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Product Bases for the Rationals
P. Berrizbeitia and P. D. T. A. Elliott

Abstract. A sequence of positive rationals generates a subgroup of finite index in the multiplicative positive
rationals, and group product representations by the sequence need only a bounded number of terms, if and
only if certain related sequences have densities uniformly bounded from below.

In 1930 Schnirelmann introduced on the positive integers the density now named after
him, and employed it to show that every integer greater than 1 could be expressed as a sum
of primes, with a uniformly bounded number of summands. This was a first step towards
the conjectures of Goldbach. It was important that once positive, Schnirelmann’s density is
increased by adding a sequence to itself.

It is tantalising to try and extend Schnirelmann’s ideas to the multiplicative generation
of rationals. There are obstacles.

Let Q∗ denote the multiplicative group of positive rationals, Γ the subgroup generated
by the members, an, of a sequence of rationals, G the quotient group, Q∗/Γ.

A sequence of rationals may generate a proper subgroup of Q∗. Unlike the situation for
an integer sequence of positive Schnirelmann density, further multiplication will avail us
naught; Q∗ is not cyclic; there is no multiplicative element corresponding to 1.

Whether a positive integer may be expressed as a sum of elements taken from some
sequence of distinct positive integers may be decided in a finite number of steps. Not sur-
prisingly, Schnirelmann’s arguments are local in nature. However, the word problem for
denumerable abelian groups has no (finite recursive) decision procedure. Since Q∗ is free
on denumerably many generators, and factoring by Γ plays the rôle of adjoining relations,
the nature of G cannot be determined, locally or not, without particular knowledge of the
an in Γ. What should this knowledge be?

The following result throws a little light on this problem.
For each positive integer t , St will denote the members of Γ representable by a group

product using at most t terms from the sequence (an), repetition allowed.
For a set of rationals, E, define the lower density

d(E) = lim inf
x→∞

x−1
∑

n≤x,n∈E

1,

the sum counting only positive integers. Clearly 0 ≤ d(E) ≤ 1 and the density of a union
of disjoint sets E and F is at least as large as the sum of their individual densities. d(E) will
be the classical asymptotic density if the infimum may be removed.
γE will denote the set of products of the elements in E by the rational γ.
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Theorem The following propositions are equivalent:

(i) G is finite and Γ = St for some t.
(ii) There is a k such that d(m−1Sk) ≥ c1 > 0 uniformly for all positive integers m.
(iii) There is a w such that d(γSw) ≥ c2 > 0 uniformly for all positive rationals γ.

Moreover, t can be given explicitly in terms of k and c1, or w and c2.

In part, proposition (i) of the theorem asserts the existence of a t , so that if a ratio-
nal belongs to Γ, then at most t members of the sequence (an) are needed in its product
representation. Nothing is said concerning the realisation of such a representation.

That (ii) implies (i) could be obtained by adapting the short argument in Elliott [2], but
t would not then be computable.

Combined with results from number theory, a careful variant of the argument given
here shows that any rational representable as a product of shifted primes p + 1, has such a
representation with exactly 19 terms [1].

We present a cyclic proof of the theorem. That (iii) implies (ii) is clear.

Proof that (ii) implies (i) Let the integer h exceed c−1
1 . Let m be a positive integer. The

sets Sk, m− jSk 0 ≤ j ≤ h − 1, cannot be mutually disjoint, otherwise the density of their
union will exceed 1. There are integers u, v, 0 ≤ u < v ≤ h − 1 so that mv−u belongs to
S2k. The group G has bounded order.

If γ = ab−1, with integers a, b, and bz belongs to S2k, then the coset γΓ contains the
integer representative abz−1.

Let m1, . . . ,m f be integer representatives for distinct cosets of Γ. The sets m−1
j Sk, 1 ≤

j ≤ f are mutually disjoint. Their union has density at least c1 f . The group G is bounded,
of order at most c−1

1 .
That Γ is some St costs a little more. We use the fact that if Sr+1 = Sr , then Γ = Sr .
E − F will denote the set of elements in E but not F.
Let γ belong to Sr+1 − Sr , r ≥ 3k. If γ = ab−1, as before, with bz in S2k, then Sr+1+2k −

Sr−2k contains the integer abz−1.
Moreover, if Sr+1 − Sr contains a rational, then so do each of S j+1 − S j , 3k ≤ j ≤ r. We

can find an integer in each set S j+1+2k − S j−2k, 3k ≤ j ≤ r.
The sets S7kw+1+2k − S7kw−2k, 1 ≤ w ≤ r(7k)−1 are disjoint. Let them contain integers

nw, respectively. The corresponding sets n−1
w Sk, 1 ≤ w ≤ r(7k)−1 are also disjoint. Their

union has density at least rc1(7k)−1.
If r > 7kc−1

1 , then we obtain a contradiction. Hence Γ is St for some t not exceeding
7kc−1

1 .
No attempt has been made to minimize the value of t .

