Bull. Austral. Math. Soc. Vol. 43 (1991) [269-272]

A PROPERTY OF SUBGROUPS OF FREE GROUPS

GERHARD ROSENBERGER

Dedicated to B.H. Neumann for his 80th Birthday

INTRODUCTION

Let F be a free group on a_1, \ldots, a_p $(p \ge 1)$, and X a finitely generated subgroup in F. Suppose either that X contains some non-trivial power of $a_1^2 \ldots a_p^2$, or that p is even and X contains some nontrivial power of $[a_1, a_2] \ldots [a_{p-1}, a_p]$. We discuss some properties of X which we can derive from this assumption.

In this note we use the terminology and notation of [2, 4, 6]; here $\langle \ldots | \ldots \rangle$ denotes a presentation of a group in terms of generators and relations. By $\langle b_1, \ldots, b_n \rangle$ we denote the group generated by b_1, \ldots, b_n ; $[a, b] = aba^{-1}b^{-1}$ is the commutator of $a, b \in G$ (G a group). Frequently we obtain from one system $\{x_1, \ldots, x_m\}$ a new one by Nielsen transformations, and then denote the latter by the same symbols.

AN EQUATION IN A FREE GROUP

THEOREM 1. Let F be a free group on a_1, \ldots, a_p $(p \ge 1, p \text{ even})$ and $P(a_1, \ldots, a_p) = [a_1, a_2] \ldots [a_{p-1}, a_p] \in F$. Let (x_1, \ldots, x_m) $(m \ge 1)$ be any finite sequence of elements of F and X be the subgroup of F generated by x_1, \ldots, x_m . Suppose that X contains some conjugate of some non-trivial power of $P(a_1, \ldots, a_p)$, and let β be the smallest positive integer such that some conjugate of $P^{\beta}(a_1, \ldots, a_p)$ lies in X. Then

- (a) (x₁,..., x_m) is Nielsen equivalent to a free basis for X which contains a conjugate of P^β(a₁,..., a_p); or
- (b) the index of X in F is β (and $\{1, P(a_1, \ldots, a_p), \ldots, P^{\beta-1}(a_1, \ldots, a_p)\}$ is a set of coset representatives for X in F).

PROOF: In the following let α be the smallest positive number for which $y^{-1}P^{\alpha}(a_1, \ldots, a_p)y \in X$ for some $y \in F$. If $\alpha = 1$ then the statement holds by Theorem (2.2) of [5]. Hence, from now on let $\alpha \ge 2$. We may assume that y = 1 (by replacing the x_i by yx_iy^{-1} if necessary).

Received 20 April 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

G. Rosenberger

By means of the classical Nielsen reduction method we obtain from (x_1, \ldots, x_m) a system (y_1, \ldots, y_k) , $1 \leq k \leq m$, which generates X freely and has the Nielsen property, so that in particular, as a freely reduced word in a_1, \ldots, a_p , each y_i contains an uncancellable symbol a_j^{ϵ} , $\epsilon = \pm 1$, in the sense that in reducing any product $y_r^{\epsilon_r} y_s^{\epsilon_s}$, ϵ_r , $\epsilon_s = \pm 1$, these symbols cancel if and only if r = s and $\epsilon_r = -\epsilon_s$. For each y_i we choose such a symbol and take the inverse symbol for y_i^{-1} .

We have an equation

(1)
$$\prod_{i=1}^{q} y_{\nu_{i}}^{\varepsilon_{i}} = P^{\alpha}(a_{1}, \ldots, a_{p}), \quad \varepsilon_{i} = \pm 1,$$
$$\varepsilon_{i} = \varepsilon_{i+1} \text{ if } \nu_{i} = \nu_{i+1}.$$

If a factor $y_{\nu_t}^{\epsilon_t}$ occurs twice in (1) then we have a partial product $\prod_{i=t}^{\epsilon} y_{\nu_i}^{\epsilon_i}$ with $\nu_t = \nu_{s+1}$, $\epsilon_t = \epsilon_{s+1}$ and no $y_{\nu_i}^{\epsilon_i}$ occurring twice in $y_{\nu_t}^{\epsilon_t} \dots y_{\nu_s}^{\nu_s}$. The symbol of $y_{\nu_t}^{\epsilon_t}$ occurs twice in $\prod_{i=1}^{q} y_{\nu_i}^{\epsilon_i}$, and also in $P^{\alpha}(a_1, \dots, a_p)$. Hence $\prod_{i=t}^{\epsilon} y_{\nu_i}^{\epsilon_i}$ is conjugate to a power of $P(a_1, \dots, a_p)$. Therefore, after a suitable conjugation, we obtain an equation which may be assumed to have the form

