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Abstract

In this paper we consider point processes N/ (1), ¢ > 0, with independent increments and
integer-valued jumps whose distribution is expressed in terms of Bernstein functions f
with Lévy measure v. We obtain the general expression of the probability generating
functions G/ of N/, the equations governing the state probabilities p,{ of N, and their
corresponding explicit forms. We also give the distribution of the first-passage times T};
of N/, and the related governing equation. We study in detail the cases of the fractional
Poisson process, the relativistic Poisson process, and the gamma-Poisson process whose
state probabilities have the form of a negative binomial. The distribution of the times 7/
of jumps with height /; (Z;=| lj = k) under the condition N (¢) = k for all these special
processes is investigated in detail.
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1. Introduction

In this paper we consider a class of point processes with stationary independent integer-
valued increments of arbitrary range. These processes can be regarded as generalizations of the
Poisson process where jumps can take any positive value. Furthermore, we shall show that these
processes N f(t),t > 0, can also be viewed as time-changed Poisson processes N(H fay),
where H/(t) are subordinators associated with the Bernitein function f and independent
from the homogeneous Poisson process N with rate A > 0. The probabilistic behavior of
the processes £/ (¢), with related counting processes N/ (¢), is described by the following
properties:

@) 27 () has independent and stationary increments;

(ii) the probability of jumps in an infinitesimal interval is given by

)\k 00
dt—k—' / e M sku(ds) + o(dr), k>1,
- JO

P{Nf[t,t +dr) =k} = (1.1

o0
l—dtf (1 —eM)v(ds) + o(dr), k=0,
0
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where

o0
fo) = f (1 — e ™)v(ds) (1.2)
0

is the integral representation of the Bernstein functions.

The Bern§tein functions are C°°, nonnegative, and such that (— 1)k (dk /dx") f&x)<0,k>1
(see, for example, Schilling et al. (2010)). By v we denote a nonnegative Lévy measure on the
positive half-line such that

/ (s A Dv(ds) < oo.
0

We often speak of N/ (¢), t > 0, as a generalized Poisson process performing integer-valued
jumps of arbitrary height.

These processes can be used to model many different concrete and real phenomena. For
example, if we consider car accidents in the time interval [0, ¢), the number of injured people in
each crash can take any positive number. The number of clients appearing at any commercial
center and arriving on different transport vehicles can also be modeled by a suitable counting
process N/ (t),¢ > 0. Analogously, in floods or earthquakes, the number of destroyed buildings
in each event can be clearly of arbitrary magnitude and thus can be represented by N/ (¢), t > 0,
with suitably chosen Bernstein function f and Lévy measure v.

The subordinators H/ have Laplace transforms

lEexp(—p,Hf(t)) = exp(—tf(un)) = exp(—t /00(1 - e"‘“)v(ds)). (1.3)
0

We observe that for
a7 0,1
d = <~ < ’ e k) 9
v(ds) ri—o % ae©1)
we obtain the space-fractional Poisson process studied in Orsingher and Polito (2012b), where
fu) = u*, a € (0, 1). In this case, the subordinator corresponding to the space-fractional
Poisson is a positively skewed stable process of order . If the Lévy measure is the Dirac point

mass at 1, then the corresponding subordinated Poisson process is
Ni(N2(1)), t>0,

where N;, i = 1, 2, are independent homogeneous Poisson processes with rates A; > 0. Such
a process was investigated in Orsingher and Polito (2012a) and also recently in Di Crescenzo
et al. (2015).

The state probabilities p,{ (r) = P{Nf(t) = k} are governed by difference-differential
equations of the form

k
d s f AT f ® s
PO =—fDp® +mz=1 mpk_m(t)/o e smuds), k>0,t>0, (14)

with the usual initial conditions. From (1.4), we extract the probability generating function
(PGF) G/ (u, 1) of N/ (¢) as

G/ (u, 1) = exp(—tf A(1 —w))) = exp(—t / a- e_“‘(l'“)))v(ds).
0
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We prove also that
EuNH @) _ o=tf(A(1-u)

and, thus, we show that
Nf@) 2 NH@)).

