
J. Appl. Prob. 52, 191–208 (2015)
Printed in England

© Applied Probability Trust 2015

ON THE FREQUENCY OF DRAWDOWNS FOR
BROWNIAN MOTION PROCESSES

DAVID LANDRIAULT ∗ ∗∗ and

BIN LI,∗ ∗∗∗ University of Waterloo

HONGZHONG ZHANG,∗∗∗∗ Columbia University

Abstract

Drawdowns measuring the decline in value from the historical running maxima over
a given period of time are considered as extremal events from the standpoint of risk
management. To date, research on the topic has mainly focused on the side of severity
by studying the first drawdown over a certain prespecified size. In this paper we extend
the discussion by investigating the frequency of drawdowns and some of their inherent
characteristics. We consider two types of drawdown time sequences depending on
whether a historical running maximum is reset or not. For each type we study the
frequency rate of drawdowns, the Laplace transform of the nth drawdown time, the
distribution of the running maximum, and the value process at the nth drawdown time,
as well as some other quantities of interest. Interesting relationships between these two
drawdown time sequences are also established. Finally, insurance policies protecting
against the risk of frequent drawdowns are also proposed and priced.
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1. Introduction

We consider a drifted Brownian motion X = {Xt, t ≥ 0}, defined on a filtered probability
space (�, {Ft , t ≥ 0}, P), with dynamics

Xt = x0 + μt + σWt ,

where x0 ∈ R is the initial value, μ ∈ R, σ > 0, and {Wt, t ≥ 0} is a standard Brownian
motion. The time of the first drawdown over size a > 0 is denoted by

τa := inf{t > 0 : Mt − Xt ≥ a}, (1.1)

where M = {Mt, t ≥ 0} with Mt := sups∈[0,t] Xt is the running maximum process of X.
Throughout, we follow the convention that inf ∅ = ∞ and sup ∅ = 0.

Drawdown is one of the most frequently quoted path-dependent risk indicators for mutual
funds and commodity trading advisers (see, e.g. Burghardt et al. [4]). From a risk management
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standpoint, large drawdowns should be considered as extreme events of which both the severity
and the frequency need to be investigated. Considerable attention has been paid to the severity
aspect of the problem by prespecifying a threshold, namely a > 0, of the size of drawdowns, and
subsequently studying various properties associated to the first drawdown time τa . In this paper
we extend the discussion by investigating the frequency of drawdowns. To this end, we derive
the joint distribution of the nth drawdown time, the running maximum, and the value process
at the drawdown time for a drifted Brownian motion. Using the general theory on renewal
processes, we proceed to characterize the behavior of the frequency of drawdown episodes in a
long time-horizon. Finally, we introduce some insurance policies which protect against the risk
associated with frequent drawdowns. These policies are similar to the sequential barrier options
in the over-the-counter (OTC) market (see, e.g. Pfeffer [16]). Through Carr’s randomization
of maturities, we provide closed-form pricing formulas by making use of the main theoretical
results of the paper.

1.1. Literature review

The first drawdown time τa is the first passage time of the drawdown process {Mt−Xt, t ≥ 0}
to level a or above. It has been extensively studied in the literature of applied probability. The
joint Laplace transform of τa and Mτa was first derived by Taylor [20] for a drifted Brownian
motion. Lehoczky [13] extended the results to a general time-homogeneous diffusion by a
perturbation approximation approach. An infinite series expansion of the distribution of τa was
derived by Douady et al. [8] for a standard Brownian motion and the results were generalized
to a drifted Brownian motion by Magdon et al. [14]. The dual of drawdown, known as drawup,
measures the increase in value from the historical running minimum over a given period of time.
The probability that a drawdown precedes a drawup was subsequently studied by Hadjiliadis
and Večeř [10] and Pospisil et al. [18] under the drifted Brownian motion and the general time-
homogeneous diffusion process, respectively. Mijatovic and Pistorius [15] derived the joint
Laplace transform of τa and the last passage time at level Mτa prior to τa , associated with the
joint distribution of the running maximum, the running minimum, and the overshoot at τa for a
spectrally negative Lévy process. The probability that a drawdown precedes a drawup in a finite
time-horizon was studied under drifted Brownian motions and simple random walks in [24].
More recently, Zhang [23] and Zhang and Hadjiliadis [25] studied Laplace transforms of the
drawdown time, the so-called speed of market crash, and various occupation times at the first
exit and the drawdown time for a general time-homogeneous diffusion process.

In quantitative risk management, drawdowns and its descendants have become an increas-
ingly popular and relevant class of path-dependent risk indicators. A portfolio optimization
problem with constraints on drawdowns was explicitly solved by Grossman and Zhou [9]
in a Black–Scholes framework. Hamelink and Hoesli [11] used the relative drawdown as a
performance measure in the optimization of real estate portfolios. Chekhlov et al. [6] proposed
a new family of risk measures called conditional drawdown and studied parameter selection
techniques and portfolio optimization under constraints on conditional drawdown. Some novel
financial derivatives were introduced by Večeř [21] to the hedge maximum drawdown risk.
Pospisil and Večeř [17] invented a class of ‘Greeks’ (where the sensitivity of options in a
portfolio are denoted by Greek letters) to study the sensitivity of investment portfolios to
running maxima and drawdowns. Later, Carr et al. [5] introduced a class of European-style
digital drawdown insurances and proposed semistatic hedging strategies using barrier options
and vanilla options. The swap type insurances and cancelable insurances against drawdowns
were studied in Zhang et al. [26].
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1.2. Definitions

While sustaining downside risk can be appropriately characterized using the drawdown
process and the first drawdown time, economic turmoil and volatile market fluctuations are
better described by quantities containing more pathwise information, such as the frequency of
drawdowns. The existing knowledge about the first drawdown time τa provides only limited
and implicit information about the frequency of drawdowns. For the purpose of tackling the
problem of frequency directly and systematically, we define below two types of drawdown time
sequences depending on whether the last running maximum needs to be recovered or not.