(2)
$$\prod_{i=1}^{\prime} y_{\nu_i}^{\epsilon_i} = P^{\beta}(a_1, \ldots, a_p), 1 \leq \beta \leq \alpha, \, \epsilon_i = \pm 1, \epsilon_i = \epsilon_{i+1} \text{ if } \nu_i = \nu_{i+1},$$

with no factor $y_{\nu_i}^{\epsilon_i}$ occurring twice (or course we must then in fact have $\alpha = \beta$ because α is minimal). If some y_i occurs just once in (2) either with exponent +1 or with exponent -1 then case (a) occurs. Now, let in (2) each y_i occur exactly once with exponent +1 and once with exponent -1. (It can be shown — we omit the details — that every y_i must occur in (2).) This implies in particular that X is not cyclic, since $\beta \ge 1$. Hence $k \ge 2$, and by [6, 5.2] we may apply Nielsen transformations for quadratic words to get from (y_1, \ldots, y_k) a system (z_1, \ldots, z_k) such that

(3)
$$\prod_{i=1}^{r} y_{\nu_{i}}^{\epsilon_{i}} = [z_{1}, z_{2}] \dots [z_{\ell-1}, z_{\ell}] z_{\ell+1} z_{\ell+1}^{-1} \dots z_{k} z_{k}^{-1}, 2 \leq \ell \leq k, \quad \ell \text{ even}.$$

Without loss of generality, we may assume that $\ell = k$ and, hence, that k is even and (z_1, \ldots, z_k) is a free generating system of X.

We want to show that X has the finite index $[F:X] = \beta$. From Theorem (2.2) of [5] we know that $F = \langle z_1, \ldots, z_k, P(a_1, \ldots, a_p) \rangle$. Now we regard F as a cycloidal Fuchsian group of the first kind such that

- (i) a_1, \ldots, a_p are hyperbolic elements and p/2 is the genus of F;
- (ii) $a = P(a_1, \ldots, a_p)^{-1}$ is a parabolic element; and
- (iii) $\{a, a_1, \ldots, a_p\}$ is a canonical generating system of F.

Now X is, as a subgroup of F, also discrete. Moreover, X has finite index in F. The essential reasons for this are as follows. Since F is residually finite, for a suitable large integer γ , the image X(n) of X has finite index $[F(n) : X(n)] \leq N$ in the factor group $F(n) = \langle a_1, \ldots, a_p | (P(a_1, \ldots, a_p))^{\beta \gamma n} = 1 \rangle$, $(n \in \mathbb{N})$, of F, where N is an integer which does not depend on n, and the set of coset representatives for X(n) in F(n) can be chosen independently of n by [6, 4.14] and since $F = \langle z_1, \ldots, z_k, P(a_1, \ldots, a_p) \rangle$. Recalling that a finitely generated subgroup of infinite index in F(n) is automatically a free product of cyclic groups ([1]), it follows by letting n increase that X has finite index $[F : X] \leq N$ in F. (See also [3, Theorem 2.12].)

In a finitely generated free group no power of a primitive element is contained in its commutator subgroup. Hence, since the index [F:X] is finite, no primitive element of X is conjugate in F to a power of $P(a_1, \ldots, a_p)$, and X is a cycloidal Fuchsian group of the first kind such that

- (i) z_1, \ldots, z_k are hyperbolic elements and k/2 is the genus of X,
- (ii) $b = a^{\beta} = P(a_1, \ldots, a_p)^{-\beta}$ is a parabolic element, and
- (iii) $\{b, z_1, \ldots, z_k\}$ is a canonical generating system of X.

If [F : X] = 1 then $\beta = 1$ and F = X. Now let [F : X] > 1, $g \in F \setminus X$, and consider $g P(a_1, \ldots, a_p)g^{-1}$. There exists a natural number γ such that $g P^{\gamma}(a_1, \ldots, a_p)g^{-1} \in X$ since [F : X] is finite. Hence, there exists $h \in X$ and an integer $\delta \neq 0$ such that $hg p^{\gamma}(a_1, \ldots, a_p)g^{-1}h^{-1} = p^{\delta}(a_1, \ldots, a_p)$, because X is cycloidal. Therefore $\gamma = \delta$ and $hg \in \langle P(a_1, \ldots, a_p) \rangle$ since F is free. Now $g = d P^{\varphi}(a_1, \ldots, a_p)$, (whence $Xg = X P^{\varphi}(a_1, \ldots, a_p)$) for some $d \in X$ and some natural number φ with $1 \leq \varphi < \beta$, since $h \in X$ and $P^{\beta}(a_1, \ldots, a_p) \in X$.

