
Canad. Math. Bull. Vol. 61 (2), 2018 pp. 240–251
http://dx.doi.org/10.4153/CMB-2017-014-2
©Canadian Mathematical Society 2017

Hölder Continuous Solutions of
Degenerate Differential Equations with
Finite Delay

Shangquan Bu and Gang Cai

Abstract. Using known operator-valued Fourier multiplier results on vector-valued Hölder con-
tinuous function spaces Cα(R; X), we completely characterize the Cα-well-posedness of the ûrst
order degenerate diòerential equations with ûnite delay (Mu)′(t) = Au(t) + Fut + f (t) for t ∈ R
by the boundedness of the (M, F)-resolvent of A under suitable assumption on the delay operator
F, where A,M are closed linear operators on a Banach space X satisfying D(A)∩D(M) /= {0}, the
delay operator F is a bounded linear operator from C([−r, 0]; X) to X, and r > 0 is ûxed.

1 Introduction

In this paper,we study theCα-well-posedness of the ûrst order degenerate diòerential
equations with ûnite delay

(P) ∶ (Mu)′(t) = Au(t) + Fut + f (t), (t ∈ R),

where A∶D(A) → X and M∶D(M) → X are closed linear operators on a complex
Banach space X satisfying D(A) ∩ D(M) /= {0}, 0 < α < 1, F is a bounded linear
operator from C([−r, 0];X) into X for some ûxed r > 0, and ut is deûned by ut(s) =
u(t + s) when t ∈ R and s ∈ [−r, 0]. _e typical model of (P) is the case when A is
the Laplacian and M is themultiplication operator by a non-negative function m on
an appropriate function space deûned on a bounded domain Ω ⊂ Rn , whichwas ûrst
considered by Carroll and Showalter [6], and was later studied by Marinoschi [10].
_is model describes the ûltration of water in unsaturated porous media in which
saturation might occur.

Using known Ċα-Fouriermultiplier results byArendt, Batty and Bu [1],we are able
to characterize the Cα-well-posedness of (P) by the boundedness of the (M , F)-re-
solvent of Awhen 0 < α < 1. Precisely, we show that, under suitable assumption (H2)
on the delay operator F, the problem (P) isCα-well-posed if and only if iR ⊂ ρM ,F(A)
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and

sup
s∈R

∥(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥A(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥ sM(isM − A− Fi s)−1∥ <∞,

(see _eorem 2.3), where Fi s ∈ L(X) is deûned by Fi sx ∶= F(e i s⋅x) when x ∈ X
and s ∈ R, ρM ,F(A) is the (M , F)-resolvent of A (see the precise deûnition in the next
section). Since this characterization of theCα-well-posedness of (P) does not depend
on the space parameter 0 < α < 1,we deduce thatwhen (P) isCα-well-posed for some
0 < α < 1, then it is Cα-well-posed for all 0 < α < 1 (see Corollary 2.4). We also show
thatwhen the underlyingBanach space X is B-convex, then the same characterization
of the Cα-well-posedness of (P) remains true under a weaker assumption (H1) on F
(see Corollary 2.5).

When F = 0, the corresponding degenerate problems (P) have been studied inde-
pendently by Bu [4] and Ponce [12] (Ponce has studied the corresponding problems
in the case D(A) ∩ D(M) /= {0}, while Bu has considered the same problems in the
simpler case D(A) ⊂ D(M)), and in the case when F = 0 and M = IX , the corre-
sponding problems (P) have been treated by Arendt, Batty, and Bu [1]. Our results
concerning the Cα-well-posedness of (P) can be regarded as generalization of known
results obtained in [1,4, 12].

We notice that similar ûrst order degenerate diòerential equationswith ûnite delay

(Pper) ∶ (Mu)′(t) = Au(t) + Fut + f (t), (t ∈ [0, 2π])
with periodic boundary condition Mu(0) = Mu(2π) were studied by Bu [5], under
suitable assumption on F, he gave necessary and suõcient conditions for (Pper) to be
Lp-well-posed. _e simpler case of (Pper) when F = 0 was ûrst studied by Lizama
and Ponce [8] (see also [9] for the study of a similar degenerate equation with inû-
nite delay). See [7] for amore detailed study of linear abstract degenerate diòerential
equations.

