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Abstract

In this paper we consider point processes N f (r), t > 0, with independent increments and
integer-valued jumps whose distribution is expressed in terms of Bernstein functions f
with Levy measure v. We obtain the general expression of the probability generating
functions G f of N f , the equations governing the state probabilities p{ of N f , and their
corresponding explicit forms. We also give the distribution of the first-passage times T!
of N f , and the related governing equation. We study in detail the cases of the fractional
Poisson process, the relativistic Poisson process, and the gamma-Poisson process whose
state probabilities have the form of a negative binomial. The distribution of the times T?
of jumps with height 1j (LJ=1 1j = k) under the condition N (t) = k for all these special
processes is investigated in detail.
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1. Introduction

In this paper we consider a class of point processes with stationary independent integer
valued increments of arbitrary range. These processes can be regarded as generalizations of the
Poisson process where jumps can take any positive value. Furthermore, we shall show that these
processes NI (t), t > 0, can also be viewed as time-changed Poisson processes N(HI (t»,
where HI (t) are subordinators associated with the Bernstein function f and independent
from the homogeneous Poisson process N with rate A > O. The probabilistic behavior of
the processes s-! (t), with related counting processes N I (r), is described by the following
properties:

(i) /p f (r) has independent and stationary increments;

(ii) the probability of jumps in an infinitesimal interval is given by

IP{NI[t, t + dt) = k} =
A

k 100

dt- e-ASskv(ds) + o(dt),
k! 0

1 - dt100

(l - e-AS)v(ds) + o(dt),

k ~ 1,

k =0,

(1.1)
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where
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(1.2)f(>") =100
(1 - e-J..S)v(ds)

is the integral representation of the Bernstein functions.

The Bernstein functions are Coo, nonnegative, and such that (-I)k(dk/dxk)f(x) ~ 0, k ~ 1
(see, for example, Schilling et al. (2010)). By v we denote a nonnegative Levy measure on the
positive half-line such that 100

(s /\ l)v(ds) < 00.

We often speak of N f (t), t > 0, as a generalized Poisson process performing integer-valued
jumps of arbitrary height.

These processes can be used to model many different concrete and real phenomena. For
example, if we consider car accidents in the time interval [0, t), the number of injured people in
each crash can take any positive number. The number of clients appearing at any commercial
center and arriving on different transport vehicles can also be modeled by a suitable counting
process N f (t), t > O. Analogously, in floods or earthquakes, the number ofdestroyed buildings
in each event can be clearly of arbitrary magnitude and thus can be represented by N f (r), t > 0,
with suitably chosen Bernstein function f and Levy measure v.

The subordinators H f have Laplace transforms

We observe that for
as-a-l

v(ds) = ds, a E (0, 1),
T{l - a)

we obtain the space-fractional Poisson process studied in Orsingher and Polito (2012b), where
f(JL) = JLa , a E (0, 1). In this case, the subordinator corresponding to the space-fractional
Poisson is a positively skewed stable process of order Ct. If the Levy measure is the Dirac point
mass at 1, then the corresponding subordinated Poisson process is

t > 0,

where N;, i = 1, 2, are independent homogeneous Poisson processes with rates Ai > O. Such
a process was investigated in Orsingher and Polito (2012a) and also recently in Di Crescenzo
et al. (2015).

The state probabilities p{ (t) = JP>{N f (r) = k} are governed by difference-differential
equations of the form

k ~ 0, t > 0, (1.4)

with the usual initial conditions. From (1.4), we extract the probability generating function
(PGF)or (u, t) of N f (r) as

c! (u, t) = exp(-tf (>.. (1 - u))) = exp(-t100
(1 - e-sJ..(l-U») v(ds).
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We prove also that

and, thus, we show that

E. ORSINGHER AND B. TOALDO

N! (t) ~ N(R! (t)).

