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Flow-induced oscillations of pitching swept
wings: stability boundary, vortex dynamics and
force partitioning
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We study experimentally the aeroelastic instability boundaries and three-dimensional
vortex dynamics of pitching swept wings, with the sweep angle ranging from 0◦ to 25◦.
The structural dynamics of the wings are simulated using a cyber-physical control system.
With a constant flow speed, a prescribed high inertia and a small structural damping,
we show that the system undergoes a subcritical Hopf bifurcation to large-amplitude
limit-cycle oscillations (LCOs) for all the sweep angles. The onset of LCOs depends
largely on the static characteristics of the wing. The saddle-node point is found to
change non-monotonically with the sweep angle, which we attribute to the non-monotonic
power transfer between the ambient fluid and the elastic mount. An optimal sweep
angle is observed to enhance the power extraction performance and thus promote
LCOs and destabilize the aeroelastic system. The frequency response of the system
reveals a structural-hydrodynamic oscillation mode for wings with relatively high sweep
angles. Force, moment and three-dimensional flow structures measured using multi-layer
stereoscopic particle image velocimetry are analysed to explain the differences in power
extraction for different swept wings. Finally, we employ a physics-based force and moment
partitioning method to correlate quantitatively the three-dimensional vortex dynamics with
the resultant unsteady aerodynamic moment.

Key words: flow-structure interactions, vortex dynamics

1. Introduction

The fluid–structure interaction of elastically mounted pitching wings can lead to
large-amplitude flow-induced oscillations under certain operating conditions. In extreme
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cases, these flow-induced oscillations may affect structural integrity and even cause
catastrophic aeroelastic failures (Dowell et al. 1989). On the other hand, however,
hydrokinetic energy can be harnessed from these oscillations, providing an alternative
solution for next-generation renewable energy devices (Xiao & Zhu 2014; Young,
Lai & Platzer 2014; Boudreau et al. 2018; Su & Breuer 2019). Moreover, the
aeroelastic/hydroelastic interactions of passively pitching wings/fins have important
connections with animal flight (Wang 2005; Bergou, Xu & Wang 2007; Beatus & Cohen
2015; Wu, Nowak & Breuer 2019) and swimming (Long & Nipper 1996; Quinn & Lauder
2021), and understanding these interactions may aid further the design and development of
flapping-wing micro air vehicles (Shyy et al. 2010; Jafferis et al. 2019) and oscillating-foil
autonomous underwater vehicles (Zhong et al. 2021b; Tong et al. 2022).

Flow-induced oscillations of pitching wings originate from the two-way coupling
between the structural dynamics of the elastic mount and the fluid force exerted on
the wing. While the dynamics of the elastic mount can be approximated by a simple
spring–mass–damper model, the fluid forcing term is usually found to be highly nonlinear
due to the formation, growth and shedding of a strong leading-edge vortex (LEV)
(McCroskey 1982; Dimitriadis & Li 2009; Mulleners & Raffel 2012; Eldredge & Jones
2019). Onoue et al. (2015) and Onoue & Breuer (2016) studied experimentally the
flow-induced oscillations of a pitching plate whose structural stiffness, damping and
inertia were defined using a cyber-physical system (§ 2.1; see also Hover, Miller &
Triantafyllou 1997; Mackowski & Williamson 2011; Zhu, Su & Breuer 2020), and using
this approach, identified a subcritical bifurcation to aeroelastic instability. The temporal
evolution of the LEV associated with the aeroelastic oscillations was characterized using
particle image velocimetry (PIV), and the unsteady flow structures were correlated with
the unsteady aerodynamic moments using a potential flow model. Menon & Mittal (2019)
studied numerically a similar problem, simulating an elastically mounted two-dimensional
NACA 0015 aerofoil at Reynolds number 1000. An energy approach, which bridges
prescribed sinusoidal oscillations and passive flow-induced oscillations, was employed to
characterize the dynamics of the aeroelastic system. The energy approach maps out the
energy transfer between the ambient flow and the elastic mount over a range of prescribed
pitching amplitudes and frequencies, and unveils the system stability based on the sign of
the energy gradient.

More recently, Zhu et al. (2020) characterized the effect of wing inertia on the
flow-induced oscillations of pitching wings and the corresponding LEV dynamics.
Two distinct oscillation modes were reported: (i) a structural mode, which occurred
via a subcritical bifurcation and was associated with a high-inertia wing; and (ii) a
hydrodynamic mode, which occurred via a supercritical bifurcation and was associated
with a low-inertia wing. The wing was found to shed one strong LEV during each
half-pitching cycle for the hydrodynamic mode, whereas a weak secondary LEV was also
shed in the high-inertial structural mode.

These previous studies have demonstrated collectively that LEV dynamics plays an
important role in shaping flow-induced oscillations and thus regulates the stability
characteristics of passively pitching wings. However, these studies have focused only
on studying the structural and flow dynamics of two-dimensional wings or aerofoils.
The extent to which these important findings for two-dimensional wings hold in three
dimensions remains unclear.

Swept wings are seen commonly for flapping-wing fliers and swimmers in nature
(Ellington et al. 1996; Lentink et al. 2007; Borazjani & Daghooghi 2013; Bottom et al.
2016; Zurman-Nasution, Ganapathisubramani & Weymouth 2021), as well as on many
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engineered fixed-wing flying vehicles. It is argued that wing sweep can enhance lift
generation for flapping wings because it stabilizes the LEV by maintaining its size through
spanwise vorticity transport – a mechanism similar to the lift enhancement mechanism of
delta wings (Polhamus 1971). Chiereghin et al. (2020) found significant spanwise flow for
a high-aspect-ratio plunging swept wing at sweep angle 40◦. In another study, for the same
sweep angle, attached LEVs and vortex breakdown were observed just like those on delta
wings (Gursul & Cleaver 2019). Recent works have shown that the effect of wing sweep
on LEV dynamics depends strongly on wing kinematics. Beem, Rival & Triantafyllou
(2012) showed experimentally that for a plunging swept wing, the strong spanwise flow
induced by the wing sweep is not sufficient for LEV stabilization. Wong, Kriegseis & Rival
(2013) reinforced this argument by comparing the LEV stability of plunging and flapping
swept wings, and showed that two-dimensional (i.e. uniform without any velocity gradient)
spanwise flow alone cannot stabilize LEVs – there must be spanwise gradients in vorticity
or spanwise flow so that vorticity can be convected or stretched. Wong & Rival (2015)
demonstrated both theoretically and experimentally that the wing sweep improves relative
LEV stability of flapping swept wings by enhancing the spanwise vorticity convection
and stretching so as to keep the LEV size below a critical shedding threshold (Rival
et al. 2014). Onoue & Breuer (2017) studied experimentally elastically mounted pitching
unswept and swept wings, and proposed a universal scaling for the LEV formation time
and circulation, which incorporated the effects of the pitching frequency, the pivot location
and the sweep angle. The vortex circulation was demonstrated to be independent of the
three-dimensional vortex dynamics. In addition, they concluded that the stability of the
LEV can be improved by moderating the LEV circulation through vorticity annihilation,
which is governed largely by the shape of the leading-edge sweep, agreeing with the
results of Wojcik & Buchholz (2014). More recently, Visbal & Garmann (2019) studied
numerically the effect of wing sweep on the dynamic stall of pitching three-dimensional
wings, and reported that the wing sweep can modify the LEV structures and change the
net aerodynamic damping of the wing. The effect of wing sweep on the LEV dynamics
and stability, as one can imagine, will further affect the unsteady aerodynamic forces and
thereby the aeroelastic response of pitching swept wings.

Another important flow feature associated with unsteady three-dimensional wings is the
behaviour of the tip vortex (TV). Although the TV usually grows distinctly from the LEV
for rectangular platforms (Taira & Colonius 2009; Kim & Gharib 2010; Hartloper, Kinzel
& Rival 2013), studies have suggested that the TV is able to anchor the LEV in the vicinity
of the wing tip, which delays LEV shedding (Birch & Dickinson 2001; Hartloper et al.
2013). Moreover, the TV has also been shown to affect the unsteady wake dynamics of
both unswept and swept wings (Taira & Colonius 2009; Zhang et al. 2020a,b; Ribeiro et al.
2022; Son et al. 2022a; Son, Wang & Gursul 2022b). However, it remains elusive how the
interactions between LEVs and TVs change with the wing sweep, and more importantly,
how this change will in turn affect the response of aeroelastic systems.