The first sequence {τ̃ n
a , n ∈ N} is called the drawdown times with recovery, defined

recursively as
τ̃ n
a := inf{t > τ̃ n−1

a : Mt − Xt ≥ a, Mt > M
τ̃n−1
a

}, (1.2)

where τ̃ 0
a = 0. Note that, after each τ̃ n−1

a , the corresponding running maximum M
τ̃n−1
a

must
be recovered before the next drawdown time τ̃ n

a . In other words, the running maximum is reset
and updated only when the previous one is revisited. Since the sample paths of X are almost
surely (a.s.) continuous, it follows that Mτ̃n

a
− Xτ̃n

a
= a a.s. if τ̃ n

a < ∞.
The second sequence {τn

a , n ∈ N} is called the drawdown times without recovery, defined
recursively as

τn
a := inf{t > τn−1

a : M[τn−1
a ,t] − Xt ≥ a}, (1.3)

where τ 0
a := 0 and M[s,t] := sups≤u≤t Xu. From definition (1.3), it is implicitly assumed that

the running maximum Mτn
a

is ‘reset’ to Xτn
a

at the drawdown time τn
a . In fact, τn

a is the so-called
iterated stopping times associated with τa defined as

τn
a =

{
τn−1
a + τa ◦ θ

τn−1
a

when τn−1
a and τa ◦ θ

τn−1
a

are finite,

∞ otherwise,
(1.4)

where θ is the Markov shift operator such that Xt ◦ θs = Xs+t for s, t ≥ 0.
Note that both τn

a and τ̃ n
a are independent of the initial value x0 for not only the drifted

Brownian motion X, but also a general Lévy process. In view of definitions (1.2) and (1.3), it
is clear that the following inclusive relation of the two types of drawdown time holds:

{τ̃ n
a , n ∈ N} ⊂ {τn

a , n ∈ N}.
In other words, for each n ∈ N, there exists a unique positive integer m ≥ n such that τ̃ n

a = τm
a

(if τ̃ n
a < ∞).

Our motivation for introducing the two drawdown time sequences is as follows. The
drawdown times with recovery {τ̃ n

a , n ∈ N} are easy to identify from the sample paths of X

by searching the running maxima. Moreover, they are consistent with definition (1.1) of
the first drawdown τa in the sense that a drawdown can be considered as incomplete if the
running maximum has not been revisited. However, there are also some crucial drawbacks of
{τ̃ n

a , n ∈ N} which motivate us to introduce the drawdown times without recovery {τn
a , n ∈ N}.

First, the downside risk during recovering periods is neglected. One or more larger drawdowns
may occur in a recovering period. Secondly, the threshold a needs to be adjusted in order to
gain a more integrated understanding about the severity of drawdowns. In other words, the
selection of a becomes tricky. Thirdly, the requirement of recovery is too strong. In the real
world, a historical high water mark may never be recovered again, as in the case of a financial
bubble (see, e.g. [12]).
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The rest of the paper is organized as follows. In Section 2 some preliminaries on exit times
and the first drawdown time τa of the drifted Brownian motion X are presented. In Section 3 the
frequency rate of drawdowns, and the Laplace transform of τ̃ n

a associated with the distribution
of Mτ̃n

a
and/or Xτ̃n

a
are derived. Section 4 is parallel to Section 3 but concerns the drawdown

times without recovery {τn
a , n ∈ N}. Interesting connections between the two drawdown time

sequences are established. In Section 5 some insurance contracts are introduced to insure
against the risk of frequent drawdowns.

2. Preliminaries

Henceforth, for ease of notation, we write Ex0 [·] = E[·|X0 = x0] for the conditional
expectation, Px0{·} for the corresponding probability, and Ex0 [·; U ] = Ex0 [· 1U ] with 1U

denoting the indicator function of a set U ⊂ �. In particular, when x0 = 0, we drop the
subscript x0 from the conditional expectation and probability.

For x ∈ R, let T +
x = inf{t ≥ 0 : Xt > x} and T −

x = inf{t ≥ 0 : Xt < x} be the first passage
times of X to levels in (x, ∞) and (−∞, x), respectively. For a < x < b and λ > 0, it is
known that

Ex[e−λT −
a ] = eβ−

λ (x−a) and Ex[e−λT +
b ] = eβ+

λ (x−b), (2.1)

where β±
λ = (−μ ± √

μ2 + 2λσ 2)/σ 2 (see, e.g. Equation 2.0.1, of Borodin and Salminen [3,
p. 295]). By letting λ → 0+ in (2.1), it follows that

Px{T +
b < ∞} = e((−μ+|μ|)/σ 2)(x−b) and Px{T −

a < ∞} = e((−μ−|μ|)/σ 2)(x−a). (2.2)

From Taylor [20] or Equation (17) of Lehoczky [13], we obtain the following joint Laplace
transform of the first drawdown time τa and its running maximum Mτa .

Lemma 2.1. For λ, s > 0, it holds that

E[e−λτa−sMτa ] = cλ

bλ + s
, (2.3)

where bλ = (β+
λ e−β−

λ a −β−
λ e−β+

λ a)/(e−β−
λ a −e−β+

λ a) and cλ = (β+
λ −β−

λ )/(e−β−
λ a −e−β+

λ a).

A Laplace inversion of (2.3) with respect to s results in

E[e−λτa ; Mτa > x] = cλ

bλ

e−bλx (2.4)

for x > 0. Furthermore, letting x → 0+ in (2.4), we immediately have

E[e−λτa ] = cλ/bλ. (2.5)

A numerical evaluation of the distribution function of τa (and more generally τn
a and τ̃ n

a ) by an
inverse Laplace transform method will be given at the end of Section 4. Other forms of infinite
series expansion of the distribution of τa were derived by Douady et al. [8] and Magdon et al. [14]
for a standard Brownian motion and a drifted Brownian motion, respectively. By taking the
derivative with respect to λ in (2.5) and letting λ → 0+, it follows that

E[τa] = σ 2e2μa/σ 2 − σ 2 − 2μa

2μ2 .
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It is straightforward to check that

lim
λ→0+ bλ = lim

λ→0+ cλ = γ

eγ a − 1
, (2.6)

where γ = 2μ/σ 2. In the literature on risk theory, the constant γ is known as the adj-
ustment coefficient. In particular, when μ = 0, the quantity γ /(eγ a − 1) is understood as
limγ→0 γ /(eγ a − 1) = 1/a. It follows from (2.5) and (2.6) that

P{τa < ∞} = lim
λ→0+ E[e−λτa ] = 1.