By means of the shift operator B'" p{ (t) = P{_m(t), 0 ~ m ~ k, we can write (1.4) as

~p{(t) = -f(>..(I - B))p{(t),
dt

t > 0, k ~ 0, (1.5)

which for f(x) = X
CX coincides with Orsingher and Polito (2012b, Equation 2.4). We also

present a further representation of the generalized Poisson process :p! (r), t > 0, as the scale
limit of a continuous-time random walk with steps Xj having distribution

1 ioo
IF{Xj = k} = - IF{N(s) = k}v(ds),

u(n) 0
k ~ n EN, (1.6)

(1.7)

where u(n) = JoooJP'{N(s) ~ n}v(ds). For example, for the space-fractional Poisson process
the distribution (1.6) becomes

r(k - a)/k!
JP'{ X j = k} = -'""'-~-r-(-.--)-/-., ,

L-J=n } a J.

We also consider the hitting-times

r! = inf{t ~ 0: N! (t) ~ k}

and we show that
1ID{T! d} k-l / /
ir k E s = _~ '" (-A) ~e-Sf(A).

ds ds £...J I! dA/
/=0

We note that for f(A) = A (the case of the homogeneous Poisson process), (1.7) yields the
Erlang distribution

k-l
JP>{TJ E ds} = Ake-AS s ds

k (k - I)! '
k ~ 1, s > 0.

The last part of the paper is devoted to three special cases, that is,

IJ-Lcx , ex E (0, 1) (space-fractional Poisson process),

f(J-L) = (J-L + ()CX - ()CX, ex E (0, 1) (tempered Poisson process),

loge! + J-L) (negative binomial process).

We obtain explicitly the probability distribution p{ (r), k 2:: 0, in the three cases above.
Furthermore, we are able to obtain the conditional distributions, for 0 < tl < ... < tr < t,

p{ n{LY E drj} INt (t) = k}
J=1
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(where Ty are the instants of occurrence of the jth Poisson event with size Ij) for f(f.L) =
J-ta , f(J-t) = log(1 + J-t). The tempered Poisson process has finite moments (unlike the
space-fractional Poisson process) as well as the negative binomial of which many particular
distributions can be explicitly evaluated.

The Poisson process and the negative binomial processes have been generalized in many dir
ections; see, for example, Beghin (2013), Brix (1999), Cahoy and Polito (2012), Di Crescenzo et
al. (2015), and Vellaisamy and Maheshwari (2014). The processes analyzed here include some
processes which have appeared recently in the literature, but not the time-fractional Poisson
process (which is a renewal process with nonindependent increments; see Kreer et al. (2014),
Kumar et ale (2011), Laskin (2013), and Meerschaert et al. (2011».

2. General results

We now examine in detail the main properties of the process N f (r), t > 0, with independent
increments outlined in the introduction. Our first result is the difference-differential equations
governing their state probabilities

p{ (t) = P{Nf (t) = k}, k ~ 0.

Theorem 2.1. The probabilities p{ (t) = lP{Nf (t) = k}, k ~ 0, are solutions to the equation

d k Am 100

-p{ (t) = - f(A)p{ (t) + L -P{_m(t) e-SAsmv(ds),
dt m=l m! 0

with initial condition

k 2:: 0, t > 0, (2.1)

p{ (0) = 11, k = 0,
0, k 2:: 1.

The PGF c! (u, t) = lEuNf(t), lui ~ 1, satisfies the linear, homogeneous equation

and has the form

a
at o! (u, t) = - f(J...(l - unci (u, t), Gf(u, 0) = 1

(2.2)

Proof Since N f (r) has independent increments and the distribution of jumps is given
by (1.1), we can write
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A simple expansion permits us to obtain, in the limit, (2.1). From (2.1), we have

a 00 d
-Gf(u,t) = Luk-p{Ct)
at k=O dt

00 00 k Am roo
= - f(A) L ukp{ (t) + L uk L m! pLm(t) 10 e-SAsmv(ds)

k=O k=l m=l

00 Am roo 00

= - f(A)Gf (u, t) + L m! 10 e-SAsmv(ds) L uk pLm(t)
m=l k=m

= - rose! (u, t) + o!(u, t)100

(e-SA(I-U) - e-SA)v(ds)

=-Gf(u, t)100

(I - e-sA(I-U»)v(ds)

= -Gf (u, t)f(A(1 - u)).

In the last step, we take into account the representation (1.2) of the Bernstein functions.