To dissect the effects of complex vortex dynamics associated with unsteady
wings/aerofoils, a physics-based force and moment partitioning method (FMPM) has
been proposed (Quartapelle & Napolitano 1983; Zhang, Hedrick & Mittal 2015;
Moriche, Flores & García-Villalba 2017; Menon & Mittal 2021a,b,c) (also known as
the vortex force/moment map method; Li & Wu 2018; Li et al. 2020a). The method
has attracted attention recently due to its high versatility for analysing a variety type of
vortex-dominated flows. Under this framework, the Navier–Stokes equation is projected
onto the gradient of an influence potential to separate the force contributions from the
added-mass, vorticity-induced and viscous terms. It is particularly useful for analysing
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vortex-dominated flows because the spatial distribution of the vorticity-induced forces can
be visualized, enabling detailed dissections of aerodynamic loads generated by individual
vortical structures. For two-dimensional aerofoils, Menon & Mittal (2021c) applied the
FMPM and showed that the strain-dominated region surrounding the rotation-dominated
vortices has an important role to play in the generation of unsteady aerodynamic
forces. For three-dimensional wings, this method has been implemented to study the
contributions of spanwise and cross-span vortices to the lift generation of rectangular
wings (Menon, Kumar & Mittal 2022), the vorticity-induced force distributions on
forward- and backward-swept wings at a fixed angle of attack (Zhang & Taira 2022) and
the aerodynamic forces on delta wings (Li, Zhao & Graham 2020b). More recently, efforts
have been made to apply the FMPM to the analysis of experimental data, in particular, flow
fields obtained using PIV. Zhu et al. (2023) employed the FMPM to analyse the vortex
dynamics of a two-dimensional wing pitching sinusoidally in a quiescent flow. Several
practical issues in applying the FMPM to PIV data were discussed, including the effect of
phase-averaging and potential error sources.

In this study, we apply the FMPM to three-dimensional flow field data measured using
three-component PIV, and use the results to gain insight into the three-dimensional vortex
dynamics and the corresponding unsteady forces acting on elastically mounted pitching
swept wings. We extend the methodology developed in Zhu et al. (2020), and employ
a layered stereoscopic PIV technique and the FMPM to quantify the three-dimensional
vortex dynamics. In the following sections, we first introduce the experimental set-up
and method of analysis (§ 2). The static force and moment coefficients of the wings are
measured (§ 3.1) before we characterize the amplitude response (§ 3.2) and the frequency
response (§ 3.3) of the system. Next, we associate the onset of flow-induced oscillations
with the static characteristics of the wing (§ 3.4) and use an energy approach to explain
the nonlinear stability boundaries (§ 3.5). The unsteady force and moment measurements,
together with the three-dimensional flow structures (§ 3.6) are then analysed to explain
the differences in power extraction for unswept and swept wings. Finally, we apply
the FMPM to correlate quantitatively the three-dimensional vortex dynamics with the
resultant unsteady aerodynamic moment (§ 3.7). All the key findings are summarized in
§ 4.

2. Methods

2.1. Cyber-physical system and wing geometry
We perform all the experiments in the Brown University free-surface water tunnel, which
has test section W × D × L = 0.8 m × 0.6 m × 4.0 m. The turbulence intensity in the
water tunnel is approximately 2 % at the velocity range tested in the present study.
Free-stream turbulence plays a critical role in shaping small-amplitude laminar separation
flutter (see Yuan et al. 2015). However, as we will show later, the flow-induced oscillations
and the flow structures observed in the present study are of high amplitude and large
size. Therefore, we do not expect the free-stream turbulence to play any significant role.
Figure 1(a) shows a schematic of the experimental set-up. Unswept and swept NACA 0012
wings are mounted vertically in the tunnel, with an endplate on the top as a symmetry
plane. The wing tip at the bottom does not have an endplate. The wings are connected to
a six-axis force/moment transducer (ATI Delta IP65) via a wing shaft. The shaft further
connects the transducer to an optical encoder (US Digital E3-2500) and a servo motor
(Parker SM233AE) coupled with a gearbox (SureGear PGCN23-0525).
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Figure 1. (a) A schematic of the experimental set-up. (b) Sketches of unswept and swept wings used in the
experiments. The pivot axes are indicated by black dashed lines. The green panels represent volumes traversed
by the laser sheet for three-dimensional phase-averaged stereoscopic PIV measurements.

We implement a cyber-physical system (CPS) to facilitate a wide structural parameter
sweep (i.e. stiffness k, damping b, and inertia I) while simulating real aeroelastic systems
with high fidelity. Details of the CPS have been discussed in Zhu et al. (2020), therefore
only a brief introduction will be given here. In the CPS, the force/moment transducer
measures the fluid moment M, and feeds the value to the computer via a data acquisition
board (National Instruments PCIe-6353). This fluid moment is then added to the stiffness
moment (kθ ) and the damping moment (bθ̇ ) obtained from the previous time step to get
the total moment. Next, we divide this total moment by the desired inertia (I) to get the
acceleration (θ̈ ) at the present time step. This acceleration is then integrated once to get the
velocity (θ̇ ), and twice to get the pitching angle (θ ). This pitching angle signal is output
to the servo motor via the same data acquisition board. The optical encoder, which is
independent of the CPS, is used to measure and verify the pitching angle. At the next time
step, the CPS recalculates the total moment based on the measured fluid moment and the
desired stiffness and damping, and thereby continues the loop.

Our CPS control loop runs at frequency 4000 Hz, which is well beyond the highest
Nyquist frequency of the aeroelastic system. Noise in the force/moment measurements
can be a potential issue for the CPS. However, because we are using a position
control loop, where the acceleration is integrated twice to get the desired position,
our system is less susceptible to noise. Therefore, no filter is used within the CPS
control loop. The position control loop also requires the pitching motor to follow the
commanded position signal as closely as possible. This is achieved by carefully tuning the
proportional–integral–derivative parameters of the pitching motor. The CPS does not rely
on any additional tunable parameters other than the virtual inertia, damping and stiffness.
We validate the system using ‘ring-down’ experiments, as shown in the appendix of Zhu
et al. (2020). Moreover, as we will show later, the CPS results match remarkably well with
prescribed experiments (§ 3.5), demonstrating the robustness of the system.

The unswept and swept wings used in the present study are sketched in figure 1(b). All
the wings have span s = 0.3 m and chord length c = 0.1 m, which results in a physical
aspect ratio AR = 3. However, the effective aspect ratio is 6 due to the existence of the
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symmetry plane (i.e. the endplate). The minimum distance between the wing tip and the
bottom of the water tunnel is approximately 1.5c. The chord-based Reynolds number is
defined as Re ≡ ρU∞c/μ, where U∞ is the free-stream velocity, and ρ and μ are water
density and dynamic viscosity, respectively. We set the free-stream velocity to be U∞ =
0.5 m s−1 for all the experiments (except for PIV measurements; see § 2.2), which results
in a constant Reynolds number Re = 50 000, matching the Re used in Zhu et al. (2020)
to facilitate direct comparisons. For both unswept and swept wings, the leading edge (LE)
and the trailing edge (TE) are parallel. Their pivot axes, represented by vertical dashed
lines in the figure, pass through the mid-chord point x/c = 0.5 of the mid-span plane
z/s = 0.5. We choose the current location of the pitching axis because it splits the swept
wings into two equal-area sections (fore and aft). Moving the pitching axis or making it
parallel to the leading edge presumably will result in different system dynamics, which
will be investigated in future studies.

The sweep angle Λ, is defined as the angle between the leading edge and the vertical
axis. Five wings, with Λ = 0◦ (unswept wing), 10◦, 15◦, 20◦ and 25◦ (swept wings), are
used in the experiments. Further expanding the range of wing sweep presumably would
bring more interesting fluid–structure interaction behaviours. However, as we will show
in the later sections, there is already a series of rich (nonlinear) flow physics associated
with the current set of unswept and swept wings. Our selection of the sweep angle is also
closely related to the location of the pitching axis. Currently, the pitching axis passes the
mid-chord at the mid-span. For a Λ = 25◦ wing, the trailing edge is already in front of the
pitching axis at the wing root, and the leading edge is behind the pitching axis at the wing
tip. Further increasing the sweep angle brings difficulties in physically pitching the wing
for our existing set-up.

2.2. Multi-layer stereoscopic PIV
We use multi-layer phase-averaged stereoscopic PIV to measure the three-dimensional
velocity field around the pitching wings. We lower the free-stream velocity to
U∞ = 0.3 m s−1 to enable higher temporal measurement resolution. Consequently,
the chord-based Reynolds number is decreased to Re = 30 000. It has been shown
by Zhu et al. (2020, see their appendix) that the variation of Re in the range
30 000–60 000 does not affect the system dynamics, as long as the parameters of interest
are properly non-dimensionalized. The water flow is seeded using neutrally buoyant
50 μm silver-coated hollow ceramic spheres (Potters Industries) and illuminated using
a horizontal laser sheet, generated by a double-pulse Nd:YAG laser (532 nm, Quantel
EverGreen) with a LaVision laser guiding arm and collimator. Two sCMOS cameras
(LaVision, 2560 × 2160 pixels) with Scheimpflug adapters (LaVision) and 35 mm lenses
(Nikon) are used to capture image pairs of the flow field. These stereoscopic PIV image
pairs are fed into the LaVision DaVis software (v.10) for velocity vector calculation using
multi-pass cross-correlations (two passes at 64 × 64 pixels, two passes at 32 × 32 pixels,
both with 50 % overlap).