Furthermore, it follows that

P{Mτa ≥ x} = P{Mτa ≥ x, τa < ∞} = lim
λ→0+ E[e−λτa ; Mτa ≥ x] = e−γ x/(eγ a−1), (2.7)

which implies that the running maximum at the first drawdown time Mτa follows an exponential
distribution with mean (eγ a − 1)/γ (see, e.g. [13]).

3. The drawdown times with recovery

We begin our analysis with the drawdown times with recovery {τ̃ n
a , n ∈ N}, given that their

structure leads to a simpler analysis than their counterpart drawdown times without recovery.
We first consider the asymptotic behavior of the frequency rate of drawdowns with recovery.

Let Ña
t = ∑∞

n=1 1{τ̃ n
a ≤t} be the number of drawdowns with recovery observed by time t ≥ 0,

and define Ña
t /t to be the frequency rate of drawdowns. It is clear that {Ña

t , t ≥ 0} is
a delayed renewal process where the first drawdown time is distributed as τa , while the
subsequent inter-drawdown times are independent and identically distributed as T +

Xτa +a ◦ τa .
From Theorem 6.1.1 of Rolski et al. [19], it follows that, with probability 1,

lim
t→∞

Ña
t

t
=

⎧⎪⎨
⎪⎩

1

E[τa] + E[T +
a ] = 2μ2

σ 2(e2μa/σ 2 − 1)
if μ > 0,

0 if μ ≤ 0.

Moreover, one could easily obtain some central limit theorems for Ña
t by Theorem 6.1.2 of [19].

Next, we study the joint Laplace transform of τ̃ n
a and Mτ̃n

a
. Note that Xτ̃n

a
= Mτ̃n

a
− a a.s.

whenever τ̃ n
a < ∞, and, thus, the following theorem is sufficient to characterize the triplet

(τ̃ n
a , Mτ̃n

a
, Xτ̃n

a
).

Theorem 3.1. For n ∈ N and λ, x ≥ 0, it follows that

E[e−λτ̃n
a ; Mτ̃n

a
> x] =

(
cλ

bλ

)n

e−(n−1)β+
λ a

n−1∑
m=0

(bλx)m

m! e−bλx. (3.1)

Proof. To prove this result, we first condition on the first drawdown time τa and subsequently
on the time for the process X to recover its running maximum. Using the strong Markov property
of X and (2.3), it is clear that

E[e−λτ̃n
a −sMτ̃n

a ] = E[e−λτ̃n
a −sMτ̃n

a ; τ̃ n
a < ∞]

= E[e−λτa−sMτa ]E[e−T +
a ]E[e−λτ̃n−1

a −sM
τ̃
n−1
a ]

= cλ

bλ + s
e−β+

λ aE[e−λτ̃n−1
a −sM

τ̃
n−1
a ]
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=
(

cλ

bλ + s

)n−1

e−(n−1)β+
λ aE[e−λτa−sMτa ]

=
(

cλ

bλ + s

)n

e−(n−1)β+
λ a. (3.2)

Given that (bλ/(bλ + s))n is the Laplace transform of an Erlang random variable (RV) with
mean n/bλ and variance n/(bλ)

2, a tail inversion of (3.2) with respect to s yields (3.1).

In particular, letting x → 0+, it follows that

E[e−λτ̃n
a ] =

(
cλ

bλ

)n

e−(n−1)β+
λ a (3.3)

for n ∈ N. Furthermore, letting λ → 0+ in (3.3), together with (2.6) and limλ→0+ β+
λ =

(−μ + |μ|)/σ 2, it follows that

P{τ̃ n
a < ∞} =

{
1 if μ ≥ 0,

e(n−1)γ a if μ < 0.
(3.4)

In other words, a historical running maximum may never be recovered if the drift μ < 0.

Corollary 3.1. For n ∈ N and x > 0, it holds that

P{Mτ̃n
a

> x, τ̃ n
a < ∞} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−γ x/(eγ a−1)
n−1∑
m=0

1

m!
(

γ x

eγ a − 1

)m

if μ ≥ 0,

e(n−1)γ ae−γ x/(eγ a−1)
n−1∑
m=0

1

m!
(

γ x

eγ a − 1

)m

if μ < 0.

(3.5)

Proof. Substituting (3.3) into (3.1) yields

E[e−λτ̃n
a ; Mτ̃n

a
> x] = E[e−λτ̃n

a ]
n−1∑
m=0

(bλx)m

m! e−bλx. (3.6)

Taking the limit when λ → 0+ in (3.6), and then using (2.6), we arrive at

P{Mτ̃n
a

> x, τ̃ n
a < ∞} = P{τ̃ n

a < ∞}
n−1∑
m=0

(γ x/(eγ a − 1))m

m! e−γ x/(eγ a−1). (3.7)

Substituting (3.4) into (3.7) results in (3.5).