_is paper is organized as follows. In the next section we give some preliminaries
and necessary and suõcient conditions for theCα-well-posedness of (P). In the third
section, we give some concrete examples towhich our abstract results can be applied.

2 Characterizations of the Cα-Well-Posedness

Let X be a complex Banach space with norm ∥ ⋅ ∥ and let 0 < α < 1. We denote by
Cα(R;X) the space of all X-valued functions u deûned on R satisfying

∥u∥α ∶= sup
s/=t

∥u(s) − u(t)∥
∣s − t∣α <∞.

Deûne
∥u∥Cα ∶= ∥u(0)∥ + ∥u∥α .

_en Cα(R, X) equipped with norm ∥ ⋅ ∥Cα becomes a Banach space. In order to
deûne Fourier multipliers on Cα(R, X), it is necessary to operate modulo constant
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functions. _e kernel of the seminorm ∥ ⋅ ∥α on Cα(R;X) is the space of all constant
functions. _e corresponding quotient space Ċα(R;X) is a Banach space under the
quotient norm. We will frequently identify a function u ∈ Cα(R;X) with its equiva-
lent class in Ċα(R;X), that is,

u̇ ∶= {v ∈ Cα(R;X) ∶ u − v ≡ constant} .

If X, Y are Banach spaces, we let L(X ,Y) be the space of all bounded linear op-
erators from X to Y . If X = Y , we will simply denote it by L(X). _e notion of
Ċα-Fourier multiplier was introduced in [1], which is crucial for our investigation on
the Cα-well-posedness of (P).

Deûnition 2.1 Let X ,Y be complex Banach spaces, m∶R ∖ {0} → L(X ,Y) be
continuous. We say that m is a Ċα-Fourier multiplier if there exists a mapping
L∶ Ċα(R;X)→ Ċα(R;Y) such that

(2.1) ∫
R
Fφ(s)(L f )(s) ds = ∫

R
F(φm)(s) f (s) ds

for all f ∈ Cα(R;X) and all φ ∈ D(R ∖ {0}), where D(R ∖ {0}) is the space of
all C∞-functions on R ∖ {0} with compact support containing in R ∖ {0}, F is the
Fourier transform given by

(Fh)(s) ∶= ∫
R
h(t)e−i st dt, (s ∈ R)

when h ∈ L1(R, X).

By [1, Lemma 5.1], the right-hand side of (2.1) does not depend on the represen-
tative of ḟ as ∫R F(φm)(s)ds = 2π(φm)(0) = 0. Moreover, identity (2.1) deûnes
L f ∈ Cα(R;X) uniquely up to an additive constant by [1, Lemma 5.1].

We will use the following result due to Arendt, Batty, and Bu [1], which gives a
suõcient condition for a C2-function M∶R ∖ {0} → L(X ,Y) to be a Ċα-Fourier
multiplier.

_eorem 2.2 Let X ,Y be Banach spaces and let m∶R ∖ {0} → L(X ,Y) be a C2-
function satisfying

(2.2) sup
s/=0

(∥m(s)∥ + ∥ sm′(s)∥ + ∥ s2m′′(s)∥) <∞.

_en m is a Ċα-Fourier multiplier. If X ,Y are B-convex, then the ûrst order condition

(2.3) sup
s/=0

(∥m(s)∥ + ∥ sm′(s)∥) <∞

is already suõcient for m to be a Ċα-Fourier multiplier.