COROLLARY 1. Let F be a free group on a_1, \ldots, a_p $(p \ge 1, p \text{ even})$ and $P(a_1, \ldots, a_p) = [a_1, a_2] \ldots [a_{p-1}, a_p] \in F$. Let $\alpha \in \mathbb{N}$, $\alpha \ge 2$, and $x_1, y_1, \ldots, x_q, y_q \in F$ $(q \ge 1)$ be such that $P^{\alpha}(a_1, \ldots, a_p) = \prod_{i=1}^{q} [x_i, y_i]$. Suppose that $P^{\alpha}(a_1, \ldots, a_p)$ is not a proper power in the subgroup X generated by $x_1, y_1, \ldots, x_q, y_q$. Then α is odd and $q \ge (\alpha(p-1)+1)/2$.

PROOF: Note that X has finite index α in F by Theorem 1. If we regard F as a cycloidal Fuchsian group of the first kind such that $P(a_1, \ldots, a_p)$ is parabolic then the Riemann-Hurwitz relation yields that α is odd and $\alpha(p-1) \leq 2q-1$, giving the result.

If we regard a free group F on a_1, \ldots, a_p $(p \ge 1)$ as a plane discontinuous group $F = \langle a, a_1, \ldots, a_p \mid a a_1^2 \ldots a_p^2 = 1 \rangle$ we get analogously the following,

THEOREM 2. Let F be a free group on a_1, \ldots, a_p $(p \ge 1)$ and let $Q(a_1, \ldots, a_p) =$

[4]

 $a_1^2 \ldots a_p^2 \in F$. Let (x_1, \ldots, x_m) $(m \ge 1)$ be any finite sequence of elements of F and X be the subgroup of F generated by x_1, \ldots, x_m . Suppose that X contains some conjugate of some nontrivial power of $Q(a_1, \ldots, a_p)$, and let β be the smallest positive integer such that some conjugate of $Q^{\beta}(a_1, \ldots, a_p)$ lies in X. Then:

- (a) {x₁,..., x_m} is Nielsen equivalent to a free basis for X which contains a conjugate of Q^β(a₁,..., a_p); or
- (b) the index of X in F is β , (and $\{1, Q(a_1, \ldots, a_p), \ldots, Q^{\beta-1}(a_1, \ldots, a_p)\}$ is a set of coset representatives for X in F).

COROLLARY 2. Let F be a free group on a_1, \ldots, a_p $(p \ge 1)$ and $Q(a_1, \ldots, a_p) = a_1^2 \ldots a_p^2 \in F$. Let $\alpha \in \mathbb{N}$, $\alpha \ge 2$, and $x_1, \ldots, x_q \in F$ $(q \ge 1)$ be such that

$$Q^{\alpha}(a_1,\ldots,a_p)=x_1^2\ldots x_q^2.$$

Then if $Q^{\alpha}(a_1, \ldots, a_p)$ is not a proper power in the subgroup X generated by x_1, \ldots, x_q , we have $q \ge \alpha(p-1)+1$.

References

- A.H.M. Hoare, A. Karrass and D. Solitar, 'Subgroups of infinite index in Fuchsian groups', Math. Z. 125 (1972), 59-69.
- [2] R.C. Lyndon and P.E. Schupp, *Combinatorial Group Theory* 189, (Ergebnisse der Mathematik) (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [3] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations: Interscience Tracts in Pure and Applied Mathematics 20 (Wiley, New York, 1966).
- [4] G. Rosenberger, 'Über Darstellungen von Elementen und Untergruppen in freien Produkten', in Proceedings of 'Groups-Korea 1983': Lecture Notes in Mathematics 1098, pp. 142-160 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
- [5] G. Rosenberger, 'Minimal generating systems for plane discontinuous groups and an equation in free groups', in *Proceedings of 'Groups-Korea 1988': Lecture Notes in Mathematics* 1398, pp. 170–186 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).
- [6] H. Zieschang, E. Vogt and H.-D. Coldewey, 'Surfaces and Planar Discontinuous Groups', in Lecture Notes in Mathematics 835 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Fachbereich Mathematik Universität Dortmund Postfach 50 05 00 Federal Republic of Germany