Note that (3.7) indicates

P{Mτ̃n
a

> x | τ̃ n
a < ∞} =

n−1∑
m=0

1

m!
(

γ x

eγ a − 1

)m

e−γ x/(eγ a−1) (3.8)

for all μ ∈ R. This result can be interpreted probabilistically. Indeed, when τ̃ n
a < ∞,

Mτ̃m
a

−M
τ̃m−1
a

follows an exponential distribution with mean (eγ a − 1)/γ for m = 1, 2, . . . , n.
From the strong Markov property, the RVs Mτ̃m

a
− M

τ̃m−1
a

for all m = 1, 2, . . . , n are all inde-
pendent, and, thus, Mτ̃n

a
= ∑n

m=1(Mτ̃m
a

− M
τ̃m−1
a

) is an Erlang RV with survival function (3.8).
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In particular, when n → ∞, it is easy to check that limn→∞ P{Mτ̃n
a

> x} = P{T +
x < ∞}

which agrees with (2.2). For completeness, we conclude this section with a result that is
immediate from (3.1) and the fact that Mτ̃n

a
− Xτ̃n

a
= a a.s. whenever τ̃ n

a < ∞.

Corollary 3.2. For n ∈ N and x ≥ −a, it holds that

E[e−λτ̃n
a ; Xτ̃n

a
> x] =

(
cλ

bλ

)n

e−(n−1)β+
λ a

n−1∑
m=0

(bλ(x + a))m

m! e−bλ(x+a).

4. Drawdown times without recovery

In this section we turn our attention to the drawdown times without recovery. These are
more challenging to analyze than their counterparts with recovery.

Let Na
t = ∑∞

n=1 1{τn
a ≤t} be the number of drawdowns without recovery by time t ≥ 0.

Clearly, {Na
t , t ≥ 0} is a renewal process with independent inter-drawdown times, all dis-

tributed as τa . By Theorem 6.1.1 of [19], it follows that, with probability 1,

lim
t→∞

Na
t

t
= 1

E[τa] = 2μ2

σ 2e2μa/σ 2 − σ 2 − 2μa
,

which is consistent with our intuition based on (1.4). Here again, we can also obtain some
central limit theorems for Na

t by an application of Theorem 6.1.2 of [19].
Next, we characterize the joint distribution of (τn

a , Xτn
a
) by deriving an explicit expression

for E[e−λτn
a ; Xτn

a
> x].

Theorem 4.1. For n ∈ N and λ, x > 0, the joint distribution of (τn
a , Xτn

a
) satisfies

E[e−λτn
a ; Xτn

a
> x] =

(
cλ

bλ

)n

e−bλ(x+na)
n−1∑
m=0

(bλ(x + na))m

m! . (4.1)

Proof. Given that Xτn
a
+na is a positive RV (and Xτn

a
is not), we prove (4.1) by first deriving

an expression for the joint Laplace transform of (τn
a , Xτn

a
+ na). By conditioning on the first

drawdown time and its associated value process, and by making use of the strong Markov
property and (2.3), it is clear that, for all s ≥ 0,

E[e−λτn
a −s(Xτn

a
+na)] = E[e−λτa−s(Xτa +a)]E[e−λτn−1

a −s(X
τ
n−1
a

+(n−1)a)]
= E[e−λτa−sMτa ]E[e−λτn−1

a −s(X
τ
n−1
a

+(n−1)a)]
= cλ

bλ + s
E[e−λτn−1

a −s(X
τ
n−1
a

+(n−1)a)]

=
(

cλ

bλ + s

)n

. (4.2)

The Laplace transform inversion of (4.2) with respect to s results in

E[e−λτn
a ; (Xτn

a
+ na) ∈ dy] = (cλ)

n yn−1e−bλy

(n − 1)! dy (4.3)

for y ≥ 0. Integrating (4.3) over y from x + na to ∞ yields (4.1).
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Letting s → 0+ in (4.2), it follows that

E[e−λτn
a ] =

(
cλ

bλ

)n

= (E[e−λτa ])n. (4.4)

Note that (4.4) and (2.6) imply that

P{τn
a < ∞} = 1.

It is worth pointing out that the relation E[e−λτn
a ] = (E[e−λτa ])n holds more generally for an X

that is a general Lévy process or a renewal risk process (also known as the Sparre Andersen
risk model [2]), given that the inter-drawdown times τ 1

a , and {τn
a − τn−1

a }n≥2 form a sequence
of independent and identically distributed (i.i.d.) RVs.

Similarly, letting λ → 0+ in (4.1), it follows that

P{Xτn
a

≥ x} = e−γ (x+na)/(eγ a−1)
n−1∑
m=0

(γ (x + na)/(eγ a − 1))m

m! (4.5)

for n ∈ N and x ≥ −na. As expected, (4.5) is the survival function of an Erlang RV with mean
n(eγ a − 1)/γ and variance n((eγ a − 1)/γ )2, later translated by −na units.

Our objective is now to include Mτn
a

in the analysis of the nth drawdown time. A result
particularly useful to this end is provided in Lemma 4.1, which considers a specific constrained
Laplace transform of the first passage time to level x.

Lemma 4.1. For n ∈ N and x > 0, the constrained Laplace transform of T +
x together with

this first passage time occurring before τn
a is given by

E[e−λT +
x ; T +

x < τn
a ] = e−bλx

n−1∑
j=0

(cλe−bλa)j
x(x + ja)j−1

j ! . (4.6)

Proof. We prove this result by induction on n. For n = 1, it follows that

E[e−λT +
x ; T +

x < τ 1
a ] = E[e−λT +

x ] − E[e−λT +
x ; T +

x > τ 1
a ]

= e−β+
λ x −

∫ x

0
E[e−λτ 1

a ; Mτ 1
a

∈ dy]Ey−a[e−λT +
x ]

= e−β+
λ x −

∫ x

0
cλe−bλy e−β+

λ (x−y+a) dy

= e−β+
λ x − cλe−β+

λ a e−β+
λ x − e−bλx

bλ − β+
λ

,

where we use (2.4) in the third equality.