Remark 2.1. The appearance of Pk- j (r), k 2: j 2: 1, in (2.1) makes the master equation of the

state probabilities p{ (t) substantially different from the case of the classical Poisson process.
This fact is related to the possibility of jumps of arbitrary height. We also observe that

(2.3)

where H! is the subordinator with Laplace transform (1.3). This can be ascertained by
evaluating the PGF of N (H! (t)), t > 0, as

00 roo
"EuN(Hf(t» = Luk 10 lP'{N(s) = k}lP'{Hf (t) E ds}

k=O 0

= 100
e-sA(I-U)lP'{Hf (t) E ds}

= G! (u, t).

In view of (2.3) we can write the distribution of N f (r) as

]P{N! (t) = k} = P{N(H! (t)) = k}

= roo e-AS (As)k lP'{H f (t) E ds)
10 k!

( l)k d
k 100 I= -=---k e-ASUP{H! (t) E ds}

k! du 0 u=l

_ (-I)k ~e-tf(AU)1 k >_ o.
- k! duk u=l,

Remark 2.2. Equation (2.1) can alternatively be written as

(2.4)

~ p{ (t) = - f(A(I - B))p{ (t),
dt

t > 0, k 2: 0,
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(2.5)

where B is the shift operator such that Bp{ (t) = P{-l (t). This can be shown as follows:

- f()..(l - B»p{ (r) = - 100

(1 - e-J...s(l-B»)v (ds)p{ (r)

100 ( 00 (ASB)m )= - 1 - e-AS L , v(ds)p{ (t)
o m=O m.

l OO ( k (As)m )= - p{ (t) - e-AS L -,-P{_m(t) v(ds)
o m=O m.

100 k Am 100
= - (1 - e-AS)v(ds)p{ (t) + L -, pLm(t) e-J...ssmv(ds)

o m=l m. 0

k Am 100
= - f(A)p{ (t) + L -, pLm(t) e-J...ssmv(ds).

m=l m. 0

Clearly, (2.5) coincides with the right-hand side of (2.1).

A further representation of N f (r), t > 0, can be obtained as the limit of a suitable compound
Poisson process.

Theorem 2.2. Let

u(n) =100

JID{N(s) ::: n}v(ds), n E N,

where N (s), s > 0, is a homogeneous Poisson process with rate A > 0. The compound Poisson
process

(2.6)

t > 0,

k ~ n E N for all j = 1, 2, ... ,

N r« jA)u(n»

Zn(t) = L x;
j=l

where X], j = 1,2, ... , are discrete independent and identically distributed (i.i.d.) random
variables (RVs) with probability law

1 100

JP>{Xj = k} = - JP>{N(s) = k}v(ds),
u(n) 0

converges in distribution to the subordinated Poisson process N f (t) as n ~ 0. In other words,

Nf (t) ~ N(Hf (t)) ~ lim Zn(t).
n~O

Proof. The pap of Zn(t) can be written as

IEuZn(t) = e-tu(n)(l-Eux)

= exp{-tu(n) t(l -uk)JID{X = k} }
k=n

= exp{-tu(n) f(l-uk)_I_ roo JID{N(s) = k}V(dS)} (by (2.6»
k=n u(n) Jo

= exp{ -t100 t(l-uk)JID{N(s) = k}V(dS)}. (2.7)
o k=n
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By taking the limit for n ~ 0 of (2.7), we have

E. ORSINGHER AND B. TOALDO

lim lEuZn{t) = exp{-t r JO f(1 - uk)lP'{N(s) = k}V(dS)}
n~O 10 k=O

= exp{-tLoo
(1 - e-As(l-u»)v(ds) }

= e-t!(A(l-U».

