Venayagamoorthy

2014). Hence the parameterization of Γ through Fr can be directly related back to ReB.
For the weakly stratified regime it is clear that

Γ ∼ Fr−2 ⇒ Γ ∼
(

ReB

ReT

)−1

. (5.31)
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Figure 14. (a) Two-dimensional p.d.f. of the buoyancy Reynolds number ReB and the mixing coefficient Γ

constructed out of the instantaneous data of all simulations within the range of t > 1 and 0.2 � z � 0.8. (b) The
ReB bin-averaged mixing coefficient 〈Γ 〉 plotted against bins of corresponding buoyancy Reynolds number
〈ReB〉 for all data points within t > 1 and z > 0.2. Solid lines indicate scaling lines of Γ ∼ Re−1/2

B and Γ ∼
Re−1

B as well as empirically observed Γ = 0.3. Vertical dashed line indicates ReB = 1.

For the moderately stratified regime we obtain

Γ ∼ Fr−1 ⇒ Γ ∼
(

ReB

ReT

)−1/2

. (5.32)

For the saturated regime, provided the flow remains turbulent, Γ will become independent
of both parameters. As discussed by MBL16, in this sense and under the assumption
that Γ is fundamentally linked to Fr rather than ReB, an ReB-based parameterization
inherently contains an ReT dependence within itself. Furthermore, taking the estimation
that in weakly and moderately stratified flow E1/2

K ∼ uτ and εK ∼ u3
τ /δ, it can be clearly

shown that

ReT = E2
K

νεK
∼ u4

τ δ

νu3
τ

= uτδ

ν
= Reτ . (5.33)

Hence, provided the scaling in (5.31)–(5.32) is valid, we expect the flow should show Reτ

sensitivity in the parameterization of mixing efficiency through ReB within these regimes.
To investigate this we consider an ReB bin-averaged data set of 〈Γ 〉 plotted against

corresponding bins of 〈ReB〉 in figure 14(b) in the same manner as for the Fr sorted data
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in figure 6(b). From the results it is clear that there is no singular transitional value of
ReB from the saturated regime of constant mixing efficiency to the Γ ∼ Re−1/2

B regime.
Rather, two separate evolution paths develop for the Reτ,0 = 400 and Reτ,0 = 900 cases,
respectively, showing a clear Reynolds number dependence on the transition. Similarly,
no clear singular ReB value emerges for the transition to the Γ ∼ Re−1

B regime. In contrast
to the Fr averaged results in 6(b), it becomes clear that an ReB-based parameterization of
mixing efficiency is inherently dependant on Fr, while the reverse is untrue.

In the ‘left flank’ of figure 14(b) we can observe that the transition away from a constant
Γ regime to the diffusive regime is well approximated by ReB ≈ 1 in agreement with the
theory of Brethouwer et al. (2007). The exception is the data for case R400L05 (green
diamonds), where due to the relatively low level of stability, the flow remains turbulent up
to the free surface. In this case the free surface itself rather than buoyancy acts to confine
and modify the turbulence properties (Calmet & Magnaudet 2003; Flores et al. 2017),
causing deviation from the constant Γ regime. The exact mechanics of this is relatively
unknown and is an area of study within itself, and are subsequently outside the scope of
this study.

6. Concluding remarks

In this study we have investigated temporally evolving stratified open channel flow through
DNSs as the flow transitions from a neutral to a stably stratified state, with the emphasis of
the study being on the parameterization of mixing across varying energetic regimes within
stratified channel flow and the subsequent analysis of the relationship between the relevant
non-dimensional mixing diagnostics.