On the other hand, using the fact that cλe−β+
λ a = bλ − β+

λ , it follows that

E[e−λT +
x ; T +

x < τ 1
a ] = e−bλx.
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We now assume that (4.6) holds for n = 1, 2, . . . , k − 1 and that (4.6) also holds for n = k.
Indeed, by the total probability equation,

E[e−λT +
x ; T +

x < τk
a ] = E[e−λT +

x ; T +
x < τ 1

a ] + E[e−λT +
x ; τ 1

a < T +
x < τk

a ]
= e−bλx +

∫ x

0
E[e−λτa ; Mτa ∈ dy]Ey−a[e−λT +

x ; T +
x < τk−1

a ] dy

= e−bλx +
∫ x

0
cλe−bλy E[e−λT +

x−y+a ; T +
x−y+a < τk−1

a ] dy. (4.7)

Substituting (4.6) at n = k − 1 into (4.7) yields

E[e−λT +
x ; T +

x < τk
a ]

= e−bλx + cλe−bλ(x+a)
k−2∑
j=0

∫ x

0
(cλe−bλa)j

(x − y + a)(x − y + (j + 1)a)j−1

j ! dy

= e−bλx + cλe−bλ(x+a)

(
x +

k−2∑
j=1

(cλe−bλa)j
∫ x

0

(
(y + (j + 1)a)j

j !

− a
(y + (j + 1)a)j−1

(j − 1)!
)

dy

)

= e−bλx

(
1 + cλe−bλax +

k−1∑
j=2

(cλe−bλa)j
x(x + ja)j−1

j !
)

= e−bλx
k−1∑
j=0

(cλe−bλa)j
x(x + ja)j−1

j ! .

This completes the proof.

In the next theorem we provide a distributional characterization of the nth drawdown time τn
a

with respect to both Mτn
a

and Xτn
a

.

Theorem 4.2. For n ∈ N and x > 0, it follows that

E[e−λτn
a ; Mτn

a
> x, Xτn

a
∈ dy]

= (cλ)
ne−bλ(y+na)

×
n−1∑
m=0

x(x + ma)m−1(y − x + (n − m)a)n−1−m 1{y−x+(n−m)a≥0}
m!(n − m − 1)! dy. (4.8)

Proof. By conditioning on the drawdown episode during which the drifted Brownian motion
process X reaches level x for the first time and subsequently using the strong Markov property,

https://doi.org/10.1239/jap/1429282615 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1429282615


200 D. LANDRIAULT ET AL.

it follows that

E[e−λτn
a ; Mτn

a
> x, Xτn

a
∈ dy]

=
n−1∑
m=0

E[e−λτn
a ; Mτn

a
> x, Xτn

a
∈ dy, τm

a < T +
x < τm+1

a ]

=
n−1∑
m=0

E[e−λT +
x ; τm

a < T +
x < τm+1

a ]Ex[e−λτn−m
a ; Xτn−m

a
∈ dy]. (4.9)

From Lemma 4.1, we know that

E[e−λT +
x ; τm

a < T +
x < τm+1

a ] = E[e−λT +
x ; τm

a < T +
x ] − E[e−λT +

x ; τm+1
a < T +

x ]

= (cλ)
m x(x + ma)m−1

m! e−bλ(x+ma). (4.10)

By Theorem 4.1, it follows that

Ex[e−λτn−m
a ; Xτn−m

a
∈ dy]

= (cλ)
n−m(y − x + (n − m)a)n−m−1e−bλ(y−x+(n−m)a) 1{y−x+(n−m)a≥0}

(n − m − 1)! dy. (4.11)

Substituting (4.10) and (4.11) into (4.9) and simplifying, we easily obtain (4.8).

Recall that τ 1
a = τ̃ 1

a = τa and Xτa = Mτa − a a.s. Therefore, by letting λ → 0+ and x = a

in (4.10), it follows that, for m = 0, 1, 2, . . .,

P{τ̃ 2
a = τ 2+m

a } = P{τm
a < T +

a < τm+1
a }

= (m + 1)m−1

m!
(

γ a

eγ a − 1

)m

e−(m+1)γ a/(eγ a−1), (4.12)

which is the probability mass function of a generalized Poisson RV (see, e.g. Equation (9.1)
of Consul and Famoye [7] with θ = λ = γ a/(eγ a − 1)). For completeness, a RV Y has a
generalized Poisson(θ, λ) distribution if its probability mass function pY is given by

pY (m) = θ(θ + λm)m−1e−θ−λm

m! , m = 0, 1, 2, . . . ,

when both θ, λ > 0.
We will propose a generalization of (4.12) in Theorem 4.3.

Remark 4.1. Equation (4.12) can be interpreted as follows: the number of drawdowns without
recovery between two successive drawdowns with recovery follows a generalized Poisson
distribution with θ = λ = γ a/(eγ a − 1).

In the following result we connect the two drawdown time sequences. It should be noted
that the RV Na

τ̃k
a

− k represents the number of drawdowns without recovery over the first k

drawdowns with recovery. When k = 2, (4.13) coincides with (4.12).
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Theorem 4.3. For any k ∈ N, Na
τ̃k
a

− k follows a generalized Poisson distribution with param-
eters θ = (k − 1)γ a/(eγ a − 1) and λ = γ a/(eγ a − 1), i.e., for m = 0, 1, 2, . . ., it follows that

P{τ̃ k
a = τ k+m

a } = P{Na
τ̃k
a

= k + m}

= k − 1

m + k − 1

((m + k − 1)γ a/(eγ a − 1))m

m! e−(m+k−1)γ a/(eγ a−1). (4.13)

Proof. It is clear that {τ̃ k
a = τ k+m

a } corresponds to the event that m drawdowns without
recovery will occur over the first k drawdowns with recovery, i.e.

{τ̃ k
a = τ k+m

a } = {Na
τ̃k
a

= k + m}.
Next we prove that Na

τ̃k
a

− k follows a generalized Poisson distribution. By Remark 4.1 and
the strong Markov property of X, we know that the number of drawdowns without recovery
between any two successive drawdowns with recovery are i.i.d. and follow a generalized Poisson
distribution with θ = λ = γ a/(eγ a − 1). Thus,

Na
τ̃k
a

− k =
k∑

i=2

(Na
τ̃ i
a
− Na

τ̃ i−1
a

− 1),

corresponds to a sum of i.i.d. RVs with a generalized Poisson distribution θ = λ = γ a/(eγ a−1).
Using Theorem 9.1 of Consul and Famoye [7], we have that Na

τ̃k
a

− k follows a generalized
Poisson distribution with parameters θ = (k − 1)γ a/(eγ a − 1) and λ = γ a/(eγ a − 1).

