A PROPERTY OF SUBGROUPS OF FREE GROUPS

Gerhard Rosenberger
Dedicated to B.H. Neumann for his 80th Birthday

Introduction

Let F be a free group on $a_{1}, \ldots, a_{p}(p \geqslant 1$), and X a finitely generated subgroup in F. Suppose either that X contains some non-trivial power of $a_{1}^{2} \ldots a_{p}^{2}$, or that p is even and X contains some nontrivial power of $\left[a_{1}, a_{2}\right] \ldots\left[a_{p-1}, a_{p}\right]$. We discuss some properties of X which we can derive from this assumption.

In this note we use the terminology and notation of $[2,4,6]$; here $\langle\ldots \mid \ldots\rangle$ denotes a presentation of a group in terms of generators and relations. By $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ we denote the group generated by $b_{1}, \ldots, b_{n} ;[a, b]=a b a^{-1} b^{-1}$ is the commutator of $a, b \in G$ (G a group). Frequently we obtain from one system $\left\{x_{1}, \ldots, x_{m}\right\}$ a new one by Nielsen transformations, and then denote the latter by the same symbols.

An equation in a free group

Theorem 1. Let F be a free group on a_{1}, \ldots, a_{p} ($p \geqslant 1, p$ even) and $P\left(a_{1}, \ldots, a_{p}\right)=\left[a_{1}, a_{2}\right] \ldots\left[a_{p-1}, a_{p}\right] \in F$. Let $\left(x_{1}, \ldots, x_{m}\right)(m \geqslant 1)$ be any finite sequence of elements of F and X be the subgroup of F generated by x_{1}, \ldots, x_{m}. Suppose that X contains some conjugate of some non-trivial power of $P\left(a_{1}, \ldots, a_{p}\right)$, and let β be the smallest positive integer such that some conjugate of $P^{\beta}\left(a_{1}, \ldots, a_{p}\right)$ lies in X. Then
(a) $\left(x_{1}, \ldots, x_{m}\right)$ is Nielsen equivalent to a free basis for X which contains a conjugate of $P^{\beta}\left(a_{1}, \ldots, a_{p}\right)$; or
(b) the index of X in F is β (and $\left\{1, P\left(a_{1}, \ldots, a_{p}\right), \ldots, P^{\beta-1}\left(a_{1}, \ldots, a_{p}\right)\right\}$ is a set of coset representatives for X in F).

Proof: In the following let α be the smallest positive number for which $y^{-1} P^{\alpha}\left(a_{1}, \ldots, a_{p}\right) y \in X$ for some $y \in F$. If $\alpha=1$ then the statement holds by Theorem (2.2) of [5]. Hence, from now on let $\alpha \geqslant 2$. We may assume that $y=1$ (by replacing the x_{i} by $y x_{i} y^{-1}$ if necessary).

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

By means of the classical Nielsen reduction method we obtain from (x_{1}, \ldots, x_{m}) a system $\left(y_{1}, \ldots, y_{k}\right), 1 \leqslant k \leqslant m$, which generates X freely and has the Nielsen property, so that in particular, as a freely reduced word in a_{1}, \ldots, a_{p}, each y_{i} contains an uncancellable symbol $a_{j}^{e}, \varepsilon= \pm 1$, in the sense that in reducing any product $y_{r}^{e_{r}} y_{s}^{\varepsilon_{s}}, \varepsilon_{r}, \varepsilon_{s}= \pm 1$, these symbols cancel if and only if $r=s$ and $\varepsilon_{r}=-\varepsilon_{s}$. For each y_{i} we choose such a symbol and take the inverse symbol for y_{i}^{-1}.

We have an equation

$$
\begin{gather*}
\prod_{i=1}^{q} y_{\nu_{i}}^{\epsilon_{i}}=P^{\alpha}\left(a_{1}, \ldots, a_{p}\right), \quad \varepsilon_{i}= \pm 1 \tag{1}\\
\varepsilon_{i}=\varepsilon_{i+1} \text { if } \nu_{i}=\nu_{i+1}
\end{gather*}
$$

If a factor $y_{\nu_{t}}^{\varepsilon_{t}}$ occurs twice in (1) then we have a partial product $\prod_{i=t}^{\dot{n}} y_{\nu_{i}}^{\varepsilon_{i}}$ with $\nu_{t}=$ $\nu_{s+1}, \varepsilon_{t}=\varepsilon_{s+1}$ and no $y_{\nu_{i}}^{e_{i}}$ occurring twice in $y_{\nu_{t}}^{e_{t}} \ldots y_{\nu_{t}}^{v e_{s}}$. The symbol of $y_{\nu_{t}}^{\varepsilon_{t}}$ occurs twice in $\prod_{i=1}^{q} y_{\nu_{i}}^{\varepsilon_{i}}$, and also in $P^{\alpha}\left(a_{1}, \ldots, a_{p}\right)$. Hence $\prod_{i=t}^{\dot{s}} y_{\nu_{i}}^{\varepsilon_{i}}$ is conjugate to a power of $P\left(a_{1}, \ldots, a_{p}\right)$. Therefore, after a suitable conjugation, we obtain an equation which may be assumed to have the form