Remark 2.3. If we take into account processes whose state probabilities satisfy the time
fractional equation

k 2:: 0, t > 0 (2.8)

(2.9)

for v E (0, 1), the corresponding PGF has the form

Gt (u, t) = Ev,l (_tV Loo (1 -e-sA(l-U»)V(dS)).

where Ev,l (x) is the Mittag-Leffler function and the fractional derivative appearing in (2.8)
must be understood in the Caputo sense. For the space-fractional Poisson process f(A) = A(X,
o < ex < 1, the distribution of the process related to (2.9) is explicitly given by Orsingher and
Polito (2012b, Equation 2.29). The processes whose distribution is governed by (2.8) admits
the following representation:

t > 0,

where LV and the stable subordinator H V are related by

3. Hitting-times of the subordinated Poisson process

In this section we study the hitting-times

T! = inf {t 2:: 0: N f (t) 2:: k}

of the subordinated Poisson processes. The fact that N! (t) performs jumps of random height
makes T! substantially different from the Erlang process related to the homogeneous Poisson

process. Indeed, the law of T! can be written as

JP{T! Eds} IP>{U~=l{N!(s)=k-j,N![s,s+ds)~j}}
=

ds ds

L~=llP'{Nf (s) = k - j} L~=j lP'{Nf[s, s + ds) = m}
=

ds

=t 100

lP'{N(z) = k - j}lP'{Hf (s) E dz} f ~100

e-AUumv(du)
j=l 0 m=j 0
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(3.1)

(3.2)

k 100
(A )k-) 100

= " z. e- AZp{H f (s) E dz] P {N (u) ~ j}v (du )
~ 0 (k-J)! 0
J=l

k (-A)k-) 100 dk-} 100

= L . -k-.e-AZP{Hf (s) E dz} P{N(u) ~ j}v(du)
. (k-J)! 0 dA -J 0
J=l

k (-A)k-) dk-} 100

= " --.e-Sf(A) lP{N(u) > j}v(du)
~ (k-j)! dAk-J 0 -
J=l

k-l ( )l ( dl ) 1°O( k-l-l (,)r )=,,~ _e-Sf(A) 1 - " _A_U_e- AU v(du).
LJ 1! dAI 0 LJ r!
1=0 r=O

The distribution of T! can also be obtained by observing that

00 100 (AZ)}
PIT! < s} = P{Nf (s) ~ k} = L e-Az-.,-lP{Hf (s) E dz]

}=k 0 J.

and, thus,
]P{Tf E ds} d 00 100 (A )}

k = - L e-;"Z+IP'{Hf (s) E dz]
ds dS}=k 0 J.

d 100

= - P{N(z) ~ k}JP{Hf (s) E dz}
ds 0

d 1°O( k-l (A )l )= - 1 - L _~_e-AZ P{Hf (s) E dz]
ds 0 1=0 1.

d k-l (-A)l 100 dl
= -- ,,-- --e-AZJP{Hf (s) E dz]

ds ~ l! 0 dAl

k-l I I
= -~ L (-A) ~e-Sf(A) 0

I ' s > .
ds 1=0 i! dA

For f(A) = A from (3.2), we extract the Erlang distribution for the first-passage time of the
Poisson process.

Remark 3.1. In particular, we observe that, from (3.1) and (3.2), we have

JP>{T
1
f

E ds} = f(A)e-sf(A) ds, s > O. (3.3)

This proves that the waiting time of the first event for all subordinated Poisson processes is
exponential. Instead,

JP>{T[ E ds} = e-Sf(A) (f(A) - Af'(A) + Asf'(A)f(A)) ds, s > 0, (3.4)

and for f(A) = A (ordinary Poisson case) we recover the gamma distribution with parameters
(2, A). Equation (3.4) can also be obtained from (3.1). For f(A) = Aa (space-fractional Poisson
process), we have

s > o.
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s E (0,00),

s > 0, lui < 1.

Clearly, (3.4) cannot be the distribution of the sum of exponential RVs (3.3) because the second
event can also be obtained as a jump of magnitude equal to 2. Finally, we observe that

(_A)k-l d dk- 1
Jp>{~! E ds} = Jp>{~! E ds} - e-s!("A) ds

k k-l (k - I)! ds dAk- 1 '

so that the distributions of T! can be derived successively.