By means of the shift operator B™ p,{ ) = p,{_m (t),0 < m < k, we can write (1.4) as

—p{()=—fOU = B)p[ (1),  1>0,k=0, (15)
which for f(x) = x* coincides with Orsingher and Polito (2012b, Equation 2.4). We also

present a further representation of the generalized Poisson process P/ (¢), t > 0, as the scale
limit of a continuous-time random walk with steps X ; having distribution

[e¢]
P{X; =k} = ﬁ;/ P{N (s) = k}v(ds), k>neN, (1.6)
0

where u(n) = f0°° P{N(s) > n}v(ds). For example, for the space-fractional Poisson process
the distribution (1.6) becomes

r Y P Gl L
YT -/t
We also consider the hitting-times
=inf{t > 0: Nf(¢) > k}

and we show that

P{Tk €dsh _ Z ( 1?) d‘; Lm0, (1.7)
We note that for f(A) = A (the case of the homogeneous Poisson process), (1.7) yields the
Erlang distribution

sk=1
P{T, € ds} = Ake—h(_k——l)! ds, k>1,5s>0.

The last part of the paper is devoted to three special cases, that is,

u*, a € (0,1) (space-fractional Poisson process),
f() =3 (u+6)*—6% ae(0,1) (tempered Poisson process),
log(1 + 1) (negative binomial process).

We obtain explicitly the probability distribution p,{ (t), k = 0, in the three cases above.
Furthermore, we are able to obtain the conditional distributions, for0 < #; < --- < ¢, < ¢,

P{ﬂ{zjf' e dtj)

j=1

N @) =k}

https://doi.org/10.1239/jap/1450802751 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1450802751

Counting processes with Bernstein intertimes and random jumps 1031

(where tlf are the instants of occurrence of the jth Poisson event with size [;) for f(u) =
u*, f(u) = log(l + ). The tempered Poisson process has finite moments (unlike the
space-fractional Poisson process) as well as the negative binomial of which many particular
distributions can be explicitly evaluated.

The Poisson process and the negative binomial processes have been generalized in many dir-
ections; see, for example, Beghin (2013), Brix (1999), Cahoy and Polito (2012), Di Crescenzo et
al. (2015), and Vellaisamy and Maheshwari (2014). The processes analyzed here include some
processes which have appeared recently in the literature, but not the time-fractional Poisson
process (which is a renewal process with nonindependent increments; see Kreer et al. (2014),
Kumar et al. (2011), Laskin (2013), and Meerschaert et al. (2011)).

2. General results

We now examine in detail the main properties of the process N/ (¢), ¢ > 0, with independent
increments outlined in the introduction. Our first result is the difference-differential equations
governing their state probabilities

pl@)=P(N(t) =k}, k=0

Theorem 2.1. The probabilities p,{ (t) =P{NS(¢) = k}, k > 0, are solutions to the equation

d k )\m o0
—pl®=—fWplO+Y =pl,® f e=*smu(ds),  k>0,t>0, (2.1)
dr el m! 0

with initial condition
£ 0) = 1, k=0,
Pr ) l 0. k>1.

The PGF G' (u, t) = EuV Ta ), lu| < 1, satisfies the linear, homogeneous equation

%Gf(u, t=—fOd-w)G w1, Gfw0=1

and has the form
G' (u, 1) = e OU-0), 2.2)

Proof. Since N/ (t) has independent increments and the distribution of jumps is given

by (1.1), we can write

pl ¢t +dty =PINT [t +dn) = k)

k
=1P’[U{Nf(t) =j, N[t t +dr) =k—j}]
j=0

Ak=J
(k= !

k—1 o0
=Y P(NI(t) = j}dt / e 5" Ju(ds)
—0 0

+P(Nf(t) = k}(l —dt /00(1 - e—“)v(ds)).
0
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A simple expansion permits us to obtain, in the limit, (2.1). From (2.1), we have

3 o~ ¢d
Sof x4
50 wn =3 u—p®
k=0
[} C f oo k A P 00
= —f(A)Zu P (t)+Zu" Z '—n—!pk_m(t)/0 e~} s™v(ds)
k=0 k=1 m=1"

o0 m o0 o0
= —fWG @+ Y o fo ersmuids) Y wkpf ()
m=1 "

k=m

=—-fMWG 1)+ G @, t)/ (e=sM1=1) _ e=hyy(ds)
0

=-Gfw, 1 /w(l — e M1-Wy(ds)
0
=G u,nf1 - w)).