Recall that a Banach space X is B-convex if it does not contain l n1 uniformly [11].
_is is equivalent to saying that X has Fourier type 1 < p ≤ 2; i.e., the Fourier trans-
form F is a bounded linear operator from Lp(R;X) to Lq(R;X), where 1/p + 1/q = 1
[3]. It is well known that when 1 < p <∞, Lp(µ) has Fourier typemin{p, p

p−1}. Each
Hilbert space has Fourier type 2.
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Let u ∈ L1
loc(R;X). We say that u is of subexponential growth if for all є > 0,

∫
∞

−∞
e−є∣t∣∥u(t)∥ dt <∞.

For such function u, we deûne its Carleman transform on C ∖ iR by

û(λ) ∶=
⎧⎪⎪⎨⎪⎪⎩
∫
∞

0 e−λtu(t) dt, Reλ > 0,
− ∫

∞

0 eλtu(−t) dt, Reλ < 0,

[2, p. 292]. _en û is a holomorphic function onC∖ iR. A point iη ∈ iR is called reg-
ular for û, if û has a holomorphic extension to a neighbourhood of iη. _e Carleman
spectrum spC(u) of u is deûned by

spC(u) ∶= {η ∈ R ∶ iη is not regular for û} .

It is known that if spC(u) = ∅, then u = 0 [2].
Let 0 < α < 1; we denote by C1+α(R;X) the space of all X-valued functions u

deûned on R, such that u ∈ C1(R;X) and u′ ∈ Cα(R;X). _e space C1+α(R;X) is
equipped with the norm

∥u∥C 1+α(R;X) ∶= ∥u(0)∥ + ∥u′∥α ,
and it is a Banach space.

Let A∶D(A) → X and M∶D(M) → X be closed linear operators on X satisfy-
ing D(A) ∩ D(M) /= {0}, F ∈ L(C([−r, 0];X), X) for some ûxed r > 0, where
C([−r, 0];X) is the Banach space of all X-valued continuous functions deûned on
[−r, 0] equipped with the norm

∥u∥ ∶= max
−r≤s≤0

∥u(s)∥ .

We consider the ûrst order degenerate diòerential equations with ûnite delay

(P) ∶ (Mu)′(t) = Au(t) + Fut + f (t), (t ∈ R),
where ut is deûned by ut(s) = u(t + s) for t ∈ R and s ∈ [−r, 0]. If 0 < α < 1,
we say that (P) is Cα-well-posed, if for all f ∈ Cα(R;X), there exists a unique u ∈
Cα(R;D(A) ∩ D(M)), such that Mu ∈ C1+α(R;X) and (P) is satisûed for all t ∈ R.
Here we consider D(A) ∩ D(M) as a Banach space equipped with the norm

∥x∥D(A)∩D(M) ∶= ∥x∥ + ∥Ax∥ + ∥Mx∥.

We notice that Fu⋅ ∈ Cα(R;X) when u ∈ Cα(R;X). Indeed, for all s, t ∈ R,
∥Fus − Fut∥ ≤ ∥F∥∥us − ut∥C([−r ,0];X) ≤ ∥F∥∥u∥α ∣s − t∣α .

For ûxed z ∈ C, we deûne
Fz(x) ∶= F(ez⋅x)

when x ∈ X. It is clear that Fz is a bounded linear operator on X.
Let ϕs ,1(t) = ite ist and ϕs ,2(t) = −t2e ist when s ∈ R and t ∈ [−r, 0]. _en it is easy

to show that

( d
ds
Fi s)x = F(ϕs ,1x), ( d

2

ds2
Fi s)x = F(ϕs ,2x).
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_us,

(2.4) sup
s∈R

∥ d
ds
Fi s∥ <∞, sup

s∈R
∥ d

2

ds2
Fi s∥ <∞.

We say that F satisûes (H1) if

sup
s∈R

∥ s d
ds
Fi s∥ <∞.

We say that F satisûes (H2) if F satisûes (H1) and

sup
s∈R

∥ s2 d
2

ds2
Fi s∥ <∞.

We deûne the (M , F)-resolvent of A by

ρM ,F(A) ∶= { z ∈ C ∶ zM − A− Fz ∶ D(A) ∩ D(M)→ X is a bijection and

(zM − A− Fz)−1 ∈ L(X)} .