To measure the two-dimensional, three-component (2D3C) velocity field at different
spanwise layers, we use a motorized vertical traverse system with range 120 mm to raise
and lower the testing rig (i.e. all the components connected by the shaft) in the z-axis
(King, Kumar & Green 2018; Zhong et al. 2021a). Due to the limitation of the traversing
range, three measurement volumes (figure 1(b), V1, V2 and V3) are needed to cover the
entire wing span plus the wing tip region. For each measurement volume, the laser sheet
is fixed at the top layer, and the rig is traversed upwards with step size 5 mm. Note that
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the entire wing stays submerged, even at the highest traversing position, and for all wing
positions, free surface effects are not observed. The top two layers of V1 are discarded
as the laser sheet is too close to the endplate, which causes reflections. The bottom layer
of V1 and the top layer of V2 overlap each other. The velocity fields of these two layers
are averaged to smooth the interface between the two volumes. The interface between
V2 and V3 is smoothed in the same way. For each measurement layer, we phase-average
1250 instantaneously measured 2D3C velocity fields over 25 cycles (i.e. 50 measurements
per cycle) to eliminate any instantaneous variations of the flow field while maintaining
the key coherent features across different layers. Finally, 71 layers of 2D3C velocity
fields are stacked together to form a large volume of phase-averaged three-dimensional,
three-component (3D3C) velocity field (∼ 3c × 3c × 3.5c). The velocity fields of three
wing models (Λ = 0◦, 10◦ and 20◦) are measured. For the two swept wings (Λ = 10◦ and
20◦), the laser volumes are offset horizontally to compensate for the sweep angle (see the
bottom image of figure 1b).

2.3. Governing equations and non-dimensional parameters
The one-degree-of-freedom aeroelastic system considered in the present study has a
governing equation

Iθ̈ + bθ̇ + kθ = M, (2.1)

where θ , θ̇ and θ̈ are the angular position, velocity and acceleration, respectively. Here,
I = Ip + Iv is the effective inertia, where Ip is the physical inertia of the wing, and Iv is
the virtual inertia that we prescribe with the CPS. Because friction is negligible in our
system, the effective structural damping b equals the virtual damping bv in the CPS. Also,
k is the effective torsional stiffness, and it equals the virtual stiffness kv . Equation (2.1)
resembles a forced torsional spring–mass–damper system, where the fluid moment M acts
as a nonlinear forcing term. Following Onoue et al. (2015) and Zhu et al. (2020), we
normalize the effective inertia, damping, stiffness and the fluid moment using the fluid
inertia force to get the non-dimensional governing equation of the system:

I∗θ̈∗ + b∗θ̇∗ + k∗θ∗ = CM, (2.2)

where

θ∗ = θ, θ̇∗ = θ̇c
U∞

, θ̈∗ = θ̈c2

U2∞
,

I∗ = I
0.5ρc4s

, b∗ = b
0.5ρU∞c3s

, k∗ = k
0.5ρU2∞c2s

, CM = M
0.5ρU2∞c2s

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.3)

We should note that the inverse of the non-dimensional stiffness is equivalent to the
Cauchy number Ca = 1/k∗, and the non-dimensional inertia I∗ is analogous to the mass
ratio between the wing and the surrounding fluid. We define the non-dimensional velocity
as U∗ = U∞/(2πfpc), where fp is the measured pitching frequency. In addition to the
aerodynamic moment, we also measure the aerodynamic forces that are normal and
tangential to the wing chord, FN and FT , respectively. The resultant lift and drag forces are

L = FN cos θ − FT sin θ,

D = FN sin θ + FT cos θ.

}
(2.4)
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We further normalize the normal force, tangential force, lift and drag to get the
corresponding force coefficients

CN = FN

0.5ρU2∞cs
, CT = FT

0.5ρU2∞cs
, CL = L

0.5ρU2∞cs
, CD = D

0.5ρU2∞cs
.

(2.5a–d)

2.4. Force and moment partitioning method
To apply the FMPM to three-dimensional PIV data, we first construct an influence
potential that satisfies Laplace’s equation and two different Neumann boundary conditions
on the aerofoil and the outer boundary:

∇2φ = 0 and
∂φ

∂n
=

{
[(x − xp) × n] · ez on the aerofoil,
0 on the outer boundary,

(2.6a,b)

where n is the unit vector normal to the boundary, x − xp is the location vector pointing
from the pitching axis xp towards location x on the aerofoil surface, and ez is the
spanwise unit vector (Menon & Mittal 2021b). This influence potential quantifies the
spatial influence of any vorticity on the resultant force/moment. It is a function of only
the aerofoil geometry and the pitching axis, and does not depend on the kinematics of
the wing. Note that this influence potential should not be confused with the velocity
potential from the potential flow theory. The boundary conditions of (2.6a,b) are specified
for solving the influence field of the spanwise moment, and they will be different for
solving the lift and drag influence fields. From the three-dimensional velocity data, we
can calculate the Q field (Hunt, Wray & Moin 1988; Jeong & Hussain 1995)

Q = 1
2 (‖Ω‖2 − ‖S‖2), (2.7)

where Q is the second invariant of the velocity gradient tensor, Ω is the vorticity tensor
and S is the strain-rate tensor. The vorticity-induced moment can be evaluated by

Mv = −2ρ

∫
V

Qφ dV, (2.8)

where
∫

V represents the volume integral within the measurement volume. The spatial
distribution of the vorticity-induced moment near the pitching wing can thus be
represented by the moment density −2Qφ (i.e. the moment distribution field). In the
present study, we focus on the vorticity-induced force (moment) as it has the most
important contribution to the overall unsteady aerodynamic load in vortex-dominated
flows. Other forces – including the added-mass force, the force due to viscous diffusion,
the forces associated with irrotational effects and outer domain effects – are not considered
although they can be estimated using the FMPM as well (Menon & Mittal 2021b).
The contributions from these other forces, along with experimental errors, might result
in a mismatch in the magnitude of the FMPM-estimated force and force transducer
measurements, as shown by Zhu et al. (2023), and the exact source of this mismatch is
under investigation.

3. Results and discussion

3.1. Static characteristics of unswept and swept wings
The static lift and moment coefficients CL and CM are measured for the unswept (Λ = 0◦)
and swept (Λ = 10◦–25◦) wings at Re = 50 000, and the results are shown in figure 2. In
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Figure 2. (a) Static lift coefficient and (b) moment coefficient of unswept and swept wings. Error bars denote
standard deviations of the measurement over 20 seconds.

figure 2(a), we see that the static lift coefficient CL(θ) has the same behaviour for all sweep
angles, despite some minor variations for angles of attack higher than the static stall angle
θs = 12◦ (0.21 rad). The collapse of CL(θ) across different swept wings agrees with the
classic ‘independence principle’ (Jones 1947) (i.e. CL ∼ cos2 Λ) at relatively small sweep
angles. Figure 2(b) shows that for any fixed angle of attack, the static moment coefficient
CM increases with the sweep angle Λ. This trend is most prominent when the angle of
attack exceeds the static stall angle. The inset shows a zoom-in view of the static CM for
θ = 0.14–0.26. It is seen that the CM curves cluster into two groups, with the unswept
wing (Λ = 0◦) being in group 2 (G2), and all the other swept wings (Λ = 10◦–25◦) being
in group 1 (G1). As we will show later, this grouping behaviour is closely related to the
onset of flow-induced oscillations (§§ 3.2 and 3.4), and it is important for understanding
the system stability. No hysteresis is observed for both static CL and CM , presumably due
to free-stream turbulence in the water tunnel.