Here we derive the equation governing the distribution of T!. First, we note that

00 Jp>{~! E ds} u
~! (u, s) = L uk k = --f(A(l - u»e-s!("A(1-u» ,

k=l ds 1 - u

This can be proved as follows:

! ~ kJP{T! E ds}
~(u,s)=L...Ju d

k=l s

d 00 j 100 (AZ)j
= - LLuk e-"AZ-.,-Jp>{H!(s) E dz]

ds j=l k=l 0 J.

d 00 uj+1 - u 100 (AZ)j
= - L e-"AZ _ . -JP>{H!(s) E dz}

ds. u-l 0 ]!
J=l

= ~ roo _U_(e-"AZ(1-U) _ l)Jp>{H! (s) E dz]
ds io u - 1

= _U_!(A(l - u))e-s!("A(1-U)). (3.5)
l-u

Theorem 3.1. The probability density q{ (t) = JP>{T! E dt}/dt solves the following equation:

j(),(l - B»q! (t) = -~q! (t).
dt

Proof. Because

k-l roo (A )m
j(),(l - B»q!(t) = j()..)q{ (t) - E10 e-AS ~! v(ds)qLm(t)

we can write, sinceqo(t) = 0, for t > 0,

00 00 k roo (AS)m
L uk j()..(l - B»q{(t) = j()..)(!3! (U, t) - L uk L 10 e-

AS~v(ds)qLm (t)
k=l k=l m=l

= j()..)(!3!(u,t) - t t(1OO

e-AS()..~~m V(dS») ukqLm (t)

m=l k=m

= j()..)(!3! (u, t) - (!3! (u, t)100

e-AS (eUAS
- l)v(ds)

= f(A(l - u»~! (u, t).
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From (3.5), we obtain
d

f()"'(1 - u»(!jf (u, t) = __(!jf (u, t),
dt

which completes the proof.

1037

(4.2)

4. Some particular cases

In this section we specialize the function f in order to analyze some particular cases of
Nf(t), t > 0.

4.1. The space-fractional Poisson process

If
as-a-l

v(ds) = ds, a E (0, 1),
r(1 - a)

we obtain the space-fractional Poisson process N" (t), t > 0, studied in Orsingher and Polito
(2012b). The distributions of jumps (1.1) and (1.2) specialize to

{

(_I)k+l)...a
---a(a - 1) ... (a - k + 1) dt + o(dt), k > 0,

JP>{Na[t, t + dt) = k} = k!

l-A-a dt + o(dt ), k=O,

(-I)k+lr(a + 1)
= A-a dt k > ° (4 1)k! rea + 1 - k) , .

since f (A-) = A-a. The distribution of N" can be written in three different ways as

Pk (t) = JID{Na (t) = k}

= (-1)k ~ (-AatY r(ar + 1)

k! f:o r! r(ar + 1 - k)

(-I)k 00 (-A-at)r
= --L (ar)(ar - 1) ... tar - k + 1)

k! r=O r!

= (-1)k ~e-tA.aUaI
k! duk u=1

and we note that the probabilities (4.1) can be obtained directly from (4.2).

Remark 4.1. In light of (4.2) the distribution of the space-fractional Poisson process has the
following alternative form:

-ACt!
a( ) e [k k-l 2]Pk t =~ Ck,k t + Ck-l,k t + ... + C2,k t + Cl,k t , (4.3)

where the coefficients Cj.k» j = 1, ... , k, can be computed by means of successive derivatives.
In particular, we have

k-2
a 2 2 n k(k - 1)

C2,k = (A- ) a (j - a) 2 '
j=l

k(k - 1)
Ck_l,k=ak-1(1-a) 2 (Aa)k-l,

k-l

Cl,k = aA-a n(j - a). (4.4)
j=1
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For a = 1 all the coefficients Cj,k, j = 1, ... , k - 1, are equal to 0 and from (4.3) we recover
the distribution of the homogeneous Poisson process. The coefficients (4.4) are sufficient to
obtain pj(t), 1 ~ j .s 4 as

e-Aar

P2(t) = -2-[(Aetat)2 + a(I - a)Aett],

-Aar

P3(t) = T[()"aat)3 + 3()"aat)2(l - a) + ()"aat)(l - a)(2 - a)],

_)...a r
P4(t) = e 4! [(a)"at)4 + 6()"aat)\1 - a) + 6(a)"at)2(l - a)(2 - a)

+ Aetat(l - a)(2 - a)(3 - a)].