In the last step, we take into account the representation (1.2) of the Bernstein functions.

Remark 2.1. The appearance of py—;(t),k > j > 1, in (2.1) makes the master equation of the

state probabilities p,{ () substantially different from the case of the classical Poisson process.
This fact is related to the possibility of jumps of arbitrary height. We also observe that

Nf@) 2 NHT @), (2.3)

where H/ is the subordinator with Laplace transform (1.3). This can be ascertained by
evaluating the PGF of N(Hf ()),t > 0, as

o0 00
EuNHI @) Z“k/ P{N(s) = k}P{H' (¢) € ds}
k=0 70

o0
= / e M -IP(HS (1) € ds}
0
=G/ (u,1).
In view of (2.3) we can write the distribution of N/ (¢) as

PINf(t) =k} =P{NH')) = k}
o0 k
= / e‘*xgg—P{Hf (t) € ds}
0 !
_1Vk gk o)
_ %)_diu?/o e UP(HS (1) € ds)
_ (_l)k dk
Tk duk

Remark 2.2. Equation (2.1) can alternatively be written as

u=1

e W), k>0. (2.4)

d
PO =—fOU-B)p[ ().  1>0,k=0,
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where B is the shift operator such that Bp,i'r (1) = p,{_l (t). This can be shown as follows:

—fOd = B)pl ) = - /0 (1 —eMU=Byyds)pl (1)

o0 e m
= _f (1 —e Y "“(ASB,) )"(ds)l’{(‘)
0 = om!

k
o0 A m
-- (p,{ () —e™ (—S)'—p,{_m(n)v(ds)
0 m!

m=0

o8] k A.m 2]
= - / (1—e™w)pf )+ Y =pl_,® / e™Ms™u(ds)
0 m=1 m: 0

f S ®
=P[O+ Y pl 0 fo e smu(ds). @.5)
m=1"

Clearly, (2.5) coincides with the right-hand side of (2.1).

A further representation of N f (t),t > 0, can be obtained as the limit of a suitable compound
Poisson process.

Theorem 2.2. Let o
u(n) = / P{N(s) > n}v(ds), neN,
0

where N(s), s > 0, is a homogeneous Poisson process with rate ». > 0. The compound Poisson

process
N((t/Mu(n))

Z,(ty= Y. Xj, t>0,
j=1

where X;, j = 1,2, ..., are discrete independent and identically distributed (i.i.d.) random
variables (RVs) with probability law

1 o0
P{X; =k} = m[ P{N(s) = k}v(ds), k>neN forallj=1,2,..., (2.6)
u 0
converges in distribution to the subordinated Poisson process N f(t) asn — 0. In other words,
Nf@®) 2 N(H (1)) 2 lim Z, ().
n—0

Proof. The PGF of Z,(t) can be written as

EuZn® — g tu(m)(1~Eu*X)

= exp[—tu(n) > -uhPix = k}]

k=n

= exp[—-tu(n) I;(l - uk)u_(!n—) /Ooo P{N(s) = k}v(ds)} (by (2.6))

= exp{—t f - > (1 —uhHPN(s) = k}v(ds)]. @7
0

k=n
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By taking the limit for n — 0 of (2.7), we have

n—0

oo 0©
lim EuZ® =exp{-—tf Y (1= uhP(N(s) =k}v(ds)}
0 =0

= exp{—t foo(l - e”““-“)v(ds)}
0

— e~ tf(A(1-u)