Let z ∈ ρM(A). _en (zM − A − Fz)−1 ∈ L(X) is a bijection from X onto D(A)
by deûnition. _e operators M(zM − A− Fz)−1 , A(zM − A− Fz)−1 make sense, and
they belong to L(X) by the Closed Graph _eorem and the closedness of M and A.

_e following is themain result of this paper,which gives a necessary and suõcient
condition for (P) to be Cα-well-posed.

_eorem 2.3 Let X be a complex Banach space, 0 < α < 1 and let A,M be closed
linear operators on X satisfying D(A) ∩ D(M) /= {0}, F ∈ L(C([−r, 0];X), X) for
some ûxed r > 0, we assume that F satisûes (H2). _en (P) is Cα-well-posed if and
only if iR ⊂ ρM ,F(A), and

sup
s∈R

∥(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥A(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥ sM(isM − A− Fi s)−1∥ <∞.

Proof Assume that iR ⊂ ρM ,F(A), sups∈R ∥m(s)∥ < ∞, sups∈R ∥Am(s)∥ < ∞, and
sups∈R ∥sMm(s)∥ <∞, where m(s) ∶= (isM − A− Fi s)−1 when s ∈ R. Let

g(s) = Mm(s), h(s) = isMm(s)

when s ∈ R. _en h is uniformly bounded on R by assumption. Consequently,

sup
s∈R

∥g(s)∥ <∞

by continuity. We have

(2.5) sup
s∈R

∥m(s)∥ <∞, sup
s∈R

∥Am(s)∥ <∞
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by assumption. For s ∈ R,

m′(s) = m(s)( d
ds
Fi s − iM)m(s)

and

m′′(s) = 2m(s)( d
dt
Fi s − iM)m(s)( d

ds
Fi s − iM)m(s) +m(s) d

2

ds2
Fi sm(s)

by [4, Lemma 1]. _is implies that

sup
s∈R

∥ sm′(s)∥ <∞, sup
s∈R

∥ sAm′(s)∥ <∞,

sup
s∈R

∥ s2m′′(s)∥ <∞, sup
s∈R

∥ s2Am′′(s)∥ <∞

by (2.4), (2.5) and the assumption (H2) on F. _ese estimations together with (2.5)
imply that m considered as a functionwith values inL(X ,D(A)) satisûes (2.2). Here
we consider D(A) as a Banach space equipped with its graph norm. _us, m is
a Ċα-Fourier multiplier by _eorem 2.2. In particular, Am is a Ċα-Fourier multi-
plier. A similar argument shows that, considering m as a function with values in
L(X ,D(M)), m is also a Ċα-Fourier multiplier. Consequently, considering m as a
function with values in L(X ,D(A) ∩ D(M)), m is also a Ċα-Fourier multiplier. In
particular, Mm is a Ċα-Fourier multiplier.

Next we show that h is also a Ċα-Fourier multiplier. We have

h′(s) = iMm(s) + isMm(s)( d
ds
Fi s − iM)m(s),

h′′(s) = 2iMm(s)( d
ds
Fi s − iM)m(s)

+ 2isMm(s)( d
ds
Fi s − iM)m(s)( d

ds
Fi s − iM)m(s)

+ isMm(s) d
2

ds2
Fi sm(s).

We deduce that h satisûes (2.2) by (2.5) and the assumption (H2) on F. Hence, h
is a Ċα-Fourier multiplier by _eorem 2.2. Using the identity isMm(s) − Am(s) −
Fi sm(s) = IX , one deduces that Fi⋅m is a Ċα-Fourier multiplier.