Remark 4.2. In light of the independence of increments for the space-fractional Poisson
process, we have, for 0 ~ r ~ k and 0 ~ s ~ t,

where we used (4.3). Fora = 1, we obtain c.j , Ck-r,k-r, Ck,k t= Oandcj,r = Cn,k-r = CI,k = 0
for j < r, n < k - r, L < k and, thus, from (4.5) we recover the binomial distribution.

In the time interval [0, t] the instants of occurrences of the upward jumps are denoted byry, 1 ~ j ~ r, I j :::: 1, where r is the number of jumps in [0, t] and lj is the height of the jth
jump. We can write the following distribution for r ~ k:

]p{ n{rY E dtj} INa(t) = k}
1=1

k! (Aetr(a + l))r(_I)k+r nj=l dtj/ lj!r(a + 1 -lj)
=

L~=1 Cn,k t n

The distribution (4.6) can be evaluated by considering

for °< tl < ... < t; < t.

(4.6)

where to = °and tr+ l = t. Since the space-fractional Poisson process has independent
increments and in view of the transition probabilities (4.1), we arrive at (4.6). If Net (r) = k,
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and 1j = 1, for all j, we have

{
k 1 I a } k! (aA et)k k

JID n{rj Edtj} N (t)=k = k .ndtj
j=l Lj=l Cj,kt J j=l

1039

(4.7)

on the simplex S, = {t;,i = I, ... ,k:O < t} < t: < ... < tk < t}.Clearly,fora = 1,
from (4.7) we retrieve the uniform distribution on the set St. Since the coefficients Cj.k can
be calculated in some specific cases, the distribution can be written down explicitly for small
values of k. For example, for k = 2, we have

o< t} < ti < t,

o < tl < t.

4.2. Poisson process with a relativistic (tempered) stable subordinator

In the case where the Levy measure has the form

as-et-1e-Os
v(ds) = ds,

r(I - a)
() > 0, 0 < a < 1,

we obtain an extension of the space-fractional Poisson process. This new Poisson process has
the form Net,o(t) ~ N (Het,o (t)), where HCi,e is the relativistic or tempered stable subordinator.
Such a process is called relativistic since it appeared in the study of the stability of relativistic
matter (see Lieb (1990)). Prom (2.2), we obtain the PGP as

{1
00 -et-l -Os }

Get,e(u, t) = exp -t (1 _ e-A(l-u)S) as e ds
o I'(I - a)

= e-t{[8+)..(l-u)]a -Oa}

From (4.8) we extract the distribution of Net,e (r), t > 0, as

(4.8)

(-I)m AmeOat 00 (-t(A + O)et)k r(ak + 1)
JP>{Net,o(t) - m} - -- ,,---------

- - m! (O+A)m~ k! rCak+l-m)'
m ~ O. (4.9)
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For 0 = 0, (4.9) yields the distribution of the space-fractional Poisson process (see Orsingher
and Polito (2012b, Equation 1.2». An alternative form of (4.9) can be written as

IP'{Na,6(t ) = m} = (_l)m (_).,,_)m e()at d
m

e-tua«()+A)a I (4.10)
m! )." + 8 dum u=1

and can be derived either from (4.9) or from (2.4). From (4.10) (and also from (1.1», we have,
for m ~ 1,

lP'{Na ,()[t, t + dt) = m}

(_I)m+l ()."/()." + 8»m= (A+O)aa(a-I)···(a-m+I)dt (4.11)
m!

and this represents the distribution of the jumps during [t, t +dr). From (4.11) we see that high
jumps have less probability of occurring than in the space-fractional Poisson process.

Remark 4.3. We note that

IENa,() (t) = a)."Oa-1t, var[Na ,() (t)] = a)."Oa-2().,,(I - a) + 8)t, (4.12)

cov[Na,o (t)Na,o (s)] = a).,,8a-2().,,(1 - a) + 8)(s /\ t). (4.13)

From (4.12) and (4.13), it is apparent that in the space-fractional Poisson process (8 = 0) the
mean values diverge.