Remark 2.3. If we take into account processes whose state probabilities satisfy the time-
fractional equation

k
le A‘m o0 _
a—vm{(l‘) = —f()»)l’kf(t) + Z mp,{_m(t)/o e **s™u(ds), k>0,t>0 (2.8)
m=1 '
for v € (0, 1), the corresponding PGF has the form

Glu, 1) = Ev,l(—t” / a —e-““-“))v(ds)), (2.9)
0

where E, 1(x) is the Mittag-Leffler function and the fractional derivative appearing in (2.8)
must be understood in the Caputo sense. For the space-fractional Poisson process f(A) = A%,
0 < a < 1, the distribution of the process related to (2.9) is explicitly given by Orsingher and
Polito (2012b, Equation 2.29). The processes whose distribution is governed by (2.8) admits
the following representation:

NHI L ®)), >0,
where LY and the stable subordinator H" are related by
P{L"(t) > x} =P{H"(x) < t}.

3. Hitting-times of the subordinated Poisson process

In this section we study the hitting-times
1/ =inf{r > 0: N/ (t) > k)

of the subordinated Poisson processes. The fact that N/ (¢) performs jumps of random height
makes ka substantially different from the Erlang process related to the homogeneous Poisson
process. Indeed, the law of ka can be written as

P{ka € dS} _ ]P{UI;=1{Nf(S) = k—-.], Nf[s,s +dS) > J}}
ds - ds
_ Z’;=1 ]P{Nf(s) =k — ]} Z;.nc;j ]P’{Nf[s’s +ds) = m}
ds

k ) X sm poo
= Zf P{N(z) = k — j}P{H' (s) € dz} Z %n-;f e M umv(du)
j=1"0 m=j T 0
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%) k—j *
= f G —rap(gs (s) e do) f PING) > j)v(du)
0 0

oo k=5t
- ]Zi; ((k );)k; /0 ” dd;:_jj e P(H/ (5) € dz) /0 TRNG) 2 iv(dw
- ,Z; ((kk_)k];, d‘fk e [ pwveo = wiaw

The distribution of ka can also be obtained by observing that
X a0 i
az)d
P(T{ <s}=P(N/ () 2k} =) / e‘“(-%P{Hf (s) € dz}
— J0 J:
and, thus,

P(T/ eds}) d

ds ds Zf e (AZ) —P(H/ (s5) € dz)

= /0 P{N(z) > k}P{H/ (5) € dz}

00 k-1 !
_4d (1 - Z &e—uﬁ»{m (s) € dz}

ds L
_ = f e Mpr g f
clsZ i Jy an® THI®ed
(*)l e—sf )
. 2
ds 2 s s>0 (3-2)

For f(A) = A from (3.2), we extract the Erlang distribution for the first-passage time of the
Poisson process.

Remark 3.1. In particular, we observe that, from (3.1) and (3.2), we have
PIT/ edsy = f(NePds, s>0. (3.3)

This proves that the waiting time of the first event for all subordinated Poisson processes is
exponential. Instead,

P{T) € ds} = e D (F ) — Af'(A) + Asf' (W) F (1)) ds, s >0, (3.4)

and for f(A) = A (ordinary Poisson case) we recover the gamma distribution with parameters
(2, A). Equation (3.4) can also be obtained from (3.1). For f (1) = A* (space-fractional Poisson
process), we have

P(T§ € ds} = dsA%e ™" (1 —a +asr%),  s>0.
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Clearly, (3.4) cannot be the distribution of the sum of exponential RVs (3.3) because the second
event can also be obtained as a jump of magnitude equal to 2. Finally, we observe that

(—A)k 1 d dk 1

P(T/ e ds) = P(T | e ds} - o T

e M g, s € (0, 00),

so that the distributions of T}’ ¢ can be derived successively.

