ZEROS OF LINEAR COMBINATIONS OF POLYNOMIALS

BY
Q. I. RAHMAN

The following theorem is due to J. L. Walsh (see [2, Theorem 17, 2a]):
Theorem. If all the zeros of $f_{1}(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$ lie in or on the circle C_{1} with centre c_{1} and radius r_{1} and if all the zeros of $f_{2}(z)=z^{n}+b_{1} z^{n-1}+\cdots+b_{n}$ lie in or on the circle C_{2} with centre c_{2} and radius r_{2}, then each zero of the polynomial

$$
h(z)=f_{1}(z)-\lambda f_{2}(z), \quad \lambda \neq 1
$$

lies in at least one of the circles Γ_{k} with centre γ_{k} and radius ρ_{k}, where

$$
\gamma_{k}=\left(c_{1}-\omega_{k} c_{2}\right) /\left(1-\omega_{k}\right), \quad \rho_{k}=\left(r_{1}+\left|\omega_{k}\right| r_{2}\right) / / 1-\omega_{k} \mid
$$

and where the $\omega_{k}(k=1,2, \ldots, n)$ are the nth roots of λ.
As a very special case of this theorem we have:
Corollary. For $j=1,2$, let

$$
f_{j}(z)=z^{n}+a_{1, j} z^{n-1}+a_{2, j} z^{n-2}+\cdots+a_{n, j}
$$

be a polynomial of degree n having all its zeros in $|z| \leq 1$. If $\left|\arg \lambda_{j}\right| \leq \beta<\pi / 2, j=1,2$, then the linear combination $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ has all its zeros in

$$
|z| \leq \frac{\left|\lambda_{1}\right|^{1 / n}+\left|\lambda_{2}\right|^{1 / n}}{\left(\left|\lambda_{1}\right|^{2 / n}+\left|\lambda_{2}\right|^{2 / n}-2\left|\lambda_{1} \lambda_{2}\right|^{1 / n} \cos [(\pi-2 \beta) / n]\right)^{1 / 2}} .
$$

Hence for every choice of numbers λ_{1}, λ_{2} such that $\left|\arg \lambda_{j}\right| \leq \beta<\pi / 2, j=1,2$ the polynomial $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ has all its zeros in

$$
\begin{equation*}
|z| \leq \operatorname{cosec} \frac{\pi-2 \beta}{2 n} \tag{1}
\end{equation*}
$$

The number $\operatorname{cosec}(\pi-2 \beta) / 2 n$ in (1) cannot be replaced by anything smaller. In fact, if

$$
f_{1}(z)=\left\{z+i \exp \left(i \frac{\pi-2 \beta}{2 n}\right)\right\}^{n}, \quad f_{2}(z)=\left\{z-i \exp \left(-i \frac{\pi-2 \beta}{2 n}\right)\right\}^{n},
$$

and $\lambda_{2}=\lambda_{1} e^{-2 i \beta}$ then $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ vanishes for $z=\operatorname{cosec}[(\pi-2 \beta) / 2 n]$.
We prove:
Theorem 1. For $j=1,2, \ldots, m$, let

$$
f_{j}(z)=z^{n}+a_{1, z^{n-1}}+a_{2, z^{n}} z^{n-2}+\cdots+a_{n, j}
$$

be a polynomial of degree n having all its zeros in $|z| \leq 1$. If $\left|\arg \lambda_{j}\right| \leq \beta<\pi / 2, j=1$, $2, \ldots, m$, then the linear combination

$$
\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)+\cdots+\lambda_{m} f_{m}(z)
$$

has all its zeros in $|z| \leq \operatorname{cosec}[(\pi-2 \beta) / 2 n]$.
We also prove:
Theorem 2. If the polynomials

$$
\begin{aligned}
& f_{1}(z)=z^{n}+a_{1,1} z^{n-1}+a_{2,1} z^{n-2}+\cdots+a_{n, 1} \\
& f_{2}(z)=z^{n}+a_{1,2} z^{n-1}+a_{2,2} z^{n-2}+\cdots+a_{k, 2} z^{n-k}
\end{aligned}
$$

have all their zeros in $|z| \leq 1$, and $\left|\arg \lambda_{j}\right| \leq \beta<\pi / 2, j=1,2$, then the linear combination $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ has all its zeros in

$$
\begin{equation*}
|z| \leq \operatorname{cosec} \frac{\pi-2 \beta}{n+k} \tag{2}
\end{equation*}
$$

The number $\operatorname{cosec}[(\pi-2 \beta) /(n+k)]$ in (2) cannot be replaced by anything smaller. In fact, if

$$
f_{1}(z)=\left\{z+i \exp \left(i \frac{\pi-2 \beta}{n+k}\right)\right\}^{n}, \quad f_{2}(z)=z^{n-k}\left\{z-i \exp \left(-i \frac{\pi-2 \beta}{n+k}\right)\right\}^{k}
$$

and

$$
\lambda_{2}=\lambda_{1}\left(\cos \frac{\pi-2 \beta}{n+k}\right)^{n-k} e^{-2 i \beta}
$$

then $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ vanishes for $z=\operatorname{cosec}[(\pi-2 \beta) /(n+k)]$.