4.3. Poisson process with gamma subordinator

For the Levy measure
e-S

v(ds) = -ds, s > 0,
s

the distribution of the related Poisson process has a particularly simple and interesting form,
since it is the negative binomial. We note that the Bernstein function corresponding to the Levy
measure v(ds) = (e" Is) ds is

1
00 -s

f(x) = (1 - e-SX)~ ds = 10g(I + x).
o s

Therefore, the PGF (2.2) reduces to the form

Gr (u, t) = e-t1og(l+A.(l-u» = (1 + A(I - u»-t

and, thus, the intertime T between successive clusters of events has law

1
IP{T > t} = .

(1 + sv

(4.14)

Equation (4.14) is clearly the PGF of N f (t) g N(Hr (t», where H r is the gamma subordinator
with Laplace transform

Ee-J-LHf (t) = (1 + /.L)-t.

The distribution of N f (r), t > 0, can be extracted from (4.14).
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Proposition 4.1. The process N r (z), t > 0, has the following distribution:

(4.15)

k =0,

k ~ 1,

k ~ O.
- f(t)k! (A+ l)t+k'

{

Akt(t + 1)··· (t + k - 1) 1

lP'{Nr (t) = k} = 1 k! (A + l)t+k'

(1 +A)t'

Akr(k + t)

Proof The distribution of N(Hr(t», t > 0, is the negative binomial (see, for example,
Kozubowski and Podgorski (2009». Its PGF is

Gr (u, t) = (1 + A(1 - u»-t

(
A )-t= 1 - _u_ (1 +A)-t

l+A

-t~ rt-t + 1) ( AU)k
= (1 + A) L...J k! 1(-t + 1 - k) - 1+ A

k=O

00 k[Akr(t + k) 1 ]
= ~ u k! 1(t) (l + A)t+k .

Remark 4.4. The distribution (4.15) of N f (t) is written as

r Ak r(k+t) 1
lP'{N (t) = k} = (l + A)k+t 1(t) k! = 1ElP'{N(7) = k},

where '7 is gamma distributed with parameters (1, t) (that is the distribution of H f ) and N is
a homogeneous Poisson process with parameter A, independent from 7. Furthermore, (4.15)
can be regarded as an extension of the negative binomial 93 i , where

. r(i + k) . k
lP'{93' - k} - I

- - r(i)r(k + 1)P q

for i = t, P = 1/(1 + A), q = A/(l + A) (see also Kozubowski and Podgorski (2009».

Corollary 4.1. The distribution ofjumps in this case has the form

r

1
(_A_)k ~ dt k~l,

IP{N [t,t+dt)=k}= A+l k '

1-log(I+A)dt, k=O,

(4.16)

as can be inferred from (1.1) and also from (4.15). The jumps follow logarithmic distribution.

Remark 4.5. We observe that, for s < t, r ~ k,

JP>{Nf(s) _ r I Nr(t) _ k} _ (k) r(t) r(s + r)r(t - s + k - r)
- - - r f(t - s)f(s) r(k + t)

=(k)B(s+r,t-S+k-r). (4.17)
r B(s,t -s)

https://doi.org/10.1239/jap/1450802751 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802751


1042 E. ORSINGHER AND B. TOALDO

(4.19)

o < t} < ... < tk < t;

o< t] < t:

Furthermore, from (4.17) we can write, for 0 ~ r ~ k,

(
k)J'/ x s+r- I(1- x)t-s+k-r-l dx

JP>{N f (s) = r I N f (t) = k} = _0 _
r B(s, t - s)

= JE[(:)xr
(l - xv::l (4.18)

where X is an RV with beta distribution with parameters sand t - s, that is

x s-] (1 - x)t-s-l
JP>{X E dx} = dx.

B(s, t - s)

Equation (4.18) shows that in the gamma-Poisson process the conditional number of events at
time s < t is a randomized binomial if N(t) = k.