Here we derive the equation governing the distribution of ka . First, we note that

> KT/ ed
& (u,s) = Z k {" ) 1" FOQ —u))e FAA=) 5 S0, |ul < 1.
- U

This can be proved as follows:

© 1 eds)
&/ (u,5) = Y k=1
(u,s) k_lu i

Z / _M(AZ) P(H/ (s) € dz)

Q-ln_

o j+l
Z“! — / e“““;) P{H' (s) € dz)

I

]

Q.|Q_ o-'a_

- 1 e U= _ DYP(H/ (s) € dz}

= 1— f(A(l — u))esfGU-u), (3.5)
—u
Theorem 3.1. The probability density q;, (t) = ]P’{Tk € dt}/dt solves the following equation:

fod - Bygl @) = ——q o).

Proof. Because

k—1 00 ( )
FOU = BYaf = Faf - Y fo s & woral @
m=1

we can write, since go(¢) =0, forz > 0,

SOk £ = Bal 0 = F08 =5t f e 49gf )

k=1 k=1 m=1

= f& 1) — Z Z( f - BT v(ds))u i (®)

m=1k=m

=fn& w10 —qsf(u,t)/ e " — 1v(ds)
0
= f(1 - u)®/ (u,1).
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From (3.5), we obtain
FO0 =8 1) = 267 w,0),

which completes the proof.

4. Some particular cases

In this section we specialize the function f in order to analyze some particular cases of

Nf@),t>0.
4.1. The space-fractional Poisson process
If -
as o
U(dS) = F_(l——z) ds, o € (O, 1),

we obtain the space-fractional Poisson process N*(t), t > 0, studied in Orsingher and Polito
(2012b). The distributions of jumps (1.1) and (1.2) specialize to

(__1)k+l)\'a
-1 (a—k+1)dt +0o(dt), k>0,
P(N°[t,t +dt) =k} = o el@—De (e ydt +o(ds), k>
1 —A%dr + o(dy), k=0
(-D**Tr@+1)
= . Kk 4.1
T e >0 4.1)

since f(A) = A%. The distribution of N* can be written in three different ways as
P () =P{N%(t) =k}

_(=DEX (=A%) T(ar +1)
TR Z r!' T(ar+1-k)

r=0

vk % saar
=(k1') Z( );'t) (@r)(@r —1)---(@r —k+1)

r=0
= (——l)k ie_tkaua
k! dut
and we note that the probabilities (4.1) can be obtained directly from (4.2).

4.2)

u=1

Remark 4.1. In light of (4.2) the distribution of the space-fractional Poisson process has the
following alternative form:

e~ A%t _
pr() = 0 lek kt® + cer et 4 - + 2t + crat], 4.3)
where the coefficients cjx, j = 1, ..., k, can be computed by means of successive derivatives.
In particular, we have
k(k—1
ki = @A), c1x =@ (1 )2 g,
k-2 k-1
. k(k —1) .
ar= 00 [[i-o=—=—=  car=ar®[]G - (4.4)
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For o = 1 all the coefficients ¢;, j = 1,...,k — 1, are equal to 0 and from (4.3) we recover
the distribution of the homogeneous Poisson process. The coefficients (4.4) are sufficient to
obtain pj.’(t), l1<j<4as

e—A"’t
p5@t) = [(Aar)? +a(l — a)r%t],
—A%t
P =2 3%’ +30%en’ (1 - @) + (a1 -2 - )],
—A%t
pe() = ¢ 2 [(@A2D)* + 6(A%ar)3(1 — ) + 6(aA*)?(1 — a)(2 — a)

+ 2%t (1 — )2 — )3 — )]

Remark 4.2. In light of the independence of increments for the space-fractional Poisson
process, we have, for0 <r <kand0 <s <1,
P{N%(s) = r}P{N%(t —s) =k — r}
P{N*(z) = k}
B (k) (dr/dur)e—sl"u" (dk—r/duk—r)e—(t—s)kuu“
T \r (dk /duk)e—reru uel
<k> ZJ 1Cjrs? Zn 1Cnk—r(t —5)"
Yol cut!

where we used (4.3). Fora = 1, weobtainc,,;, ck—rk—r, ckk #0andcj, = cpp—r =c1p =0
for j <r,n <k —r,l < k and, thus, from (4.5) we recover the binomial distribution.