Next, we propose the following corollary, which can be viewed as an extension to [20]
and [13] from the first drawdown case to the nth drawdown without recovery.

Corollary 4.1. For n ∈ N and x > 0, it follows that

E[e−λτn
a ; Mτn

a
> x] =

(
cλ

bλ

)n n−1∑
m=0

x(x + ma)m−1bm
λ

m! e−bλ(ma+x).

Proof. Taking the integral of (4.8) with respect to y in (−na, ∞), it follows that

E[e−λτn
a ; Mτn

a
> x]

= (cλ)
n

n−1∑
m=0

x(x + ma)m−1

m! (n − m − 1)!
∫ ∞

x−(n−m)a

e−bλ(y+na)(y − x + (n − m)a)n−m−1 dy

= (cλ)
n

n−1∑
m=0

x(x + ma)m−1

m! (n − m − 1)!
∫ ∞

0
e−bλ(z+x+ma)zn−m−1 dz

= (cλ)
n

n−1∑
m=0

x(x + ma)m−1

m! (n − m − 1)!e−bλ(x+ma)

∫ ∞

0
e−bλzzn−m−1 dz

= (cλ)
n

n−1∑
m=0

x(x + ma)m−1

m! bn−m
λ

e−bλ(x+ma),

which completes the proof.
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The marginal distribution of Mτn
a

can be easily obtained from Corollary 4.1 by letting
λ → 0+ and subsequently making use of (2.6). Indeed,

P{Mτn
a

> x} =
n−1∑
m=0

x(x + ma)m−1(γ /(eγ a − 1))m

m! e−γ (ma+x)/(eγ a−1). (4.14)

Rearrangements of (4.14) yield

P{Mτn
a

> x} =
n−1∑
k=0

Dk,n

(γ x/(eγ a − 1))k

k! e−γ x/(eγ a−1), (4.15)

where D0,n = 1, and

Dk,n =
n−1∑
m=k

k(mγ a/(eγ a − 1))m−k

m(m − k)! e−mγ/(eγ a−1)a

=
n−1−k∑
m=0

k((m + k)γ a/(eγ a − 1))m

(m + k)m! e−(m+k)γ a/(eγ a−1) (4.16)

for k = 1, 2, . . . , n − 1. Then,

P{Mτn
a

∈ dy} =
n∑

k=1

dk,n

(γ a/(eγ a − 1))kyk−1e−γ ay/(eγ a−1)

(k − 1)! dy,

where {dk,n}nk=1 are given by

dk,n ≡ Dk−1,n − Dk,n =
n∑

j=k

k − 1

j − 1

((j − 1)γ a/(eγ a − 1))j−k

(j − k)! e−(j−1)γ a/(eγ a−1)

×
(

1 −
n−j−1∑
m=0

(m + 1)m−1

m!
(

γ a

eγ a − 1

)m

e−(m+1)γ a/(eγ a−1)

)
.

In conclusion, Mτn
a

follows a mixed Erlang distribution which is an important class of distri-
bution in risk management (see, e.g. Willmot and Lin [22] for an extensive review of mixed
Erlang distributions).

Remark 4.2. Note that the distribution of Mτn
a

does not come as a surprise. Indeed, we can
obtain the structural form of the distribution of Mτn

a
by conditioning on Ña

τn
a

, namely, the number
of drawdowns with recovery over the first n drawdowns (without recovery). Using the strong
Markov property of the process X and (2.7), it follows that Mτn

a
| Ña

τn
a

= m is an Erlang RV
with mean m(eγ a − 1)/γ and variance m((eγ a − 1)/γ )2 for m = 1, 2, . . . , n. Thus, in (4.15),
Dk,n can be interpreted as the survival function of Ña

τn
a

, i.e.

Dk,n = P{Ña
τn
a

> k} = P{τ̃ k+1
a ≤ τn

a }.
In the next corollary we investigate the actual drawdown Mt − Xt at t = τn

a .
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Corollary 4.2. For a ≤ x ≤ na, it follows that

E[e−λτn
a ; Mτn

a
− Xτn

a
≤ x]

= (cλ)
ne−bλ(na−x)

×
n−1∑
m=0

(
(na − x)m

bn−m
λ m! − 1{x≤(n−m)a}((n − m)a − x)n−m−1

∫ ∞
0 e−bλyy(y + ma)m−1 dy

m! (n − m − 1)!
)

.

Proof. It follows that

E[e−λτn
a ; Mτn

a
− Xτn

a
> x]

=
∫ ∞

−x

E[e−λτn
a ; Mτn

a
− Xτn

a
> x, Xτn

a
∈ dy] + E[e−λτn

a ; Mτn
a

− Xτn
a

> x, Xτn
a

≤ −x]

=
∫ ∞

−x

E[e−λτn
a ; Mτn

a
> x + y, Xτn

a
∈ dy] + E[e−λτn

a ; Xτn
a

≤ −x]

=
∫ ∞

−x

E[e−λτn
a ; Mτn

a
> x + y, Xτn

a
∈ dy]

+
(

cλ

bλ

)n(
1 − e−bλ(na−x)

n−1∑
m=0

(bλ(na − x))m

m!
)

, (4.17)

where the last step is due to (4.1). Moreover, by Theorem 4.2, the first term of (4.17) is∫ ∞

−x

E[e−λτn
a ; Mτn

a
> x + y, Xτn

a
∈ dy]

= (cλ)
n

n−1∑
m=0

((n − m)a − x)n−m−1 1{−x+(n−m)a≥0}
m! (n − m − 1)!

