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ZEROS OF LINEAR COMBINATIONS OF POLYNOMIALS 
BY 

Q. I. RAHMAN 

The following theorem is due to J. L. Walsh (see [2, Theorem 17, 2a]): 

THEOREM. If all the zeros off1(z)=zn+a1z
n~1-\ Yan lie in or on the circle C1 

with centre cx and radius rx and if all the zeros off2(z)=zn+bxz
n ~1-\ Ybnlie in or 

on the circle C2 with centre c2 and radius r2, then each zero of the polynomial 

/*(z)=/i(z)-A/2(z), A * l , 

lies in at least one of the circles Yk with centre yk and radius pk9 where 

Yk = fci-^2)/(l -a>k), Pk = (rx + \œk\ r2)j\ \-a)k\ 

and where the œk (k= 1, 2 , . . . , n) are the nth roots ofX. 

As a very special case of this theorem we have: 

COROLLARY. Forj=l, 2, let 

f(z) = zn+alfjz
n"1+a2tJz

n-2+ . •. +an,f 

be a polynomial of degree n having all its zeros in \z\ < 1. 7/"|arg Ay| <£< 77/2,7 = 1> 2, 
then the linear combination A1/1(z) + A2/2(z) has all its zeros in 

\ \ | l / n _ | U \Vn 

|Z| " (|A1|
a'»+ |A2|

2^~2|A1A2|
1^cos [(n-lft/n])1'2' 

Hence for every choice of numbers Xl9 A2 such that |arg Ay|<j8<7r/2, y=l , 2 the 
polynomial A1/1(z) -f A2/2(z) has all its zeros in 

(1) |z| < cosec - 2 ^ . 

The number cosec (77—2£)/2« in (1) cannot be replaced by anything smaller. 
In fact, if 

/i(z) = |z+/exp {i^^jj ' /2GO = | ^ - / e x p J ~ / ^ I - 5 j | , 

and A2=A1 e~2f/* then A1/1(z) + A2/2(z) vanishes for z=cosec [(TT~2J8)/2«]. 

We prove: 

THEOREM 1. For7= 1, 2 , . . . , m, let 

/,(z) = zn+aljz
n'1+a2tjz

n'2+•.. +0,,,, 
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be a polynomial of degree n having all its zeros in |z| < 1. If |arg Ay| <jS<7r/2,7=1, 
2 , . . . , m, /Ae/i /Ae /oieflr combination 

Kfl(z) + *2f2(z)+--'+Kfm(z) 

has all its zeros in \z\ < cosec [(ir—2fl)/2ri\. 

We also prove: 

THEOREM 2. If the polynomials 

/X(Z) = Zn + flif i ^ - H f l a . ! ^ " ^ ' • ' +On.l, 

f2(z) = zn+alt2z
n~1+a2t2z

n-2+ • • • +afc,2zn-fc, 

toe all their zeros in \z\ < 1, ««J |arg A,| <P<ir/29j= 1, 2, /few f/ie linear combina
tion A1/1(z) + A2/2(z) Aos all its zeros in 

^ - 2 0 
(2) |z| < cosec 

«+£ 
The number cosec [(*•—2j8)/(/i+fc)] in (2) cannot be replaced by anything smaller. 

In fact, if 

m = {*+/«* (/^D}B. /•(*) = *•-*{*-/«* (-/^|)} f c . 
and 

A2 = A l ( C 0 S ^ | ) n - % - 2 , 

then A1/1(z) + A2/2(z) vanishes for z=cosec [(TT—2p)/(n+k)]. 

Proof of Theorem 1. For 7= 1, 2 , . . . , m, all the zeros of the polynomial 

gj(z) = zn//l/z) = l+altjz+a2tjz
2+ • •. +an,yzn 

lie in the circular region \z\ > 1. According to a result of Dieudonné [1, p. 7] there 
exists a function <£;(z) holomorphic and of modulus at most 1 in \z\ < 1 such that 

(3) ^(z) = {l -z^ . (z) r . 

For any given z in the disk \z\ < sin [ (TT-2#)/2«] , the point 1 —z<f>fe) lies in the disk 
|z —1 | <sin [(TT—2J8)/2«] and hence in the sector 

It follows that each of the functions g/z) maps the disk \z\ <sin [(TT-2/?)/2«] into 
the sector -0r-2jS)/2< 0<Or-2j8)/2. Thus, if |arg Ay| <ft then 

ReAyg,(z) > 0, 7 = 1,2, . . . , m 
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for \z\ <sin [(TT-2J8)/2«]. Hence 

m 

Re 2 A,a(z) > 0 

if |z| <sin [(TT-2J8)/2«] and |arg Ay| <j8,y= 1,2,..., w. This proves that 

G(z) = *igi(z) + \2g2(z)+ • • • +Am#m(z) 

does not vanish in \z\ <sin [(77—2f!)/2n] and so 

/(z) = z"G(l/z) = A1/1(z) + A2/2(z)+ . . . + Am/m(z) 

has all its zeros in \z\ <cosec [(ir—2ft)/2ri\. 

Proof of Theorem 2. Consider g±(z)=zn/x(l/z) which is a polynomial of degree n 
and g2(z)=zy2(l/z) which is a polynomial of degree k. The zeros of gi(z), g2(z) lie 
in |z| > 1. Hence according to Dieudonné's result mentioned above 

gl(z) = {1 -zMz)}", **(*) = {1 -zMz)}\ 

where the functions <£i(z)> <f>2{z) are holomorphic and of modulus at most 1 in 
\z\ < 1. For any given z in \z\ <sin [0-2/?)/(w+fc)] the point 1 - ^ ( z ) lies in the 
disk |z—1| <sin [(IT—2fï)/(n+k)] and hence in the sector 

*-ff ^ e ^ "-W 
n+k n+k 

Consequently, {l-z<j>1{z)}n is a point of the sector 

wQr-20) < e < wQr-2/8) 

For the same reason {1 -z<j>2(z)}k is a point of the sector 

n+k n+k 

It follows that if |arg A,| <j8,y= 1, 2, then for a given z in \z\ < sin [(n—2f$)l{n+k)], 
the two points A1g1(z), A2g2(z) simultaneously belong to at least one of the half 
planes 

n+k r n+k r n+k r n+k r 

Hence if |arg Ay|</?, j=l, 2, then Kgi{z) + X2g2(z) does not vanish in \z\ 
<sin [(7T-2fS)/(n+k)]9 i.e. A1/1(z) + A2/2(z) has all its zeros in 

\z\ < cosec U?r-2p)/(n+k)]. 
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