PIN*(s) =r | N*(t) =k} =

, 4.5)

r

I'In the time interval [0, ¢] the instants of occurrences of the upward jumps are denoted by
‘L'j], 1 < j <r,l; = 1, where r is the number of jumps in [0, t] and /; is the height of the jth
jump. We can write the following distribution for r < k:

{ﬂ{rl’ € dtj)
kLT (@ + D) (=1 TT5_, di/ 0@ + 1 — 1))

Zi:l Cn k"

N%(t) = k}

forO<t <--- <t <t.

(4.6)

The distribution (4.6) can be evaluated by considering

{ﬂ{z’f € drj)

N%(@t) = }

r+1

= P(Ne() = k}P{g{Na[tj_l’ 1) =0, N%ltj, 1+ di) =1}

where fp = 0 and #,41 = ¢. Since the space-fractional Poisson process has independent
increments and in view of the transition probabilities (4.1), we arrive at (4.6). If N¥(t) = k,

https://doi.org/10.1239/jap/1450802751 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1450802751

Counting processes with Bernstein intertimes and random jumps 1039

and /; = 1, for all j, we have

[O T; € drj}

on the simplex S; = {t;,i = 1,...,k: 0 <ty <t < --- < t < t}. Clearly, fora = 1,
from (4.7) we retrieve the uniform distribution on the set S;. Since the coefficients ¢ can
be calculated in some specific cases, the distribution can be written down explicitly for small
values of k. For example, for k = 2, we have

k

1 ayk
N(t) =k{ = ik@)— ]'[ dr; @7

2

P{ﬂ{r} € dtj)

j=l1

(@A®)2 dt; dry
(@A®1)? +a(l —a)ret’
1/2)a(l —a)r®dn
(@r2)? + a(1 — a)ret’

O<tij<n<t,

Ne@) = 2} =

0<n <t

P{tZ e dr | N*(t) =2} =

4.2. Poisson process with a relativistic (tempered) stable subordinator
In the case where the Lévy measure has the form

—a—1,-0s
v(ds):uds, 0>0,0<a<l,
' —a)
we obtain an extension of the space-fractional Poisson process. This new Poisson process has
the form N*® (1) 2 N(H®*® (1)), where H*? is the relativistic or tempered stable subordinator.
Such a process is called relativistic since it appeared in the study of the stability of relativistic
matter (see Lieb (1990)). From (2.2), we obtain the PGF as

oo —a—1,-0s
G*O(u, 1) = —tf 1—e M- g
(u,t) exp{ A ( e ) rd—a) s

— o~ HB+A(1—0)]*~6%)

- i [—2(0 + A(1 — u)]*

paard k!
e«,i[—t(eu)‘*]" (1_ A )ak
=0 k! 6+ A
ga,i(—t(eﬂ))" {2 T(ak+ 1) (_ A )'"
pars k! frd 'ak +1—m)m! 6+ A
_i AT=Dm Ame®™t X[t + 1) T(ak+ 1) “s)
T4 T @rym & T K T@ktl-m] ‘
From (4.8) we extract the distribution of N*9(¢), t > 0, as
_1ym mp6% X ark
PN (1) = m) = 1 27 Z( RO _Tek+D 50 @)

m O +nm = k! T(ak+1—m)
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For 6 = 0, (4.9) yields the distribution of the space-fractional Poisson process (see Orsingher
and Polito (2012b, Equation 1.2)). An alternative form of (4.9) can be written as

@.d =D"7 A oer 4" _rueoaye
) =m) = — 4.
P{N*®(t) = m} ! 136 e » e (4.10)

u=1

and can be derived either from (4.9) or from (2.4). From (4.10) (and also from (1.1)), we have,
form > 1,

P{N*®[t,t + dt) = m}

_ Enmo/o+onn

por A+0)fa@—1)--- (e —m+1)dt 4.11)

and this represents the distribution of the jumps during [¢, ¢ +dt). From (4.11) we see that high
jumps have less probability of occurring than in the space-fractional Poisson process.