Let f ∈ Cα(R;X). _en there existu ∈ Cα(R;D(A)∩D(M)) and v ,w ∈ Cα(R;X),
such that

∫
R
Fϕ1(s)u(s) ds = ∫

R
F(ϕ1m)(s) f (s) ds,(2.6)

∫
R
Fϕ2(s)v(s) ds = ∫

R
F(ϕ2h)(s) f (s) ds,(2.7)

∫
R
Fϕ3(s)w(s) ds = ∫

R
F(ϕ3Fi⋅m)(s) f (s) ds
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for all ϕ1 , ϕ2 , ϕ3 ∈ D(R ∖ {0}). Using the closedness of A and M, we deduce from
(2.6) that

∫
R
Fϕ1(s)Au(s) ds = ∫

R
F(ϕ1Am)(s) f (s) ds,(2.8)

∫
R
Fϕ1(s)Mu(s) ds = ∫

R
F(ϕ1Mm)(s) f (s) ds(2.9)

for all ϕ1 ∈D(R∖ {0}). Letting ϕ1 = id ⋅ ϕ2 in (2.9), where id(s) ∶= is when s ∈ R, we
obtain

∫
R
F(id ⋅ ϕ2)(s)Mu(s) ds = ∫

R
F(ϕ2h)(s) f (s) ds

for all ϕ2 ∈D(R ∖ {0}). _is equality together with (2.7) implies that

∫
R
F(id ⋅ ϕ2)(s)Mu(s) ds = ∫

R
Fϕ2(s)v(s) ds

for all ϕ2 ∈ D(R ∖ {0}). _us, Mu ∈ C1+α(R;X) and (Mu)′ = v + x for some x ∈ X
by [1, Lemma 6.2].

On the other hand, by (2.6) and the boundedness of F on C([−r, 0];X),

∫
R
F(ϕ1Fi⋅m)(s) f (s) ds = ∫

R
∫
R
e−i tsϕ1(t)F(e i t⋅m(t) f (s)) dt ds

= F ∫
R
e i ts[e i t⋅ϕ1(t)]m(t) dt f (s) ds

= F ∫
R
u(s)Fϕ1(s − ⋅) ds

= ∫
R
FusFϕ1(s) ds

(2.10)

for all ϕ1 ∈ D(R ∖ {0}). Here the integrals on the second and third lines are under-
stood as integrals for function deûned on R with values in C([−r, 0];X).

Using the fact that (Mu)′ = v + x and combining (2.7), (2.8), and (2.10), one de-
duces that

∫
R
Fϕ(s)[(Mu)′(t) − Au(t) − Fut − f (s)] ds = 0

for all ϕ ∈D(R ∖ {0}). _is implies that there exists y ∈ X satisfying

(Mu)′(t) = Au(t) + Fut + f (t) + y

when t ∈ R by [1, Lemma 5.1]. _e assumption 0 ∈ ρM ,F(A) means that A + F0 is a
bijection from D(A)∩D(M) onto X, and (A+ F0)−1 ∈ L(X). _en u − (A+ F0)−1 y
solves (P). We have shown the existence.

To show the uniqueness, we let u ∈ Cα(R;D(A) ∩ D(M)) be such that Mu ∈
C1+α(R;X) and (Mu)′(t) = Au(t)+Fut when t ∈ R. Taking the Carleman transform
û of u [2, (4.25), p. 292], one has û(λ) ∈ D(A),

Âu(λ) = Aû(λ), (̂Mu)′(λ) = λMû(λ) −Mu(0),

F̂u⋅(λ) =
⎧⎪⎪⎨⎪⎪⎩

Fλû(λ) + F[eλ⋅ ∫
0
⋅
e−λtu(t) dt], Reλ > 0,

Fλû(λ) − F[eλ⋅ ∫
0
⋅
eλtu(−t) dt], Reλ < 0
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for all λ ∈ C ∖ iR. It follows that

(λM − A− Fλ)û(λ) =
⎧⎪⎪⎨⎪⎪⎩

Mu(0) + F[eλ⋅ ∫
0
⋅
e−λtu(t) dt], Reλ > 0,

Mu(0) − F[eλ⋅ ∫
0
⋅
eλtu(−t) dt], Reλ < 0

for all λ ∈ C∖ iR. Since iR ⊂ ρM ,F(A), the operator (isM −A− Fi s)−1 ∈ L(X) when
s ∈ R. _is implies that the Carleman spectrum spC(u) of u is empty. Hence, u = 0
by [2,_eorem 4.8.2]. We have shown the uniqueness. Hence, (P) is Cα-well-posed.
Conversely, assume that (P) is Cα-well-posed. Let L∶Cα(R;X)→ S(R;X) be the

solution operator of (P) that associates the solution with each f ∈ Cα(R;X), where