We find that after an initial transient adjustment period of approximately one eddy
turnover time unit (t ≈ 1), the turbulent flow within the channel is distinctly divided
into weakly stratified, moderately stratified and saturated mixing regimes separated by
transitional values of Fr = 1 and Fr = 0.3 across all simulations. Within the three regimes
we find that instantaneous measurements of the mixing coefficient Γ are predicted well
through both the Fr and LE/LO parameterization frameworks as outlined in MBL16 and
GV19. To our knowledge, ours is the first DNS study to extensively test both the Fr and
LE/LO parameterization frameworks for stratified wall-bounded flow across a wide range
of Fr. Considering the strong inherent vertical inhomogeneity within our sheared flow due
to the depth varying flux profiles as well as the spatiotemporally evolving mean gradients
S and N, the remarkable collapse of the results from purely instantaneous measurements
of Fr within our flow presents a very strong argument in favour of the case put forward
by MBL16 and GV19 for the applicability of an Fr-based approach to parameterization of
mixing across a variety of stratified flows.

A defining characteristic of our flow is that the majority of the channel evolves into
an energetically quasi-stationary state of Fr = O(1). Within this regime we are able to
explicitly verify the novel ‘moderately stratified’ scaling of GV19 by showing that B ∼
E3/2

K /LN , invariant in time and only within the range of 0.3 < Fr < 1. By considering
our flow within the inertia–shear–buoyancy regime map of Mater & Venayagamoorthy
(2014), we find this regime describes a critical state where the inertial, shear and buoyancy
forces are all significant in describing the energetic state of the flow. We subsequently
provide physically based scaling arguments to show that TS ∼ (TNTL)1/2 and Rig ∼ Fr−1

within this regime, hence reconciling the concept of a separate intermediate Γ ∼ Fr−1

scaling with the established evidence that in sheared flow and for Rig < 0.25, the turbulent
Prandtl number is approximately unity resulting in a linear relationship between the mixing
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efficiency and Rig. In contrast we find that for Fr > 1 in the weakly stratified regime,
buoyancy becomes negligible and a simple balance between shear and inertial forces leads
to Rig ∼ Fr−2 in agreement with the arguments presented by MBL16. By considering
the mixing length scaling in shear flow of LE ∼ LS within the intermediate regime, we
demonstrate that the remarkable collapse of the data with a distinct Γ ∼ (LE/LO)1 scaling
for 0.3 < Fr < 1 as proposed by GV19 comes as a direct result of the TS scaling presented
above. However, our analysis suggests that in flows devoid of mean shear, the LE/LO − Fr
and hence LE/LO − Γ scaling within this regime may differ, implying limited applicability
to a wider range of stratified flows under a single framework.

As such, the results suggest that for weakly and moderately stratified quasi-stationary
shear flow, the three parameterization schemes become equivalent. As the unification of
parameterizing mixing across various fields and applications in the study of stratified
turbulence remains a pressing challenge (Caulfield 2020), the results of our study present
strong evidence of universal mixing behaviour that appears invariant under differing
frameworks in these ubiquitous shear driven flows. Furthermore, as our DNS configuration
is an idealization of stratified river flows (Williamson et al. 2015; Kirkpatrick et al. 2019),
the present results suggest that under sufficient levels of stratification an appreciable region
will inevitably develop where Fr = O(1) and the separate scaling relationships derived in
this study for the moderately stratified regime become physically relevant.

For flow that remains turbulent and within the regimes described by the equivalent
transitional values Fr < 0.3, Rig > 0.25 or LE/LO > 1, we find that the mixing efficiency
saturates to a constant asymptotic value, seemingly in agreement with the strongly
stratified scaling of MBL16, however, we note our lowest values of Fr obtained in this
study are still significantly higher than the theoretical upper limit of the strongly stratified
regime. We further find that in agreement with the theory of Brethouwer et al. (2007),
the transition away from a saturated mixing efficiency into the diffusive regime occurs at
ReB ≈ 1 for our flow, with the caveat that the transition occurs sufficiently far from the
free-surface boundary.

Furthermore, the DNS results further suggest that in the saturated regime Fr and Rig
become decoupled. This suggests that the strongly stratified regime in the context of the
stratified turbulence theory of Billant & Chomaz (2001) or Brethouwer et al. (2007) may
be accessible within open channel flow even under the assumption that some upper limit
pertains to Rig to maintain local equilibrium. Whether this result pertains not only to open
channel flow but also to wider range of shear flows remains an important open question.
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