×
∫ ∞

−x

e−bλ(y+na)(x + y)(x + y + ma)m−1 dy

= (cλ)
n

n−1∑
m=0

((n − m)a − x)n−m−1 1{x≤(n−m)a}
m! (n − m − 1)!

∫ ∞

0
e−bλ(z−x+na)z(z + ma)m−1 dz

= (cλ)
ne−bλ(na−x)

n−1∑
m=0

((n − m)a − x)n−m−1 1{x≤(n−m)a}
m! (n − m − 1)!

∫ ∞

0
e−bλzz(z + ma)m−1 dz.

Substituting this back into (4.17) completes the proof.

To complete the section, we consider a numerical example to compare the distribution of
the nth drawdown times τ̃ n

a and τn
a whose Laplace transforms are given in (3.3) and (4.4),

respectively. We implement a numerical inverse Laplace transform approach proposed by
Abate and Whitt [1]. For ease of notation, we denote the cumulative distribution functions
of τn

a and τ̃ n
a by Fn and F̃n, respectively.

The probabilities that at least n drawdowns with or without recovery occur before time 1
for different values of the drift μ are presented in Table 1. We observe that Fn(1) > F̃n(1) for
n ≥ 2 due to the relation between τn

a and τ̃ n
a given in (4.13). In addition, we see that Fn(1)

increases as μ decreases. However, we observe the opposite trend for F̃n(1) when n ≥ 2.
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Table 1: Distribution of the nth drawdown times when a = 0.1 and σ = 0.12.

μ = 0.1 μ = 0.0 μ = −0.1

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Fn(1) F̃n(1)

0.9779 0.9779
0.8759 0.4865
0.6651 0.1024
0.4060 0.0082
0.1942 0.0002
0.0721 0.0000

Fn(1) F̃n(1)

0.9908 0.9908
0.9366 0.4406
0.7926 0.0885
0.5652 0.0070
0.3262 0.0002
0.1492 0.0000

Fn(1) F̃n(1)

0.9967 0.9967
0.9719 0.3636
0.8874 0.0663
0.7166 0.0050
0.4871 0.0001
0.2696 0.0000

Table 2: Distribution of drawdown times when a = 0.1 and σ = 0.12.

μ = 0.1 μ = 0.0 μ = −0.1

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Fn(1) F̃n(1)

0.5663 0.5663
0.1592 0.0339
0.0225 0.0002
0.0016 0.0000
0.0001 0.0000
0.0000 0.0000

Fn(1) F̃n(1)

0.7845 0.7845
0.3755 0.0494
0.0986 0.0002
0.0137 0.0000
0.0010 0.0000
0.0000 0.0000

Fn(1) F̃n(1)

0.9257 0.9257
0.6509 0.0463
0.2891 0.0002
0.0730 0.0000
0.0099 0.0000
0.0007 0.0000

This is because the previous running maximum is less likely to be revisited for a smaller μ.
Since the drawdown risk is in principle a type of downside risk, it is reasonable to assume that
smaller μ should lead to higher downside risks. In this sense, we suggest that the drawdown
times without recovery are a better measure to capture the essence of drawdown risks.

Table 2 is the equivalent of Table 1 but with a lower volatility σ = 0.12. We notice that
Fn(1) and F̃n(1) decrease as σ decreases. We also have an interesting observation that the
trend of F̃2(1) is not monotone in μ. Again, this is because the occurrence of τ̃ n

a for n ≥ 2
necessitates a recovery for the previous running maximum. Smaller drift does imply higher
drawdown risk; however, the recovery becomes more difficult.

5. Insurance of frequent relative drawdowns

In this section we consider insurance policies that protect against the risk of frequent
drawdowns. We denote the price of an underlying asset by S = {St , t ≥ 0}, with dynamics

dSt = rSt dt + σSt dW
Q
t , S0 = s0 > 0,

where r > 0 is the risk-free rate, σ > 0, and {WQ
t , t ≥ 0} is a standard Brownian motion

under a risk-neutral measure Q. It is well known that

St = s0eXt , (5.1)

where Xt = (r − 1
2σ 2)t + σW

Q
t .

In practice, drawdowns are often quoted as a percentage. For fixed 0 < α < 1, we denote
the time of the first relative drawdown over size α by

ηα(S) = inf{t ≥ 0 : MS
t − St ≥ αMS

t },
where MS

t = sup0≤u≤t Su represents the running maximum of S by time t . By (5.1), it is easy
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to see that the relative drawdown of the geometric Brownian motion S corresponds to the actual
drawdown of a drifted Brownian motion X, namely,

ηα(S) = inf{t ≥ 0 : MX
t − Xt ≥ − log(1 − α)} = τᾱ(X),

where ᾱ = − log(1 − α). Similarly, we denote the relative drawdown times with and without
recovery by

η̃n
α(S) = inf

{
t > η̃n−1

α (S) : MS
t − St ≥ αMS

t , MS
t > MS

η̃n−1
α (S)

}
,

and
ηn

α(S) = inf
{
t > ηn−1

α (S) : MS

[ηn−1
α (S),t] − St ≥ αMS

[ηn−1
α (S),t]

}
,

respectively. Therefore, it follows that

η̃n
α(S) = τ̃ n

ᾱ (X) and ηn
α(S) = τn

ᾱ (X). (5.2)

Next, we consider two types of insurance policy that offer a protection against relative
drawdowns. For the first policy, we assume that the seller pays the buyer k at time T if a total
of k relative drawdowns over size 0 < α < 1 occurred prior to time T (for all k). For the relative
drawdown times with and without recovery, by (5.2), the risk-neutral prices are given by

Ṽ1(T ) = e−rT
∞∑

k=1

kQ{Ñ ᾱ
T (X) = k} = e−rT EQ[Ñ ᾱ

T (X)]

and

V1(T ) = e−rT
∞∑

k=1

kQ{Nᾱ
T (X) = k} = e−rT EQ[Nᾱ

T (X)],

respectively. For the second type of policy, we assume that the seller pays the buyer 1 at the time
of each relative drawdown time as long as it occurs before maturity T . Hence, their risk-neutral
prices are

Ṽ2(T ) =
∞∑

k=1

EQ[e−rτ̃ k
ᾱ (X); τ̃ k

ᾱ (X) ≤ T ]

and

V2(T ) =
∞∑

k=1

EQ[e−rτ k
ᾱ (X); τ k

ᾱ (X) ≤ T ],

respectively.