S(R;X) ∶= {u ∈ Cα(R;D(A) ∩ D(M)) ∶ Mu ∈ C1+α(R;X)}
is the solution space of (P). It is easy to show that S(R;X) equipped with the norm

∥u∥S(R;X) ∶= ∥u∥Cα(R;D(A)∩D(M)) + ∥Mu∥C 1+α(R;X)

is a Banach space. _en L is linear and bounded,which follows easily from the Closed
Graph _eorem.

Let s ∈ R be ûxed, we are going to show that is ∈ ρM ,F(A). Let x ∈ D(A) ∩ D(M)
be such that isMx = Ax + Fi sx and u = es ⊗ x, where (es ⊗ x)(t) = e istx when
t ∈ R. It is clear that u ∈ Cα(R;D(A)∩D(M)) andMu = es ⊗Mx ∈ C1+α(R;X) and
(Mu)′(t) = Au(t) + Fut for all t ∈ R. _is means that u ∈ S(R;X) solves (P) when
taking f = 0. Hence u = 0 by the uniqueness of the solution of (P). Consequently
x = 0. We have shown that isM − A− Fi s is injective.

To show that isM −A− Fi s is also surjective, we let y ∈ X and consider f = es ⊗ y.
_en f ∈ Cα(R;X). Let u ∈ S(R;X) be the unique solution of (P), i.e.,

(Mu)′(t) = Au(t) + Fut + f (t)
for all t ∈ R. For ûxed ξ ∈ R, we consider the function uξ given by uξ(t) = u(t + ξ)
when t ∈ R. _en both functions uξ and e i ξsu solve the problem

(Mv)′(t) = Av(t) + Fvt + e i ξs f (t).

We deduce from the uniqueness that uξ = e i ξsu, that is, u(t + ξ) = e i ξsu(t) for
t, ξ ∈ R. Let x = u(0) ∈ D(A) ∩ D(M). _en u = es ⊗ x. Since u solves (Mu)′(t) =
Au(t) + Fut + f (t), we have ises ⊗ Mx = Aes ⊗ x + es ⊗ y. Letting t = 0, we have
isMx−Ax−Fi sx = y. Wehave shown that isM−A−Fi s is surjective. _us, isM−A−Fi s
is a bijection from D(A) ∩ D(M) onto X and x = (isM − A − Fi s)−1 y. _erefore,
u = es ⊗ (isM − A− Fi s)−1 y.

When s = 0, the function f is the constant function y and u is the constant function
−(A+ F0)−1 y. By the boundedness of the linear operator L, we have

∥(A+ F0)−1 y∥ = ∥u∥Cα ≤ ∥L∥∥ f ∥Cα = ∥L∥∥y∥.

_erefore, (A+F0)−1 ∈ L(X), that is, 0 ∈ ρM ,F(A). _is implies that there exists є > 0
such that i[−є, є] ⊂ ρM ,F(A) as ρM ,F(A) is an open subset of C [4]. When ∣s∣ > є,

γα ∣ s∣
α∥(isM − A− Fi s)−1 y∥ = ∥ es ⊗ (isM − A− Fi s)−1 y∥ α(2.11)

= ∥u∥α ≤ ∥L∥∥ f ∥ Cα = ∥L∥(∥ f ∥ α + ∥ f (0)∥) = ∥L∥(γα ∣ s∣
α∥ y∥ + ∥ y∥).
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Consequently, is ∈ ρM ,F(A). We have shown that iR ⊂ ρM ,F(A). It follows from
(2.11) and the fact 0 ∈ ρM ,F(A) that

sup
s∈R

∥(isM − A− Fi s)−1∥ <∞

by continuity. Using the facts Au, (Mu)′ ∈ Cα(R;X), an argument similar to the one
used in (2.11) gives

sup
s∈R

∥A(isM − A− Fi s)−1∥ <∞, sup
s∈R

∥ sM(isM − A− Fi s)−1∥ <∞.