Remark 4.6. In view of (4.15), (4.16), and of the independence of the increments of the
gamma-Poisson process, we have

JID{ rltr?E dtj) I N f (t) = k} = k! I(t) n dtj
j=I r(t + k) j=l Ij

on the simplex 0 < tl < t: < ... < t, < t and L:}=l/j = k. Some special cases of (4.19)
are

(i) Ij = 1, for all j = 1, ... , r and, thus, r = k. In this case, we have

k k
JID{n{T) Edt]} I Nf(t)=k} = k!l(t) D dtj,

)=1 r(t + k) )=}

(ii) 11 = k and, thus, r = 1 (unique jump of height k). Here, we obtain

k r dtl k! r(t)
lP'{rl E dtl I N (t) = k) = T I(t + k) ,

(iii) k = 2m, I) = 2, for all j and, therefore, r = m. We have

{
m I } (2)' r () m

JP> n{rJEdtj} N r(t)=2m = m. t Ddt)
)=1 2m

r (t + 2m) j=1

for 0 < tl < ... < tm < t.

Remark 4.7. From (4.14) we obtain the rth factorial moment of N r (t), t > 0, as

lE[NJ (t)(N J (t) - 1) ... (N J (t) - r + 1)] = )./ t(t + 1) ... (t + r - 1).

When lENJ (t) = At, the variance becomes var N J (t) = At (A+ 1) and

cov[Nr (t), N f (s)] = A(A + 1)(s /\ t).

Furthermore, we have

[i t J ] A(A + l)t 3
var N (s) ds = .

o 3
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Remark 4.8. We can also write the following conditional mean values:

1043

IE[Nr (s ) I Nr(t) = k] = ks, 0 < s < t,
t

lE[Nr (s)N r (w) I N r (t) = k]

= ks +k(k _1)s(s + 1) +k(k _1)s(w -s) forO < s < W < t,
t t(t + 1) t(t + 1)

cov[Nr (s), N r (w) I N r (t) = k] = k (1 + ~) min(s, w) min(t - s, 1 - w). (4.20)
t (t + 1) t

As a special case, from (4.20) we extract the conditional variance as

var[Nr(s) I Nr(t) = k] = sk(t - s) (1 + ~),
t(t + 1) t

and from (4.8),

o < s < t ,

lE[(Nr (s»2 I N r (t) = k] = ~k + k(k _ 1)(~) s + 1.
t t t + 1

As a check, we observe that

var N r (s) = lE[var[Nr (s) I N r «m + var[lE[N r (s) I N r (t)]]

stt - s) S(1 - s) s2
= lENr (t) + 2 lE(N r (t»2 + 2: var N r (t)

t(t + 1) t (t + 1) t

(s)t - s ( s ) t - s s2= - --At+ '2 --(A(A+l)t+A2t2)+2"A(A+l)1
t t+l t t+l t

= A(A + l)s.

Remark 4.9. We consider here the distribution of Nf (t) - Nf (t), t > 0, where NJ, j = 1,2,
are independent gamma-Poisson processes. This leads to a generalization of the Skellam law
of the difference of independent homogeneous Poisson processes. We have

IP'{Nf(t) - Nf(t) = r}

00 Akr(k + t)Ak+rr(k + r + t)

=~ (1 + A)k+tf(t)k! (l + A)k+r+t(k + r)! f(t)

1 00 J....2k+r loo loo= "" dw dze-w-zwk+t-Izk+r+t-l
(1 + A)2tr2(t) ~ (1 + A)2k+rk! (k + r)! 0 0

I 1001 00
d d -w-z t-(r/2)-1 (r/2)+t-1 L:oo

«All + A)Jwz)2k+r= w ze w z
(1 + A)2tr 2(t ) 0 0 k=O k! (k + r)!

= 1 roo roo e-w- zw t- (rj 2)- l z (r/2)+t- l I (2J....-Jiiii)
(1 + J....) 2t r2(t ) io io r 1 + J....

100100 (uy)t-l du dy= lP{NU(l) - N Y(I) = r}e-(U+Y/A) _
o 0 1 2 A2tr 2(t )

= lEIP'{Nf(1) - NJ (1) = r},
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where U and Y are independent gamma RVs with parameters 1 and t, and Io(x) is a Bessel
function. For the reader's convenience, we recall that the Skellam distribution reads

r E Z,

for independent Poisson processes Nt, Nf, with rate Aand {3, respectively.
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