$$
\begin{equation*}
\prod_{i=1}^{r} y_{\nu_{i}}^{e_{i}}=P^{\beta}\left(a_{1}, \ldots, a_{p}\right), 1 \leqslant \beta \leqslant \alpha, \varepsilon_{i}= \pm 1, \varepsilon_{i}=\varepsilon_{i+1} \text { if } \nu_{i}=\nu_{i+1} \tag{2}
\end{equation*}
$$

with no factor $y_{\nu_{i}}^{\varepsilon_{i}}$ occurring twice (or course we must then in fact have $\alpha=\beta$ because α is minimal). If some y_{i} occurs just once in (2) either with exponent +1 or with exponent -1 then case (a) occurs. Now, let in (2) each y_{i} occur exactly once with exponent +1 and once with exponent -1 . (It can be shown - we omit the details - that every y_{i} must occur in (2).) This implies in particular that X is not cyclic, since $\beta \geqslant 1$. Hence $k \geqslant 2$, and by $[6,5.2]$ we may apply Nielsen transformations for quadratic words to get from (y_{1}, \ldots, y_{k}) a system $\left(z_{1}, \ldots, z_{k}\right)$ such that

$$
\begin{equation*}
\prod_{i=1}^{r} y_{\nu_{i}}^{e_{i}}=\left[z_{1}, z_{2}\right] \ldots\left[z_{\ell-1}, z_{\ell}\right] z_{\ell+1} z_{\ell+1}^{-1} \ldots z_{k} z_{k}^{-1}, 2 \leqslant \ell \leqslant k, \quad \ell \text { even } \tag{3}
\end{equation*}
$$

Without loss of generality, we may assume that $\ell=k$ and, hence, that k is even and $\left(z_{1}, \ldots, z_{k}\right)$ is a free generating system of X.

We want to show that X has the finite index $[F: X]=\beta$. From Theorem (2.2) of [5] we know that $F=\left\langle z_{1}, \ldots, z_{k}, P\left(a_{1}, \ldots, a_{p}\right)\right\rangle$. Now we regard F as a cycloidal Fuchsian group of the first kind such that
(i) a_{1}, \ldots, a_{p} are hyperbolic elements and $p / 2$ is the genus of F;
(ii) $a=P\left(a_{1}, \ldots, a_{p}\right)^{-1}$ is a parabolic element; and
(iii) $\left\{a, a_{1}, \ldots, a_{p}\right\}$ is a canonical generating system of F.

Now X is, as a subgroup of F, also discrete. Moreover, X has finite index in F. The essential reasons for this are as follows. Since F is residually finite, for a suitable large integer γ, the image $X(n)$ of X has finite index $[F(n): X(n)] \leqslant N$ in the factor group $F(n)=\left\langle a_{1}, \ldots, a_{p} \mid\left(P\left(a_{1}, \ldots, a_{p}\right)\right)^{\beta \gamma n}=1\right\rangle,(n \in N)$, of F, where N is an integer which does not depend on n, and the set of coset representatives for $X(n)$ in $F(n)$ can be chosen independently of n by [6,4.14] and since $F=\left\langle z_{1}, \ldots, z_{k}, P\left(a_{1}, \ldots, a_{p}\right)\right\rangle$. Recalling that a finitely generated subgroup of infinite index in $F(n)$ is automatically a free product of cyclic groups ([1]), it follows by letting n increase that X has finite index $[F: X] \leqslant N$ in F. (See also [3, Theorem 2.12].)

In a finitely generated free group no power of a primitive element is contained in its commutator subgroup. Hence, since the index $[F: X]$ is finite, no primitive element of X is conjugate in F to a power of $P\left(a_{1}, \ldots, a_{p}\right)$, and X is a cycloidal Fuchsian group of the first kind such that
(i) z_{1}, \ldots, z_{k} are hyperbolic elements and $k / 2$ is the genus of X,
(ii) $b=a^{\beta}=P\left(a_{1}, \ldots, a_{p}\right)^{-\beta}$ is a parabolic element, and
(iii) $\left\{b, z_{1}, \ldots, z_{k}\right\}$ is a canonical generating system of X.

If $[F: X]=1$ then $\beta=1$ and $F=X$. Now let $[F: X]>1$, $g \in F \backslash X$, and consider $g P\left(a_{1}, \ldots, a_{p}\right) g^{-1}$. There exists a natural number γ such that $g P^{\gamma}\left(a_{1}, \ldots, a_{p}\right) g^{-1} \in X$ since $[F: X]$ is finite. Hence, there exists $h \in X$ and an integer $\delta \neq 0$ such that $h g p^{\gamma}\left(a_{1}, \ldots, a_{p}\right) g^{-1} h^{-1}=p^{\delta}\left(a_{1}, \ldots, a_{p}\right)$, because X is cycloidal. Therefore $\gamma=\delta$ and $h g \in\left\langle P\left(a_{1}, \ldots, a_{p}\right)\right\rangle$ since F is free. Now $g=d P^{\varphi}\left(a_{1}, \ldots, a_{p}\right)$, (whence $X g=X P^{\varphi}\left(a_{1}, \ldots, a_{p}\right)$) for some $d \in X$ and some natural number φ with $1 \leqslant \varphi<\beta$, since $h \in X$ and $P^{\beta}\left(a_{1}, \ldots, a_{p}\right) \in X$.