Proof of Theorem 1. For $j=1,2, \ldots, m$, all the zeros of the polynomial

$$
g_{j}(z)=z^{n} f_{j}(1 / z)=1+a_{1, j} z+a_{2, j} z^{2}+\cdots+a_{n, j} z^{n}
$$

lie in the circular region $|z| \geq 1$. According to a result of Dieudonné $[1, \mathrm{p} .7]$ there exists a function $\phi_{j}(z)$ holomorphic and of modulus at most 1 in $|z|<1$ such that

$$
\begin{equation*}
g_{j}(z)=\left\{1-z \phi_{j}(z)\right\}^{n} \tag{3}
\end{equation*}
$$

For any given z in the disk $|z|<\sin [(\pi-2 \beta) / 2 n]$, the point $1-z \phi_{j}(z)$ lies in the disk $|z-1|<\sin [(\pi-2 \beta) / 2 n]$ and hence in the sector

$$
-\frac{\pi-2 \beta}{2 n}<\theta<\frac{\pi-2 \beta}{2 n}
$$

It follows that each of the functions $g_{f}(z)$ maps the disk $|z|<\sin [(\pi-2 \beta) / 2 n]$ into the sector $-(\pi-2 \beta) / 2<\theta<(\pi-2 \beta) / 2$. Thus, if $\left|\arg \lambda_{j}\right| \leq \beta$, then

$$
\operatorname{Re} \lambda_{j} g_{j}(z)>0, \quad j=1,2, \ldots, m
$$

for $|z|<\sin [(\pi-2 \beta) / 2 n]$. Hence

$$
\operatorname{Re} \sum_{j=1}^{m} \lambda_{j} g_{j}(z)>0
$$

if $|z|<\sin [(\pi-2 \beta) / 2 n]$ and $\left|\arg \lambda_{j}\right| \leq \beta, j=1,2, \ldots, m$. This proves that

$$
G(z)=\lambda_{1} g_{1}(z)+\lambda_{2} g_{2}(z)+\cdots+\lambda_{m} g_{m}(z)
$$

does not vanish in $|z|<\sin [(\pi-2 \beta) / 2 n]$ and so

$$
f(z)=z^{n} G(1 / z)=\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)+\cdots+\lambda_{m} f_{m}(z)
$$

has all its zeros in $|z| \leq \operatorname{cosec}[(\pi-2 \beta) / 2 n]$.
Proof of Theorem 2. Consider $g_{1}(z)=z^{n} f_{1}(1 / z)$ which is a polynomial of degree n and $g_{2}(z)=z^{n} f_{2}(1 / z)$ which is a polynomial of degree k. The zeros of $g_{1}(z), g_{2}(z)$ lie in $|z| \geq 1$. Hence according to Dieudonné's result mentioned above

$$
g_{1}(z)=\left\{1-z \phi_{1}(z)\right\}^{n}, \quad g_{2}(z)=\left\{1-z \phi_{2}(z)\right\}^{k}
$$

where the functions $\phi_{1}(z), \phi_{2}(z)$ are holomorphic and of modulus at most 1 in $|z|<1$. For any given z in $|z|<\sin [(\pi-2 \beta) /(n+k)]$ the point $1-z \phi_{1}(z)$ lies in the disk $|z-1|<\sin [(\pi-2 \beta) /(n+k)]$ and hence in the sector

$$
-\frac{\pi-2 \beta}{n+k}<\theta<\frac{\pi-2 \beta}{n+k}
$$

Consequently, $\left\{1-z \phi_{1}(z)\right\}^{n}$ is a point of the sector

$$
-\frac{n(\pi-2 \beta)}{n+k}<\theta<\frac{n(\pi-2 \beta)}{n+k}
$$

For the same reason $\left\{1-z \phi_{2}(z)\right\}^{k}$ is a point of the sector

$$
-\frac{k(\pi-2 \beta)}{n+k}<\theta<\frac{k(\pi-2 \beta)}{n+k}
$$

It follows that if $\left|\arg \lambda_{j}\right| \leq \beta, j=1,2$, then for a given z in $|z|<\sin [(\pi-2 \beta) /(n+k)]$, the two points $\lambda_{1} g_{1}(z), \lambda_{2} g_{2}(z)$ simultaneously belong to at least one of the half planes

$$
-\frac{n(\pi-2 \beta)}{n+k}-\beta<\theta<\frac{k(\pi-2 \beta)}{n+k}+\beta, \quad-\frac{k(\pi-2 \beta)}{n+k}-\beta<\theta<\frac{n(\pi-2 \beta)}{n+k}+\beta .
$$

Hence if $\left|\arg \lambda_{j}\right| \leq \beta, j=1,2$, then $\lambda_{1} g_{1}(z)+\lambda_{2} g_{2}(z)$ does not vanish in $|z|$ $<\sin [(\pi-2 \beta) /(n+k)]$, i.e. $\lambda_{1} f_{1}(z)+\lambda_{2} f_{2}(z)$ has all its zeros in

$$
|z| \leq \operatorname{cosec}[(\pi-2 \beta) /(n+k)] .
$$

References

1. J. Dieudonné, Sur quelques propriétés des polynômes, Actualités Sci. Indust. No. 114, Hermann, Paris, 1934.
2. M. Marden, Geometry of polynomials, Math. Surveys No. 3, Amer. Math. Soc., Providence, R.I., 1966.

Université de Montréal, Montréal, Québec