Remark 4.3. We note that

EN*?(t) = ar6*" s, var[N*? ()] = ar*2(A(1 — @) + O)t, 4.12)
cov[N*C(t)N®O(5)] = ar0*2(A(1 — @) + 0)(s A 1). 4.13)

From (4.12) and (4.13), it is apparent that in the space-fractional Poisson process (6 = 0) the
mean values diverge.

4.3. Poisson process with gamma subordinator

For the Lévy measure
-5
v(ds) = ¢ ds, s>0,
s

the distribution of the related Poisson process has a particularly simple and interesting form,
since it is the negative binomial. We note that the BernStein function corresponding to the Lévy
measure v(ds) = (e7°/s)ds is

fx)= /Ooo(l - e_”‘)%i ds = log(1 + x).
Therefore, the PGF (2.2) reduces to the form
Gl (u, 1) = e 108UHA=0) — (1 4 21 —w))™* (4.14)
and, thus, the intertime T between successive clusters of events has law

1
]P{T>t}=m

Equation (4.14) is clearly the PGF of N Tr) 2N (HT (1)), where HT isthe gamma subordinator
with Laplace transform

Ee#H/ 0 = (14 p)~".

The distribution of N l"(t), t > 0, can be extracted from (4.14).
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Proposition 4.1. The process NT (1), t > 0, has the following distribution:

AMe+ 1)t +k—1) 1

b kz 1’
P{Nr(t) — k} — 1 k! (A + 1)t+k
T =0
k
MOk +1) o “.15)

TTOK (h + D =

Proof. The distribution of N(HT (z)), t > 0, is the negative binomial (see, for example,
Kozubowski and Podgérski (2009)). Its PGF is

Glu,n=00+r0-u)*

ae \7! —t
_(1—1_“) (1+2)
X T(=t+1) A\
— —t _
=1+ lgk!l‘(—t+l—k)( 1+x>
=iuk[kkl‘(t+k) 1 ]
pard KIT() (1+A)+k

Remark 4.4. The distribution (4.15) of NT (¢) is written as

Ak Fk+1) 1

PIN"() = k) = A+ @) &

=EP{N(T) =k},

where T is gamma distributed with parameters (1, #) (that is the distribution of H T'yand N is
a homogeneous Poisson process with parameter A, independent from 7. Furthermore, (4.15)
can be regarded as an extension of the negative binomial B*, where

: F@+k) ;&
P{B =k} = ————p'
{ = rore+n”
fori =t,p=1/(14+1),q =A/(1 + 1) (see also Kozubowski and Podgérski (2009)).
Corollary 4.1. The distribution of jumps in this case has the form

A\l
r =) -dr, k>1,
PINT[t,t +dt)y =k} = {\A+1) & (4.16)

1 —log(1 4+ A)dt, k=0,
as can be inferred from (1.1) and also from (4.15). The jumps follow logarithmic distribution.
Remark 4.5. We observe that, fors < ¢,r <k,

k) () Fs+rnNr@¢—s+k—r)

P{NT(s)=r | NT(t) =k} = (

r) @ —s)(s) I'tk+1)
=(k)B(s+r,t—s+k—r). @.17)
r B(s,t —s)
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Furthermore, from (4.17) we can write, for0 < r <k,

k fOl xs+r—l(l _ x)t—s+k—r—1 dx

P(NT(s)=r | NT(t) =k} = (r) B(s,t —s)

= E[(’:)X’(l - X)""], (4.18)

where X is an RV with beta distribution with parameters s and ¢t — s, that is

xs—l(l _ x)t—s—l
B(s,t —s)

Equation (4.18) shows that in the gamma-Poisson process the conditional number of events at
time s < t is a randomized binomial if N(t) = k.