3.2. Subcritical bifurcations to flow-induced oscillations
We conduct bifurcation tests to study the stability boundaries of the elastically mounted
pitching wings. Zhu et al. (2020) have shown that for unswept wings, the onset of
limit-cycle oscillations (LCOs) is independent of the wing inertia and the bifurcation
type (i.e. subcritical or supercritical). It has also been shown that the extinction of
LCOs for subcritical bifurcations at different wing inertias occurs at a fixed value of the
non-dimensional velocity U∗. For these reasons, we choose to focus on one high-inertia
case (I∗ = 10.6) in the present study. In the experiments, the free-stream velocity is
maintained at U∞ = 0.5 m s−1. We fix the structural damping of the system at a small
value, b∗ = 0.13, keep the initial angle of attack at zero, and use the Cauchy number
Ca as the control parameter. To test for the onset of LCOs, we begin the test with a
high-stiffness virtual spring (i.e. low Ca) and increase Ca incrementally by decreasing
the torsional stiffness k∗. We then reverse the operation to test for the extinction of LCOs
and to check for any hysteresis. The amplitude response of the system, A, is measured as
the peak absolute pitching angle (averaged over many pitching cycles). By this definition,
A is half of the peak-to-peak amplitude. The divergence angle Ā is defined as the mean
absolute pitching angle. Although all the divergence angles are shown to be positive, the
wing can diverge to both positive and negative angles in experiments.
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Figure 3. (a) Amplitude response and (b) static divergence for unswept and swept wings: 	 indicates
increasing Ca; 
 indicates decreasing Ca. The inset illustrates the wing geometry and the pivot axis. The
colours of the wings correspond to the colours of the amplitude and divergence curves in the figure.

Figure 3 shows the pitching amplitude response and the static divergence angle for swept
wings with Λ = 10◦ to 25◦. Data for the unswept wing (Λ = 0◦) are also replotted from
Zhu et al. (2020) for comparison. It can be seen that the system first remains stable without
any noticeable oscillations or divergence (regime 1© in the figure) when Ca is small. In this
regime, the high stiffness of the system is able to pull the system back to a stable fixed point
despite any small perturbations. As we increase Ca further, the system diverges to a small
static angle, where the fluid moment is balanced by the virtual spring. Presumably, this
transition is triggered by free-stream turbulence, and both positive and negative directions
are possible. Due to the existence of random flow disturbances and the decreasing spring
stiffness, some small-amplitude oscillations around the static divergence angle start to
emerge (regime 2©). As Ca is increased further above a critical value (i.e. the Hopf point),
the amplitude response of the system jumps abruptly into large-amplitude self-sustained
LCOs, and the static divergence angle drops back to zero, indicating that the oscillations
are symmetric about the zero angle of attack. The large-amplitude LCOs are observed
to be near-sinusoidal and have a dominant characteristic frequency. After the bifurcation,
the amplitude response of the system continues to increase with Ca (regime 3©). We then
decrease Ca and find that the large-amplitude LCOs persist even when Ca is decreased
below the Hopf point (regime 4©). Finally, the system drops back to the stable fixed point
regime via a saddle-node (SN) point. A hysteretic bistable region is thus created in between
the Hopf point and the SN point – a hallmark of a subcritical Hopf bifurcation. In the
bistable region, the system features two stable solutions – a stable fixed point (regime
1©) and a stable LCO (regime 4©) – as well as an unstable LCO solution, which is not

observable in experiments (Strogatz 1994).
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Flow-induced oscillations of pitching swept wings

We observe that the Hopf points of unswept and swept wings can be divided roughly into
two groups (figure 3, G1 and G2), with the unswept wing (Λ = 0◦) being in G2, and all
the other swept wings (Λ = 10◦–25◦) being in G1, which agrees with the trend observed
in figure 2(b) for the static moment coefficient. This connection will be discussed further
in § 3.4. It is also seen that as the sweep angle increases, the LCO amplitude at the SN
point decreases monotonically. However, the Ca at which the SN point occurs first extends
towards a lower value (Λ = 0◦ → 10◦) but then moves back towards a higher Ca (Λ =
10◦ → 25◦). This indicates that increasing the sweep angle first destabilizes the system
from Λ = 0◦ to 10◦, and then restabilizes it from Λ = 10◦ to 25◦. This non-monotonic
behaviour of the SN point will be revisited from a perspective of energy in § 3.5. The
pitching amplitude response, A, follows a similar non-monotonic trend. Between Λ = 0◦
and 10◦, A is slightly higher at higher Ca values for the Λ = 10◦ wing, whereas between
Λ = 10◦ and 25◦, A decreases monotonically, indicating that a higher sweep angle is not
able to sustain LCOs at higher amplitudes. The non-monotonic behaviours of the SN point
and the LCO amplitude both suggest that there exists an optimal sweep angle Λ = 10◦ that
promotes flow-induced oscillations of pitching swept wings.

3.3. Frequency response of the system
The characteristic frequencies of the flow-induced LCOs observed in figure 3 provide us
with more information about the driving mechanism of the oscillations. Figure 4(a) shows
the measured frequency response f ∗

p as a function of the calculated natural (structural)
frequency f ∗

s and sweep angle. In the figure, f ∗
p = fpc/U∞ and f ∗

s = fsc/U∞, where fp is
the measured pitching frequency, and

fs = 1
2π

√
k
I

−
(

b
2I

)2

(3.1)

is the structural frequency of the system (Rao 1995). We observe that for all the
wings tested in the experiments and over most of the regimes tested, the measured
pitching frequency f ∗

p locks onto the calculated structural frequency f ∗
s , indicating

that the oscillations are dominated by the balance between the structural stiffness and
inertia. These oscillations, therefore, correspond to the structural mode reported by Zhu
et al. (2020), and feature characteristics of high-inertial aeroelastic instabilities. We can
decompose the moments experienced by the wing into the inertial moment I∗θ̈∗, the
structural damping moment b∗θ̇∗, the stiffness moment k∗θ∗ and the fluid moment CM . As
an example, for the Λ = 10◦ wing pitching at f ∗

s = 0.069 (i.e. the filled orange triangle in
figure 4a), these moments are plotted in figure 4(b). We see that for the structural mode, the
stiffness moment is balanced mainly by the inertial moment, while the structural damping
moment and the fluid moment remain relatively small.

In addition to the structural mode, Zhu et al. (2020) also observed a hydrodynamic
mode, which corresponds to a low-inertia wing. In the hydrodynamic mode, the
oscillations are dominated by the fluid forcing, so that the measured pitching frequency
f ∗
p stays relatively constant for a varying Ca. In figure 4(a), we see that for the Λ = 20◦

and 25◦ wings, f ∗
p flattens near the saddle-node boundary. This flattening trend shows an

emerging fluid-dominated time scale, resembling a hydrodynamic mode despite the high
wing inertia. Taking Λ = 20◦, f ∗

s = 0.068 (i.e. the filled green diamond in figure 4a) as an
example, we can examine the different contributions to the pitching moments in figure 4(c).
It is observed that in this oscillation mode, the stiffness moment balances both the inertial
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Figure 4. (a) Frequency response of unswept and swept wings. (b,c) Force decompositions of the structural
mode and the structural-hydrodynamic mode, corresponding to the filled orange triangle and the filled green
diamond shown in (a), respectively. Note that t/T = 0 corresponds to θ = 0.

moment and the fluid moment. This is different from both the structural mode and the
hydrodynamic mode, and for this reason, we define this hybrid oscillation mode as the
structural-hydrodynamic mode.

There are currently no quantitative descriptions of the structural-hydrodynamic mode.
However, it can be identified qualitatively as when the pitching frequency of a (1 : 1
lock-in) structural mode flattens as the natural (structural) frequency increases. Based on
the observations in the present study, we believe that this mode is not a fixed fraction of the
structural frequency. Instead, the frequency response shows a mostly flat trend (figure 4a,
green and dark green curves) at high f ∗

s , indicating an increasingly dominating fluid forcing
frequency. For a structural mode, the oscillation frequency locks onto the natural frequency
due to the high inertial moment. However, as the sweep angle increases, the fluid moment
also increases (see also figure 8a). The structural-hydrodynamic mode emerges as the fluid
forcing term starts to dominate in the nonlinear oscillator.

For a fixed structural frequency f ∗
s , as the sweep angle increases, the measured pitching

frequency f ∗
p deviates from the 1 : 1 lock-in curve and moves to lower frequencies. This

deviation suggests a growing added-mass effect, as the pitching frequency satisfies fp ∼√
1/(I + Iadd). Because the structural inertia I is prescribed, a decreasing fp suggests an

increasing added-mass inertia Iadd. This is expected because of the way we pitch the wings
in the experiments (see the inset of figure 3). As Λ increases, the accelerated fluid near
the wing root and the wing tip produces more moments due to the increase of the moment
arm, which amplifies the added-mass effect. The peak added-mass moment is estimated
to be approximately 2 %, 3 % and 5 % of the peak total moment for the Λ = 0◦, 10◦
and 20◦ wings, respectively. Because this effect is small compared to the structural and
vortex-induced forces, we will not quantify further this added-mass effect in the present
study, but will leave it for future work.