_is completes the proof.

Since the necessary and suõcient condition given in _eorem 2.3 for the problem
(P) to be Cα-well-posed does not depend on the parameter 0 < α < 1, we actually
have the following corollary.

Corollary 2.4 Let X be a complex Banach space, 0 < α < 1 and let A,M be closed
linear operators on X satisfying D(A) ∩ D(M) /= {0}, F ∈ L(C([−r, 0];X), X) for
some ûxed r > 0, we assume that F satisûes (H2) and the problem (P) is Cα-well-posed
for some 0 < α < 1, then it is Cα-well-posed for all 0 < α < 1.

When the underlying Banach spaces X ,Y are B-convex, the ûrst order condition
(2.3) is already suõcient for a function m to be a Ċα-Fourier multiplier. _is together
with the proof of_eorem 2.3 gives the following result, which gives a necessary and
suõcient condition for (P) to be Cα-well-posed under a weaker assumption on F
when the underlying Banach space is B-convex. We should notice that when X has
Fourier type 1 < p ≤ 2, thenD(A) equippedwith its graphnorm ∥x∥D(A) = ∥x∥+∥Ax∥
also has Fourier type 1 < p ≤ 2, where D(A) is the domain of a closed linear operator
A on a Banach space X. _us, when X is B-convex, D(A) equipped with its graph
norm is also B-convex.

Corollary 2.5 Let X be a B-convex complex Banach space, 0 < α < 1 and let A,M be
closed linear operators on X satisfying D(A) ∩ D(M) /= {0}, F ∈ L(C([−r, 0];X), X)
for some ûxed r > 0, we assume that F satisûes (H1). _en (P) is Cα-well-posed if and
only if iR ⊂ ρM ,F(A), and

sup
s∈R

∥(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥A(isM − A− Fi s)−1∥ <∞,

sup
s∈R

∥ sM(isM − A− Fi s)−1∥ <∞.

3 Applications

In the last section,we give some examples towhich our abstract results can be applied.

Example 3.1 Let Ω be a bounded domain inRn with smooth boundary ∂Ω andm
be a non-negative boundedmeasurable function deûned on Ω. Let X be the Hilbert

https://doi.org/10.4153/CMB-2017-014-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-014-2


Hölder Continuous Solutions of Degenerate Diòerential Equations 249

spaceH−1(Ω). We consider the following ûrst order degenerate diòerential equations
with ûnite delay:

(P1)
⎧⎪⎪⎨⎪⎪⎩

d
d t (m(x)u(t, x)) = ∆u(t, x) + Fu(t + ⋅, x) + f (t, x), (t, x) ∈ R ×Ω,
u(t, x) = 0, (t, x) ∈ R × ∂Ω,

where F is a bounded linear operator from C([−r, 0];H−1(Ω)) to H−1(Ω) for some
ûxed r > 0, the Laplacian ∆ acts on the second variable x ∈ Ω.

Let M be the multiplication operator by m on H−1(Ω) with domain D(M). We
assume that D(∆)∩D(M) /= {0},where ∆ is the Laplacian on H−1(Ω)withDirichlet
boundary condition. _en it follows from [7, Section 3.7] that there exists a constant
C ≥ 0 such that

∥M(zM − ∆)−1∥ ≤ C
1 + ∣z∣(3.1)

when Re(z) ≥ −β(1 + ∣Im(z)∣) for some positive constant β depending only on m.
_is implies that

sup
s∈R

∥ sM(isM − ∆)−1∥ <∞.(3.2)

We deduce that

sup
s∈R

∥∆(isM − ∆)−1∥ <∞.(3.3)