P{X edx} =

Remark 4.6. In view of (4.15), (4.16), and of the independence of the increments of the
gamma-Poisson process, we have

,
P{ﬂ{rj.f € dr)
=1

on the simplex 0 < ) < < --- <t < t and Z;‘=1 lj = k. Some special cases of (4.19)
are

KT d
NT() = k} = Fo +(t/i) ]‘[ 4 (4.19)

(i) [; =1,forall j =1,...,r and, thus, r = k. In this case, we have

{ﬂ{r € dn)

(ii) I} = k and, thus, r = 1 (unique jump of height k). Here, we obtain

dey k!'T(r)
P{zk ed NC(@t) =k} = ————, 0 ;
{ry €edn | N* (1) =k} PRNTEY <t <t

(iii) k =2m,l; =2, for all j and, therefore, r = m. We have

[ﬂ{r € drj)

forO<itp <--- <ty <t

k
k!'T(1)
Nl = ”dt-, 0<t S < t;
)= l F@e+k j <t <--<h <

m

@2m)!' (@)
2m(t + 2m) n

NT(@t) = 2m }—

=1

Remark 4.7. From (4.14) we obtain the rth factorial moment of N (¢), r > 0, as
EINTOWT(6) = 1)« (NTO —r + DI =2t + 1) (¢ +7 = 1).
When ENT () = Az, the variance becomes var N (r) = At(\ + 1) and
cov[NT (1), N'(9)] = A + D)(s A D).

Furthermore, we have

t 2 3
0
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Remark 4.8. We can also write the following conditional mean values:

k
E[NT(s) | N%):k]:TS, 0<s<t,

EINT(s)NT(w) | NT(2) = k]
ks s(s+1) s(w —s)

=T+k(k—l)t(t+1)+k(k_l)m for0<s<w<t,
r r r _ _ k Iﬁ : : _ _
coviN' (s), N (w) | N (t) =k] = et D (l + t)mln(s, w)min(t — s, ¢ — w). (4.20)

As a special case, from (4.20) we extract the conditional variance as

Py | Ny =k < K= (K
var[N (s)|N(t)—k]—t(t+1) 1+t s O<s<t,
and from (4.8),
s+ 1
t+1

N

EI(VT ()% | N7 =K1 = Sk k(e - 1)(_)

t
As a check, we observe that
var NT(s) = E[var[NT (s) | NT(0)]] + var[E[N" (s) | NT(1)]]
_s(t—s) r s(t —s) T2 S_z_ r
= DB O+ gy BV O 4 g var VO

122t +1)
2
s\t—s S\t—s S
== A Sl— A2 + SA
<t>t+1 t+(t2)t+l( O+ D+ t)+t2 A+ )t
= A+ 1)s.

Remark 4.9. We consider here the distribution of N| (t) — NJ (1), t > 0, where N;, j=1,2,
are independent gamma-Poisson processes. This leads to a generalization of the Skellam law
of the difference of independent homogeneous Poisson processes. We have

PNT (1) = NS (1) =)

o0

= MUk + DM Tk +r+1)
T (L+ MFHT@OK! (1 + M+ (k+ 1) T ()

1 - AT oo * w—z, k+t—1_k+r+1—1
= dw [ dzemwtwkH Ikt
(I + M2T2(0) g 5 +A)2k+’k!(k+r)!/() w/O e

o0
- f oo / % dw dze— Pt~/ /2411 3 (/1 + 2 )+
A+2*T2®) Jo Jo =

k! (k +r)!
_ 1 /00/00 e~ W2yt =/ D=1, (r/D+1=1 2wz
a+02r2e o Jo "1+

00 oo t—ldudy
_ PINE(D) — N2 (1) = pre—tutym @y}~ dudy
/0 /0 i) =Nz () =rle AHT2(t)

k=0

=EP{NY (1) — N (1) =},
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where U and Y are independent gamma RVs with parameters 1 and ¢, and Ip(x) is a Bessel
function. For the reader’s convenience, we recall that the Skellam distribution reads

PN} (&) — Ny (0) = r} =BGy 21 e/3B),  rel,
for independent Poisson processes Nl", Nf , with rate A and B, respectively.
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