3.4. Onset of flow-induced oscillations
In figure 3, we have observed that the Hopf point of unswept and swept wings can be
divided roughly into two groups (figure 3, G1 and G2). In this subsection, we explain
this phenomenon. Figures 5(a,b) show the temporal evolution of the pitching angle θ(t),
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Figure 5. Temporal evolution of (a) the pitching angle θ , and (b) the fluid moment CM and the stiffness
moment k∗θ∗ near the Hopf point for the Λ = 15◦ swept wing. The vertical grey dashed line indicates the time
instant (t = 645 s) at which Ca is increased above the Hopf point. (c) Static moment coefficients of unswept
and swept wings. Inset: the predicted Hopf point based on the static stall angle and the corresponding moment
CMs/θ

∗
s versus the measured Hopf point k∗

H . The black dashed line shows a 1 : 1 scaling.

the fluid moment CM(t) and the stiffness moment k∗θ∗(t) for the Λ = 15◦ swept wing
as the Cauchy number is increased past the Hopf point. We see that the wing undergoes
small-amplitude oscillations around the divergence angle just prior to the Hopf point (t <

645 s). The divergence angle is lower than the static stall angle θs, so we know that the
flow stays mostly attached, and the fluid moment CM is balanced by the stiffness moment
k∗θ∗ (figure 5b). When the Cauchy number Ca = 1/k∗ is increased above the Hopf point
(figure 5a, t > 645 s), k∗θ∗ is no longer able to hold the pitching angle below θs. Once
the pitching angle exceeds θs, stall occurs and the wing experiences a sudden drop in CM .
The stiffness moment k∗θ∗ loses its counterpart and starts to accelerate the wing to pitch
towards the opposite direction. This acceleration introduces unsteadiness to the system,
and the small-amplitude oscillations transition gradually to large-amplitude LCOs over
the course of several cycles, until the inertial moment kicks in to balance k∗θ∗ (see also
figure 4b). This transition process confirms the fact that the onset of large-amplitude LCOs
depends largely on the static characteristics of the wing – the LCOs are triggered when the
static stall angle is exceeded.

The triggering of flow-induced LCOs starts from θ exceeding the static stall angle after
k∗ is decreased below the Hopf point, causing CM to drop below k∗θ∗. At this value of
k∗, the slope of the static stall point should be equal to the stiffness at the Hopf point,
k∗

H (i.e. CMs = k∗
Hθ∗, where CMs is the static stall moment). This argument is verified

by figure 5(c), in which we replot the static moment coefficients of unswept and swept
wings from figure 2(b) (error bars omitted for clarity), together with the corresponding
k∗

Hθ∗. We see that the k∗
Hθ∗ lines all pass approximately through the static stall points

(θ∗
s , CMs) of the corresponding Λ. Note that the k∗

Hθ∗ values for Λ = 15◦ and 20◦ overlap
each other. Similar to the trend observed for the Hopf point in figure 3, the static stall
moment CMs can also be divided into two groups, with the unswept wing (Λ = 0◦) being
in G2, and all the other wings (Λ = 10◦–25◦) being in G1 (see also figure 2b). The inset
compares the predicted Hopf point CMs/θ

∗
s with the measured Hopf point k∗

H , and we see
that the data follow closely a 1 : 1 relationship. This reinforces the argument that the onset
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of flow-induced LCOs is shaped by the static characteristics of the wing, and that this
explanation applies to both unswept and swept wings.

It is worth noting that Negi, Hanifi & Henningson (2021) performed global linear
stability analysis on an aeroelastic wing and showed that the aeroelastic instability
is triggered by a zero-frequency linear divergence mode. This agrees in part with
our experimental observation that the flow-induced oscillations emerge from the static
divergence state. However, as we have discussed in this subsection, the onset of
large-amplitude aeroelastic oscillations in our system occurs when the divergence angle
exceeds the static stall angle, whereas no stall is involved in the study of Negi et al.
(2021). In fact, Negi et al. (2021) focused on laminar separation flutter, where the pitching
amplitude is small (A ∼ 6◦). In contrast, we focus on large-amplitude (45◦ < A < 120◦)
flow-induced oscillations.

3.5. Power coefficient map and system stability
In this subsection, we analyse the stability of elastically mounted unswept and swept wings
from the perspective of energy transfer. Menon & Mittal (2019) and Zhu et al. (2020) have
shown numerically and experimentally that the flow-induced oscillations of elastically
mounted wings can sustain only when the net energy transfer between the ambient fluid
and the elastic mount equals zero. To map out this energy transfer for a large range of
pitching frequencies and amplitudes, we prescribe the pitching motion of the wing using a
sinusoidal profile

θ = A sin(2πfpt), (3.2)

where 0 ≤ A ≤ 2.5 rad and 0.15 Hz ≤ fp ≤ 0.6 Hz. The fluid moment CM measured with
these prescribed sinusoidal motions can be correlated directly to those measured in the
passive flow-induced oscillations because the flow-induced oscillations are near-sinusoidal
(see § 3.2, and figure 5a, t > 700 s). By integrating the governing equation of the passive
system (2.2) over n = 20 cycles and taking the cycle average (Zhu et al. 2020), we can get
the power coefficient of the system:

Cp = f ∗
p

n

∫ t0+nT

t0
(CM θ̇∗ − b∗θ̇∗2) dt∗, (3.3)

where t0 is the starting time, T is the pitching period and t∗ = tU∞/c is the
non-dimensional time. In this equation, the CM θ̇∗ term represents the power injected
into the system from the free-stream flow, whereas the b∗θ̇∗2 term represents the power
dissipated by the structural damping of the elastic mount. The power coefficient maps
of unswept and swept wings are shown in figures 6(a–e). In these maps, orange regions
correspond to Cp > 0, where the power injected by the ambient flow is higher than that
dissipated by the structural damping. On the contrary, Cp < 0 in the blue regions. The
coloured dashed lines indicate the Cp = 0 contours, where the power injection balances
the power dissipation, and the system is in equilibrium. The Cp = 0 equilibrium boundary
can be divided into three branches. Zhu et al. (2020) have shown that for unswept wings,
the top branch corresponds to a stable LCO solution for the structural oscillation mode,
the middle branch represents an unstable LCO solution for the structural mode but a stable
LCO solution for the hydrodynamic mode, and the bottom branch is a fixed point solution.

To correlate the power coefficient maps of prescribed oscillations with the stability
boundaries of flow-induced oscillations, we overlay the bifurcation diagrams of the passive
system from figure 3 onto figures 6(a–e). The measured pitching frequencies fp are used
to calculate the non-dimensional velocity U∗ for large-amplitude LCOs (filled triangles).
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Figure 6. (a–e) Power coefficient maps of prescribed sinusoidal oscillations overlaid by the bifurcation
diagrams of elastically mounted unswept and swept wings: 	 indicates increasing Ca; 
 indicates decreasing
Ca. ( f ) Neutral power transfer curves for unswept and swept wings. The black star represents the case
U∗ = 1.87 ( f ∗

p = 0.085), A = 1.05 (60◦), where stereo PIV measurements are taken.

Because it is difficult to measure frequencies of fixed points and small-amplitude
oscillations, we use the calculated structural frequency fs to evaluate U∗ for non-LCO
data points (hollow triangles). Figures 6(a–e) show that for all the wings tested, the
flow-induced large-amplitude LCOs match well with the top branch of the Cp = 0 curve,
indicating the broad applicability of the energy approach for both unswept and swept
wings, and confirming that this instability is a structural mode, as seen in the frequency
response (figure 4a). This correspondence was also observed by Menon & Mittal (2019)
and Zhu et al. (2020), and is expected for instabilities that are well described by sinusoidal
motions (Morse & Williamson 2009). The small discrepancies for large sweep angles can
be attributed to the low Cp gradient near Cp = 0. The junction between the top and the
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middle Cp = 0 branches, which corresponds to the SN point, stays relatively sharp for
Λ = 0◦–15◦, and becomes smoother for Λ = 20◦–25◦. These smooth turnings result in a
smooth transition from the structural mode to the hydrodynamic mode, giving rise to the
structural-hydrodynamic mode discussed in § 3.3.

The Cp = 0 curves for Λ = 0◦–25◦ are summarized in figure 6( f ). It is seen that the
trend of the top branch is similar to that observed in figure 3 for large-amplitude LCOs.
The location of the junction between the top branch and the middle branch changes
non-monotonically with Λ, which accounts for the non-monotonic behaviour of the
saddle-node point. In addition, figures 6(a–e) show that the maximum power transfer from
the fluid also has a non-monotonic dependency on the sweep angle (see the shade variation
of the positive Cp regions as a function of the sweep angle), with an optimal sweep angle
at Λ = 10◦, which might inspire future designs of higher efficiency oscillating-foil energy
harvesting devices.

3.6. Force, moment and three-dimensional flow structures
In the previous subsection, § 3.5, we have established the connection between prescribed
oscillations and flow-induced instabilities using the energy approach. However, the
question remains as to what causes the differences in the power coefficients measured
for prescribed pitching wings with different sweep angles (figure 6). In this subsection,
we analyse the aerodynamic force, moment and corresponding three-dimensional flow
structures to gain more insights. We focus on one pitching case, A = 1.05 (60◦) and
f ∗
p = 0.085 (i.e. the black star on figure 6f ), and three sweep angles, Λ = 0◦, 10◦ and 20◦.