Corollary 5.1. For λ > 0, it follows that∫ ∞

0
e−λT V1(T ) dT = 1

λ + r

c̄λ+r/b̄λ+r

1 − c̄λ+r/b̄λ+r

,

∫ ∞

0
e−λT Ṽ1(T ) dT = 1

λ + r

c̄λ+r/b̄λ+r

1 − exp(−β̄+
λ+ra)c̄λ+r/b̄λ+r

,

∫ ∞

0
e−λT V2(T ) dT = 1

λ

c̄λ+r/b̄λ+r

1 − c̄λ+r/b̄λ+r

,

∫ ∞

0
e−λT Ṽ2(T ) dT = 1

λ

c̄λ+r/b̄λ+r

1 − exp(−β̄+
λ+ra)c̄λ+r/b̄λ+r

,
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where b̄λ = (β̄+
λ e−β̄−

λ ᾱ − β̄−
λ e−β̄+

λ ᾱ)/(e−β̄−
λ ᾱ − e−β̄+

λ ᾱ), c̄λ = (β̄+
λ − β̄−

λ )/(e−β̄−
λ ᾱ − e−β̄+

λ ᾱ)

and β̄±
λ = (−r + σ 2/2 ± √

(r − σ 2/2)2 + 2λσ 2)/σ 2.

Proof. We provide the proof for
∫ ∞

0 V1(T )e−λT dT and
∫ ∞

0 V2(T )e−λT dT only. The other
two results can be derived in a similar fashion. From the definition of Nᾱ

T (X), we have the
following relation

EQ[Nᾱ
T (X)] =

∞∑
k=1

Q{Nᾱ
T (X) ≥ k} =

∞∑
k=1

Q{τ k
ᾱ (X) ≤ T }.

By (4.4), it follows that∫ ∞

0
V1(T )e−λT dT =

∫ ∞

0
e−(λ+r)T EQ[Nᾱ

T (X)] dT

=
∞∑

k=1

∫ ∞

0
e−(λ+r)T Q{τ k

ᾱ (X) ≤ T } dT

= 1

λ + r

∞∑
k=1

EQ[e−(λ+r)τ k
ᾱ (X)]

= 1

λ + r

∞∑
k=1

(
c̄λ+r

b̄λ+r

)n

= 1

λ + r

c̄λ+r/b̄λ+r

1 − c̄λ+r/b̄λ+r

.

For
∫ ∞

0 V2(T )e−λT dT , by Fubini’s theorem and (4.4), it follows that

∫ ∞

0
V2(T )e−λT dT =

∞∑
k=1

∫ ∞

0
EQ[e−rτ k

ᾱ (X); τ k
ᾱ (X) ≤ T ]e−λT dT

=
∞∑

k=1

∫ ∞

0

∫ T

0
e−rtQ{τ k

ᾱ (X) ∈ dt}e−λT dT

=
∞∑

k=1

1

λ

∫ ∞

0
e−(λ+r)tQ{τn

ᾱ (X) ∈ dt}

=
∞∑

k=1

1

λ

(
c̄λ+r

b̄λ+r

)n

= 1

λ

c̄λ+r/b̄λ+r

1 − c̄λ+r/b̄λ+r

.

This completes the proof.

Remark 5.1. It is worth pointing out that, through expansion of the randomized prices in
Corollary 5.1 in terms of exponentials, it is possible to obtain semistatic hedging portfolios
as in [5]. Moreover, capped insurance contracts against frequency of drawdowns can also be
formulated and priced using Theorems 3.1 and 4.1, and Corollary 4.1.
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Table 3: Insurance contract prices when α = 15% and r = 5%.

V1(T ) Ṽ1(T ) V2(T ) Ṽ2(T )

T = 1 σ = 0.1 0.1102 0.1091 0.1120 0.1108
T = 2 σ = 0.1 0.3011 0.2769 0.3131 0.2885
T = 3 σ = 0.1 0.4743 0.4031 0.5058 0.4318

T = 1 σ = 0.2 1.1777 0.7873 1.2043 0.8081
T = 2 σ = 0.2 2.3815 1.1842 2.4977 1.2550
T = 3 σ = 0.2 3.4651 1.4519 3.7279 1.5890

To conclude, we consider a pricing example for the four types of insurance contract proposed
earlier. The same numerical Laplace transform approach as in the last section is applied;
see Table 3.

As we expect, type 2 contracts have higher prices than type 1 contracts because of earlier
payments (at the moment of each drawdown time instead of the maturity T ). From Table 3 we
also show that Ṽ1(T ) and Ṽ2(T ) are respectively lower than V1(T ) and V2(T ) due to τn

a ≤ τ̃ n
a .

All the prices increase as T increases or σ increases. Moreover, we can expect that the prices
will decrease as α or r increases. The latter is due to a higher discount rate which is the risk-free
rate under the risk-neutral measure Q.
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[17] Pospisil, L. and Večeř, J. (2010). Portfolio sensitivity to changes in the maximum and the maximum drawdown.

Quant. Finance 10, 617–627.
[18] Pospisil, L., Večeř, J. and Hadjiliadis, O. (2009). Formulas for stopped diffusion processes with stopping

times based on drawdowns and drawups. Stoch. Process. Appl. 119, 2563–2578.
[19] Rolski, T., Schmidli, H., Schmidt, V. and Teugels, J. (1999). Stochastic Processes for Insurance and Finance.

John Wiley, Chichester.
[20] Taylor, H. M. (1975). A stopped Brownian motion formula. Ann. Prob. 3, 234–246.
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