Corollary 1. Let F be a free group on $a_{1}, \ldots, a_{p}(p \geqslant 1, p$ even) and $P\left(a_{1}, \ldots, a_{p}\right)=\left[a_{1}, a_{2}\right] \ldots\left[a_{p-1}, a_{p}\right] \in F$. Let $\alpha \in N, \alpha \geqslant 2$, and $x_{1}, y_{1}, \ldots, x_{q}, y_{q} \in F(q \geqslant 1)$ be such that $P^{\alpha}\left(a_{1}, \ldots, a_{p}\right)=\prod_{i=1}^{q}\left[x_{i}, y_{i}\right]$. Suppose that $P^{\alpha}\left(a_{1}, \ldots, a_{p}\right)$ is not a proper power in the subgroup X generated by $x_{1}, y_{1}, \ldots, x_{q}, y_{q}$. Then α is odd and $q \geqslant(\alpha(p-1)+1) / 2$.

Proof: Note that X has finite index α in F by Theorem 1. If we regard F as a cycloidal Fuchsian group of the first kind such that $P\left(a_{1}, \ldots, a_{p}\right)$ is parabolic then the Riemann-Hurwitz relation yields that α is odd and $\alpha(p-1) \leqslant 2 q-1$, giving the result.

If we regard a free group F on $a_{1}, \ldots, a_{p}(p \geqslant 1)$ as a plane discontinuous group $F=\left\langle a, a_{1}, \ldots, a_{p} \mid a a_{1}^{2} \ldots a_{p}^{2}=1\right\rangle$ we get analogously the following,

Theorem 2. Let F be a free group on $a_{1}, \ldots, a_{p}(p \geqslant 1)$ and let $Q\left(a_{1}, \ldots, a_{p}\right)=$
$a_{1}^{2} \ldots a_{p}^{2} \in F$. Let $\left(x_{1}, \ldots, x_{m}\right)(m \geqslant 1)$ be any finite sequence of elements of F and X be the subgroup of F generated by x_{1}, \ldots, x_{m}. Suppose that X contains some conjugate of some nontrivial power of $Q\left(a_{1}, \ldots, a_{p}\right)$, and let β be the smallest positive integer such that some conjugate of $Q^{\beta}\left(a_{1}, \ldots, a_{p}\right)$ lies in X. Then:
(a) $\left\{x_{1}, \ldots, x_{m}\right\}$ is Nielsen equivalent to a free basis for X which contains a conjugate of $Q^{\beta}\left(a_{1}, \ldots, a_{p}\right)$; or
(b) the index of X in F is β, (and $\left\{1, Q\left(a_{1}, \ldots, a_{p}\right), \ldots, Q^{\beta-1}\left(a_{1}, \ldots, a_{p}\right)\right\}$ is a set of coset representatives for X in F).

Corollary 2. Let F be a free group on $a_{1}, \ldots, a_{p}(p \geqslant 1)$ and $Q\left(a_{1}, \ldots, a_{p}\right)=$ $a_{1}^{2} \ldots a_{p}^{2} \in F$. Let $\alpha \in N, \alpha \geqslant 2$, and $x_{1}, \ldots, x_{q} \in F(q \geqslant 1)$ be such that

$$
Q^{\alpha}\left(a_{1}, \ldots, a_{p}\right)=x_{1}^{2} \ldots x_{q}^{2}
$$

Then if $Q^{\alpha}\left(a_{1}, \ldots, a_{p}\right)$ is not a proper power in the subgroup X generated by x_{1}, \ldots, x_{q}, we have $q \geqslant \alpha(p-1)+1$.

References

[1] A.H.M. Hoare, A. Karrass and D. Solitar, 'Subgroups of infinite index in Fuchsian groups', Math. Z. 125 (1972), 59-69.
[2] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory 189, (Ergebnisse der Mathematik) (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[3] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations: Interscience Tracts in Pure and Applied Mathematics 20 (Wiley, New York, 1966).
[4] G. Rosenberger, 'Über Darstellungen von Elementen und Untergruppen in freien Produkten', in Proceedings of 'Groups-Korea 1983': Lecture Notes in Mathematics 1098, pp. 142-160 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
[5] G. Rosenberger, 'Minimal generating systems for plane discontinuous groups and an equation in free groups', in Proceedings of 'Groups-Korea 1988': Lecture Notes in Mathematics 1398, pp. 170-186 (Springer-Verlag, Berlin, Heidelberg, New York, 1989).
[6] H. Zieschang, E. Vogt and H.-D. Coldewey, 'Surfaces and Planar Discontinuous Groups', in Lecture Notes in Mathematics 835 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Fachbereich Mathematik
Universität Dortmund
Postfach 500500
Federal Republic of Germany

[^0]: Received 20 April 1990