This particular pitching kinematic is selected because it sits right on the Cp = 0 curve
for Λ = 0◦ but in the positive Cp region for Λ = 10◦ and in the negative Cp region for
Λ = 20◦ (see figures 6a,b,d, f ).

Phase-averaged coefficients of the aerodynamic moment CM , the normal force CN , the
tangential force CT , the lift force CL and the drag force CD, are plotted in figures 7(a–c).
Similar to the three-dimensional velocity fields, the moment and force measurements are
phase-averaged over 25 cycles. We see that the moment coefficient (figure 7a) behaves
differently for different sweep angles, whereas the shape of other force coefficients
(figures 7b,c) does not change with sweep angle, resembling the trend observed in the
static measurements (figure 2). The observation that the wing sweep (Λ = 0◦ to 25◦) has
minimal effects on the aerodynamic force generation is non-intuitive, as one would assume
that the sweep-induced spanwise flow can enhance spanwise vorticity transport in the LEV
and thereby alter the LEV stability as well as the resultant aerodynamic load. However, our
measurements show the opposite, a result that is backed up by the experiments of heaving
(plunging) swept wings by Beem et al. (2012) (Λ = 0◦ to 45◦) and Wong et al. (2013)
(Λ = 0◦ and ±45◦), simulations of pitching swept wings by Visbal & Garmann (2019)
(Λ = 0◦ to 30◦) and simulations of fin-like pitch–heave swept wings by Zurman-Nasution
et al. (2021) (Λ = 0◦ to 40◦), where the spanwise flow has been shown to exist but to
have no effect on the aerodynamic force. We also analyse aerodynamic forces for different
sweep angles and other wing kinematics, and observe similar results (not shown in this
paper). The collapse of the normal force CN at different sweep angles suggests that the
wing sweep regulates the aerodynamic moment CM by changing the moment arm dM as
CM = CNdM . This argument will be revisited later when we discuss the LEV and TV
dynamics.

Figure 7(a) shows that as the sweep angle increases, the moment coefficient CM peaks
at a later time in the cycle, and has an increased maximum value. To analyse further
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Figure 7. (a) Phase-averaged aerodynamic moment coefficients CM , and (b,c) force coefficients CN , CT , CL
and CD, measured at f ∗

p = 0.085, A = 1.05 (60◦) for the Λ = 0◦, 10◦ and 20◦ wings, corresponding to the
black star case in figure 6( f ). (d–f ) Phase-averaged moment coefficients CM and power coefficients CP for
Λ = 0◦, 10◦ and 20◦. Green panels represent positive power input regions, where CP > 0. Grey dashed lines
and dotted lines represent the normalized pitching angle θ/A and pitching velocity θ̇/(2πfpA), respectively.
Note that t/T = 0 corresponds to θ = 0 (see the grey dashed curve).

CM and its effects on the power coefficient CP for different wings sweeps, we compare
CM and CP for Λ = 0◦, 10◦ and 20◦ in figures 7(d–f ), respectively. Note that here we
define the power coefficient as CP = CM θ̇∗, which is different from (3.3) in a way that
this CP is time-dependent instead of cycle-averaged, and that the power dissipated by the
structure, b∗θ̇∗2, is not considered (this power dissipation is small because a small b∗
is used in the experiments). The normalized pitching angle θ/A and pitching velocity
θ̇/(2πfpA) are also plotted for reference. We see that at the beginning of the cycle
(0 ≤ t/T < 0.15), CM(t/T) grows near-linearly for all three wings. Because θ̇ > 0 for
the first quarter-cycle, the x-intercept of CM determines the starting point of the positive
CP(t/T) region, corresponding to the left edge of the green panels in the plots. The CP > 0
region starts at t/T = 0 for the unswept wing as CM has a near-zero y-intercept. For the
Λ = 10◦ swept wing, because CM has a small positive y-intercept, the CP > 0 region
starts even before t/T = 0. On the contrary, the CP > 0 region starts after t/T = 0 for the
Λ = 20◦ swept wing due to a small negative y-intercept of CM . Owing to the combined
effect of an increasing CM and a decreasing θ̇ , the power coefficient peaks at approximately
t/T = 0.125 for all the wings. The maximum CP of the Λ = 10◦ wing is slightly higher
than that of the other two wings, due to a slightly higher CM .

As the pitching cycle continues, CM(t/T) peaks at approximately t/T = 0.15, 0.17 and
0.28 for Λ = 0◦, 10◦ and 20◦, respectively. The pitch reversal occurs at t/T = 0.25, where
θ reaches its maximum and θ̇ switches its sign to negative. Because the pitching velocity
is now negative, the green panels terminate as CP drops below zero, suggesting that CM
starts to dissipate energy into the ambient fluid. However, because CM continues to grow
after t/T = 0.25 for the Λ = 20◦ wing, it generates a much more negative CP as compared
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to the wings with a lower sweep angle. Figure 7(a) shows that CM decreases faster for the
Λ = 10◦ wing than for the unswept wing at 0.25 ≤ t/T < 0.5. This difference results in
a less negative CP for the Λ = 10◦ wing as compared to the Λ = 0◦ wing. The faster
decrease of CM for the Λ = 10◦ wing also makes it the first to switch back to positive
power generation, where CM and θ̇ are both negative. The same story repeats after t/T =
0.5 due to the symmetry of the pitching cycle. In summary, we see that subtle differences
in the alignment of CM and θ̇ can result in considerable changes of CP for different sweep
angles. The start of the CP > 0 region is determined by the phase of CM , whereas the
termination of the CP > 0 region depends on θ̇ . A non-monotonic duration of the CP > 0
region (i.e. the size of the green panels) is observed as the sweep angle increases. The
cycle-averaged power coefficient, which dictates the stability of aeroelastic systems (see
§ 3.5), is regulated by both the amplitude and phase of the aerodynamic moment.

Next, we analyse the effect of wing sweep on the LEV and TV dynamics, and
the resultant impact on the aerodynamic moment. Figure 8(a) shows the moment
measurements, figures 8(b–d) show the phase-averaged three-dimensional flow structures
at t1/T = 0.14, t2/T = 0.22 and t3/T = 0.30, and figures 8(e–g) show the corresponding
LEV and TV geometries for the Λ = 0◦, 10◦ and 20◦ wings. The three equally spaced time
instants t1/T = 0.14, t2/T = 0.22 and t3/T = 0.30 are selected because they correspond
to the times of the formation, growth and shedding of the LEV. The three-dimensional
flow structures are visualized using iso-Q surfaces with value 50 s−2 and coloured by the
non-dimensional spanwise vorticity ωzc/U∞. In this view, the leading edge of the wing
is pitching towards us, but for clarity, the flow field is always plotted with the coordinate
system oriented so that the chord line is aligned with the x-axis.

The initial linear growth of the moment coefficient before t1/T for all three wings
corresponds to the formation of a strong LEV, as depicted in figures 8(b–d) at t1/T = 0.14,
which brings the lift and moment coefficients above the static stall limit. At this stage,
we see that the structure of the LEV is similar across different wing sweeps, despite
some minor variations near the wing tip. For the unswept wing, the LEV stays mostly
attached along the wing span, whereas for the two swept wings, the LEV starts to detach
near the tip region (see the small holes on the feeding shear layer near the wing tip).
A positive vortex tube on the surface near the trailing edge is observed for all three
wings, along with the negative vortex tubes shed from the trailing edge. We also observe a
streamwise-oriented TV wrapping over the wing tip, and this TV grows stronger with
the sweep angle, presumably due to the higher tip velocity associated with the larger
wing sweep. Another possible cause for a stronger TV at a higher sweep angle is that
the effective angle of attack becomes higher at the wing tip as the wing sweep increases.