If we assume furthermore that the function m is regular enough so that the corre-
sponding operator M on H−1(Ω) has a bounded inverse M−1, then we deduce from
(3.1) that

sup
s∈R

∥ s(isM − ∆)−1∥ <∞.(3.4)

In particular,

sup
s∈R

∥(isM − ∆)−1∥ <∞.(3.5)

We assume that the delay operator F satisûes (H1) and iR ⊂ ρM ,F(∆). We are
going to show that (P1) is Cα-well-posed for all 0 < α < 1. Indeed, for all s ∈ R, the
operator isM−∆−Fi s is a bijection from D(∆)∩D(M) onto H−1(Ω) and its inverse
(isM − ∆ − Fi s)−1 ∈ L(H−1(Ω)) as iR ⊂ ρM ,F(∆). For s ∈ R,

isM − ∆ − Fi s = [ IX − Fi s(isM − ∆)−1](isM − ∆).
_us,

(isM − ∆ − Fi s)−1 = (isM − ∆)−1[ IX − Fi s(isM − ∆)−1]−1
.

Hence,

sup
s∈R

∥(isM − ∆ − Fi s)−1∥ <∞,

sup
s∈R

∥∆(isM − ∆ − Fi s)−1∥ <∞,

sup
s∈R

∥ sM(isM − ∆ − Fi s)−1∥ <∞

(3.6)
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by (3.2), (3.3), and (3.5) as

lim
s→∞

∥Fi s(isM − ∆)−1∥ = 0.

Here we have used (3.4) and the uniform boundedness of the family (Fi s)s∈R, which
is easy to verify from the deûnition of Fi s . We deduce from (3.6) and Corollary 2.5
that (P1) is Cα-well-posed. Here we have used the fact that every Hilbert space is
B-convex.

Example 3.2 Let H be a complexHilbert space and let P be a densely deûned pos-
itive selfadjoint operator on H with P ≥ δ > 0. Let M = P − є with є < δ, and let
A = −∑k

i=0 a iP i with a i ≥ 0, ak > 0. _en there exists a constant C > 0, such that

∥M(zM − A)−1∥ ≤ C
1 + ∣z∣

whenever Re(z) ≥ −β(1 + ∣Im(z)∣) for some positive constant β depending only on
A and M by [7, p. 73]. _is implies in particular that

(3.7) sup
s∈R

∥ sM(isM − A)−1∥ <∞, sup
s∈R

∥A(isM − A)−1∥ <∞.

If we assume that 0 ∈ ρ(M), then
(3.8) sup

s∈R
∥ s(isM − A)−1∥ <∞.

Assume that the delay operator F ∈ L(C([−r, 0];H),H) satisûes (H1) and iR ⊂
ρM ,F(A). _en the same argument used in Example 3.1 shows that the corresponding
ûrst order degenerate diòerential equations with ûnite delay

(Mu)′(t) = Au(t) + Fut + f (t), (t ∈ R)
is Cα-well-posed for all 0 < α < 1 by Corollary 2.5.

We can also give a concrete application of this abstract observation. Let X =
L2(Ω), where Ω = (0, 1). Consider the problem

(P2)
⎧⎪⎪⎨⎪⎪⎩

d
d t (1 −

∂2

∂x2 )u(t, x) = − ∂4

∂x4 u(t, x) + Fu(t + ⋅, x) + f (t, x), (t, x) ∈ R ×Ω,
u(t, x) = 0, (t, x) ∈ R × ∂Ω.

Let P = − ∂2

∂x2 with domain D(P) = H2(Ω) ∩H1
0(Ω). _en P is a positive self adjoint

operator on X [2, p. 153]. Let M = P + IX and A = −P2. _en 0 ∈ ρ(M), (3.7), and
(3.8) hold true. If we assume furthermore that the delay operator

F ∈ L(C([−r, 0]; L2(Ω)), L2(Ω))
satisûes (H1) and iR ⊂ ρM ,F(A), then (P2) is Cα-well-posed for all 0 < α < 1.
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