The tracking of the vortex geometry (figures 8e–g) provides a more quantitative measure
to analyse the LEV and TV dynamics. We see that at t1/T = 0.14, the LEVs for all three
wings are mostly aligned with the leading edge except for the tip region (z/c = 0). For
the two swept wings, the LEV also stays closer to the leading edge near the wing root
(z/c = 3). Due to the high wing sweep of the Λ = 20◦ wing, a small portion of the
LEV falls behind the pivot axis, presumably contributing to a negative moment. However,
the mean distance between the LEV and the pivot axis (i.e. the LEV moment arm) stays
approximately constant across different wing sweeps, potentially explaining the agreement
between the CM for different wings during the linear growth region. On the other hand,
the TV moves downstream as the wing sweep increases due to the wing geometry. For
the unswept wing and the Λ = 10◦ swept wing, the majority of the TV stays behind the
pivot axis. For the Λ = 20◦ swept wing, the TV stays entirely behind the pivot axis. As a
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Figure 8. (a) Moment coefficients replotted from figure 7(a) for a half pitching cycle. Three representative
time instants, t1/T = 0.14, t2/T = 0.22 and t3/T = 0.30, are selected for studying the evolution of the LEV and
TV. (b–d) Phase-averaged three-dimensional flow structures for the Λ = 0◦ unswept wing, and the Λ = 10◦

and Λ = 20◦ swept wings. The flow structures are visualized with iso-Q surfaces (Q = 50 s−2) and coloured
by the non-dimensional spanwise vorticity ωzc/U∞. All the flow fields are rotated by the pitching angle to
keep the wing at a zero angle of attack for better visualization of the flow structures. Movie 1, capturing the
three-dimensional flow structures for the entire pitching cycle, can be found in the supplementary material
available at https://doi.org/10.1017/jfm.2023.925. (e–g) Side views and front views of the corresponding
three-dimensional LEV and TV geometries. Solid curves represent LEVs, and dotted lines represent TVs.

result, the TV mostly contributes to the generation of negative moments, which counteracts
the LEV moment contribution.

At t2/T = 0.22, figure 8(b) and the front view of figure 8(e) show that the LEV mostly
detaches from the wing surface for the unswept wing except for a small portion near
the wing tip, which stays attached. A similar flow structure was observed by Yilmaz &
Rockwell (2012) for finite-span wings undergoing linear pitch-up motions, and by
Son et al. (2022a) for high-aspect-ratio plunging wings. For the Λ = 10◦ wing, this small
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portion of the attached LEV shrinks (see the front view of figure 8f ). The top portion of the
LEV near the wing root is also observed to stay attached to the wing surface as compared
to the Λ = 0◦ case. For the Λ = 20◦ wing, as shown by the front view of figure 8(g), the
attached portion of the LEV near the wing tip shrinks further and almost detaches, while
the top portion of the LEV also attaches to the wing surface, similar to that observed for
Λ = 10◦. The shrinking of the LEV attached region near the wing tip as a function of
the wing sweep is presumably caused by the decreased anchoring effect of the TV. The
shrinking of the attached LEV could also be a result of an increased effective angle of
attack. The side views of figures 8(e–g) show that the LEV moves towards the pivot axis
at this time instant. The swept wing LEVs have slightly longer mean moment arms due to
their attached portions near the wing root. This is more prominent for the Λ = 20◦ wing,
potentially explaining the CM of Λ = 20◦ exceeding the other two wings at t2/T . The TV
moves upwards and outwards with respect to the wing surface from t1/T to t2/T .

During the pitch reversal (t3/T = 0.30), the LEV detaches further from the wing
surface, and the TV also starts to detach. For the unswept wing, the LEV mostly aligns
with the pivot axis except for the tip portion, which remains attached. For the Λ = 10◦
swept wing, the LEV also approximately aligns with the pivot axis, with both the root and
the tip portions staying near the wing surface, forming a more prominent arch-like shape
(see the front view of figure 8f ) as compared to the previous time step. For the Λ = 20◦
wing, the root portion of the LEV stays attached and remains far in front of the pivot
axis. The LEV detaches near the wing tip and joins with the detached TV, as shown by
figure 8(d) and the front and side views of figure 8(g). The attachment of the LEV near
the wing root, and the detachment of the TV near the wing tip, both contribute to a more
positive CM , as compared to the other two wings with lower sweep. The change of the
LEV geometry as a function of the sweep angle can be associated with the arch vortices
reported by Visbal & Garmann (2019). In their numerical study, it has been shown that for
pitching unswept wings with free tips on both ends, an arch-type vortical structure began
to form as the pitch reversal started (see their figure 6c). In our experiments, the wings
have a free tip and an endplate (i.e. a wing–body junction, or symmetry plane). Therefore,
the vortical structure shown in figure 8(b) is equivalent to one-half of the arch vortex. If
we mirror the flow structures about the wing root (i.e. the endplate), then we can get a
complete arch vortex similar to that observed by Visbal & Garmann (2019). For swept
wings, we observe one complete arch vortex for both Λ = 10◦ (figure 8c) and Λ = 20◦
(figure 8d). Again, if we mirror the flow structures about the wing root, then there will
be two arch vortices for each swept wing, agreeing well with the observation of Visbal
& Garmann (2019) (see their figures 10c and 13c). Moreover, Visbal & Garmann (2019)
reported that for swept wings, as Λ increases, the vortex arch moves towards the wing tip,
which is also seen in our experiments (compare the front views of figures 8e–g).

3.7. Insights obtained from moment partitioning
We have shown in the previous subsection, § 3.6, that the aerodynamic moment is
determined jointly by the LEV and TV dynamics. Specifically, the spatial locations and
geometries of the LEV and TV, as well as the vortex strength, have a combined effect on
the unsteady aerodynamic moment. To obtain further insights into this complex combined
effect, we use the FMPM to analyse the three-dimensional flow fields.

As we discussed in § 2.4, the first step of applying the FMPM is to construct
an ‘influence potential’ φ. We solve (2.6a,b) numerically using the MATLAB
Partial Differential Equation Toolbox (finite element method, code available publicly
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Figure 9. Iso-surface plots of three-dimensional influence potentials for (a) the Λ = 0◦ unswept wing, (b) the
Λ = 10◦ swept wing, and (c) the Λ = 20◦ swept wing. (d–f ) The corresponding side views, with the wing
boundaries outlined by yellow dotted lines, and the pitching axes indicated by green dashed lines.

on MATLAB File Exchange; see supplementary material available at https://
www.mathworks.com/matlabcentral/fileexchange/136194-force-and-moment-partitioning-
influence-potential-solver-3d). We use a three-dimensional domain of size 10c × 10c ×
20c, and mesh resolution 0.02c on the surface of the wing and 0.1c on the outer
domain. We visualize the calculated three-dimensional influence field φ for the Λ = 0◦,
10◦ and 20◦ wings using iso-φ surfaces in figures 9(a–c). Figures 9(d–f ) illustrate the
corresponding side views, with the wing boundaries outlined by yellow dotted lines, and
the pitching axes indicated by green dashed lines. We see that for the unswept wing, the
iso-φ surfaces show symmetry with respect to the pivot axis and the wing chord, resulting
in a quadrant distribution of the influence field. The magnitude of φ peaks on the wing
surface and decreases towards the far field. The slight asymmetry of φ with respect to
the pitching axis (see figure 9d) is caused by the difference between the rounded leading
edge and the sharp trailing edge of the NACA 0012 wing (see also the two-dimensional
influence field reported in Zhu et al. 2023). The size of the iso-φ surfaces stays relatively
constant along the wing span, except at the wing tip, where the surfaces wrap around and
seal the tube.

As the sweep angle is increased to Λ = 10◦ and 20◦, we see that the quadrant
distribution of the influence field persists. However, the iso-φ surfaces form funnel-like
shapes on the fore wing and teardrop shapes on the aft wing. This is caused by the variation
of the effective pivot axis along the wing span. Figures 9(e) and 9( f ) show that for swept
wings, the negative φ regions extend over the entire chord near the wing root, even behind
the pitching axis. Similarly, the positive φ regions (almost) cover the entire wing tip and
even spill over in front of the pitching axis. As we will show next, this behaviour of the
φ field for swept wings will result in some non-intuitive distributions of the aerodynamic
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Figure 10. (a–c) Phase-averaged iso-Q surfaces (Q = 50 s−2) for the Λ = 0◦ unswept wing and the Λ = 10◦
and 20◦ swept wings, coloured by the vorticity-induced moment density −2Qφ (m2 s−2), at t1/T = 0.14,
t2/T = 0.22 and t3/T = 0.30. Note that the wings and flow fields are rotated in the spanwise direction to
maintain a zero angle of attack for a better view of the flow structures. (d–f ) Spanwise distributions of the
vorticity-induced moment for the three wings at the three representative time instants, obtained by integrating
−2Qφ at different spanwise locations.

moment. In addition, the magnitude of the φ field is observed to increase with the sweep
angle, due to the increase of the effective moment arm (Zhu, Mathai & Breuer 2021).

We multiply the three-dimensional Q field by the influence field φ and get the spanwise
moment (density) distribution field −2Qφ. To visualize the moment distributions, we
recolour the same iso-Q surface plots shown in figure 8 with the moment density −2Qφ,
which are shown in figures 10(a–c). As before, the wings and flow fields are rotated by θ

so that we are always looking from a viewpoint normal to the chord line, giving a better
view of the flow structures. In these iso-Q surface plots, red regions indicate that the
vortical structure induces a positive spanwise moment, whereas blue regions represent the
generation of a negative spanwise moment. In between red and blue regions, white regions
have zero contribution to the spanwise moment.

At t1/T = 0.14 (figure 10a), as expected, we see that the entire LEV on the unswept
wing is generating a positive moment. For the Λ = 10◦ swept wing, however, the LEV
generates a near-zero moment near the wing tip, and for the Λ = 20◦ swept wing, the tip
region of the LEV contributes a negative moment due to the non-conventional distribution
of the φ field. The TV generates almost no moment for the unswept wing, but contributes
a negative moment for the swept wings. The vortex tube formed near the trailing edge of
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the wing surface contributes entirely to negative moments for the unswept wing, but its top
portion starts to generate positive moments as the sweep angle increases. The contributions
of each vortical structure on the moment generation for the three wings become clearer if
we plot the spanwise distribution of the vorticity-induced moment.

By integrating the moment distribution field −2Qφ over the horizontal (x, y)-plane
at each spanwise location z, we are able to obtain the spanwise distribution of the
vorticity-induced moment, shown in figures 10(d–f ). For the unswept wing (Λ = 0◦),
figure 10(d) shows that the LEV generates a near-uniform positive moment across the span.
As the sweep angle increases (Λ = 10◦), the LEV generates a higher positive moment near
the wing root, and the TV starts to generate a negative moment. For the Λ = 20◦ wing,
this trend persists. It is also interesting to see that the spanwise moment distribution curves
for the three wings intersect around the mid-span, where the effective pivot axis coincides
at the mid-chord. For the two swept wings, the more positive moments near the wing root
counteract the negative LEV and TV contributions near the wing tip, resulting in a similar
overall moment as compared to the unswept wing. The FMPM thus explains quantitatively
why the three wings generate similar unsteady moments at this time instant (figure 8a).

At t2/T = 0.22 (figure 10b), the LEV starts to detach and moves towards the pitching
axis. As discussed in the previous subsection, § 3.6, the LEV forms a half-arch for
the unswept wing, with only the tip region staying attached, and a complete arch for
swept wings, with both the root and tip regions staying attached. These arch-like LEV
geometries, together with the special shapes of the three-dimensional influence field, lead
to some special distributions of the aerodynamic moments. For the unswept wing, the
colour of the LEV becomes lighter as compared to the t1/T case, indicating a decreasing
contribution to positive moments. However, the attached portion of the LEV still generates
a positive moment as it remains attached, close to the wing, and in front of the pitching
axis. Comparing the two swept wing cases, the LEV for the Λ = 20◦ wing generates
more positive moments near the wing root as compared to the Λ = 10◦ wing, due to
the magnitude of the φ field (figure 9). The TVs for the three wings behave similarly
to the cases at t1/T . The aft wing vortex tube on the wing surface breaks into two smaller
tubes. Because of their small volumes, we do not expect them to affect the total moment
generation. Figure 10(e) shows that the large part of the LEV does not contribute to any
moment generation for the unswept wing – only the tip region (0 ≤ z/c ≤ 1) generates
positive moments. As compared to t1/T , the LEV generates more positive moments near
the wing root for the two swept wings, especially for the Λ = 20◦ wing, and the TV
generates slightly more negative moments. The overall trend observed in figure 10(e)
explains further the moment measurements shown in figure 8(a), where the Λ = 20◦ wing
produces the highest CM , followed by the Λ = 10◦ wing and then the unswept wing at
t2/T .

At t3/T = 0.30 (figure 10c), the LEV detaches further from the wing surface. For the
unswept wing, the LEV colour becomes even lighter. Comparing the temporal evolution of
the LEV colour for the unswept wing, we see that the LEV generates progressivelylower
positive moments, agreeing well with the decreasing moment measurement shown in
figure 8(a). The LEV continues to generate positive moments near the root region and
negative moments near the tip region for the Λ = 10◦ swept wing, although it is largely
aligned with the pivot axis (see also the side view of figure 8f ). This is again a result of the
non-conventional funnel-shaped φ field near the wing root and the teardrop-like φ field
near the wing tip (figures 9b,e). This trend persists for the Λ = 20◦ wing. However, the
LEV generates more positive moments due to its shorter distance from the leading edge
and the wing surface near the wing root. Moreover, the size of the LEV iso-Q surface also
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becomes larger for the Λ = 20◦ wing as compared to the previous time steps, indicating
a stronger LEV and thus a higher aerodynamic moment, which explains why the CM of
Λ = 20◦ peaks at approximately t3/T in figure 8(a). This is also reflected in the spanwise
moment plot in figure 10( f ), where the LEV generates more positive moments for the
Λ = 20◦ wing than the Λ = 10◦ wing. The TV again behaves similarly to the previous
time steps for all three wings, although it becomes less coherent and detaches from the
wing surface.

It is worth noting that the integral of −2Qφ over the (x, y)-plane (i.e. figures 10d–f ) also
includes contributions from other vortical structures. In figures 10(a–c), we can see that
there are four main structures on each wing: the LEV, the TV, the trailing-edge vortex, and
the vortex tube on the aft wing surface. Figure 9 shows that the amplitude of the influence
field φ is zero near the trailing edge due to symmetry. This means that the contribution to
the moment by the trailing-edge vortex is negligible, because −2Qφ approaches zero in
this region and makes no contribution to the integrand. The aft wing vortex tube is small
in size compared to the LEV and TV. In addition, it is not as coherent, because it breaks
down at t2/T = 0.22. Therefore, we would expect its contribution to the integral to be
small as well.

In summary, the FMPM enables us to associate the complex three-dimensional vortex
dynamics with the corresponding vorticity-induced moments, and explains quantitatively
the mechanisms behind the observed differences in the unsteady moment generation,
which further drives the pitching motion of these swept wings. These insightful analyses
would not have been possible without the FMPM.

4. Conclusion

In this experimental study, we have explored the nonlinear flow-induced oscillations and
three-dimensional vortex dynamics of cyber-physically mounted pitching unswept and
swept wings, with the pitching axis passing through the mid-chord point at the mid-span
plane, and with the sweep angle varied from 0◦ to 25◦. At a constant flow speed, a
prescribed high inertia and a small structural damping, we adjusted the wing stiffness to
study systematically the onset and extinction of large-amplitude flow-induced oscillations.
For the current selections of the pitching axis location and the range of the sweep angle, the
amplitude response revealed subcritical Hopf bifurcations for all the unswept and swept
wings, with a clustering behaviour for the Hopf point and a non-monotonic saddle-node
point as a function of the sweep angle. The flow-induced oscillations have been correlated
with the structural oscillation mode, where the oscillations are dominated by the inertial
behaviour of the wing. For swept wings with high sweep angles, a hybrid oscillation
mode, namely the structural-hydrodynamic mode, has been observed and characterized, in
which the oscillations were regulated by both the inertial moment and the fluid moment.
The onset of flow-induced oscillations (i.e. the Hopf point) has been shown to depend
on the static characteristics of the wing. The non-monotonic trend of the saddle-node
point against the sweep angle can be attributed to the non-monotonic power transfer
between the ambient fluid and the elastic mount, which depends further on the amplitude
and phase of the unsteady aerodynamic moment. Force and moment measurements have
shown that, perhaps surprisingly, the wing sweep has a minimal effect on the aerodynamic
forces, and it was therefore inferred that the wing sweep modulates the aerodynamic
moment by affecting the moment arm. Phase-averaged three-dimensional flow structures
measured using stereoscopic PIV have been analysed to characterize the dynamics of the
LEV and TV. Finally, by employing the force and moment partitioning method (FMPM),
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we have correlated successfully the complex LEV and TV dynamics with the resultant
aerodynamic moment in a quantitative manner.

In addition to reporting new observations and providing physical insights on the effects
of moderate wing sweep in large-amplitude aeroelastic oscillations, the present study
can serve as a source of validation data for future theoretical/computational models.
Furthermore, the optimal sweep angle (Λ = 10◦) observed for promoting flow-induced
oscillations may have engineering implications. For example, one should avoid this
sweep angle for aero-structure designs to stay away from aeroelastic instabilities. On
the other hand, potentially this angle could be employed for developing higher-efficiency
flapping-foil energy-harvesting devices. Finally, the use of FMPM to analyse (especially
three-dimensional) flow fields obtained from PIV experiments has shown great utility,
and the results demonstrated further the powerful capability of this emerging method to
provide valuable physical insights into vortex-dominated flows, paving the way for more
applications of this method to data from future experimental and numerical studies.

Supplementary material and movie. Supplementary material is available at https://www.mathworks.
com/matlabcentral/fileexchange/136194-force-and-moment-partitioning-influence-potential-solver-3d. Supple-
mentary movie is available at https://doi.org/10.1017/jfm.2023.925.
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