Remark Let S̄ j denote the set of elements in Γ representable using exactly j of the an,
counted with multiplicity.

Since 1 = ana−1
n , S̄ j is contained in S̄ j+2. It is clear that for a non-empty S̄ j to be

contained in S̄ j+1, there must be a representation of 1 by an odd number of the an. Granted
the existence of such a representation, S̄ j will be a subset of S̄ j+m for all m ≥ (an odd) y.
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Assume, further, the validity of the second part of Proposition (i). Then for j ≥ t + y,

S̄ j ⊆ Γ = St =

t⋃
i=1

S̄i ⊆
t⋃

i=1

S̄i+( j−i) = S̄ j .

Each member of Γ has a product representation employing exactly j terms, from (an).

Proof that (i) implies (iii) That the integers belonging to any particular coset of Γ have an
asymptotic density follows from Theorem (3.10) of Ruzsa [3]. Moreover, since our group
G is finite, at least one density is positive. By the same result every density is positive. Our
situation is simpler than that of Ruzsa, and it is pertinent to obtain reasonably explicit
values for the various densities rather than just give them bounds. For completion and
not to appeal to his somewhat complicated paper we give a proof. Like Ruzsa, we adapt a
method of Dirichlet, save that we follow Dirichlet more closely.

Let σ denote the canonical homomorphism Q∗ → Q∗/Γ.
Let the ω in G for which the sum

∑
p−1, taken over the primes for which σ(p) = ω,

diverges generate the subgroup G1 of G. In particular,
∑

q−1, taken over the primes q for
which σ(q) does not lie in G1, converges.

If a rational is not divisible by a q, then it maps into G1.
Let Q1 denote the subgroup of positive rationals not divisible by any q.
Let θ j , 1 ≤ j ≤ |G1| denote the characters on G1, and g j the composition θ jσ restricted

to Q1. We extend g j to Q∗ by setting every g j(q) = 0. We obtain in this way a multiplicative
arithmetic function with values in the complex unit disc.

Those integers n in Q1 which σ takes to a particular element µ (of G1) have an asymp-
totic density:

D(µ) = lim
x→∞

1

x

∑
n≤x

1

|G1|

|G1|∑
j=1

g j(n)θ j(µ)

=
1

|G1|

|G1|∑
j=1

θ j(µ) lim
x→∞

1

x

∑
n≤x

g j(n).

Here we employ a theorem of Wirsing [4], that a multiplicative function which assumes
only finitely many values in the complex unit disc possesses an asymptotic mean-value.

According to that same reference, the mean-value of a typical g j is zero unless the series∑
p−1
(
1 − Re g j(p)

)
converges. If δ denotes the minimum of 1 − Re ρ taken over the

|G1|-th roots of unity, ρ, then this series cannot converge unless

δ
∑

µ,θ j (µ)6=1

∑
σ(p)=µ,p not q

1

p

also converges. Since
∑

q−1 converges, we may omit the condition: p not q. Then θ j must
be trivial on every ω, and so on G1.
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For the g j which extends the principal character on G1 we count those integers not di-
visible by any q; an application of the sieve of Eratosthenes suffices. We arrive at the value

D(µ) = |G1|
−1Π
(

1−
1

q

)
,

which is independent of µ.
Each positive integer has a unique representation n1n2, where n1 is that part of n com-

prised of powers of the primes q, an empty product interpreted as 1. Corresponding to this
decomposition, for any element τ in G,

∑
n≤x
σ(n)=τ

1 =
∑
λ

∑
n1≤x
σ(n1)=λ

∑
n2≤x/n1

σ(n2)=τλ−1

1,

where λ runs over the elements of G. Since n2 belongs to Q1, the innersum will be empty
unless τλ−1 belongs to G1; we may then estimate it in terms of D(τλ−1). In this way we
see that the integers n with σ(n) = τ have asymptotic density

∆(τ ) =
∑
λ∈τG1

∑
σ(n1)=λ

1

n1|G1|
Π
(

1−
1

q

)
.

This density is positive and does not exceed |G1|−1.
We continue with the proof of our theorem. Until now we have employed only the

first part of (i). Appealing to the second part, there are only finitely many distinct cosets
γSt = γΓ, γ rational. For each of these d(γSt ) = ∆

(
γ(mod Γ)

)
> 0. Proposition (iii) is

valid with w = t and c2 the minimum of∆(τ ) taken over the elements τ in G.
The theorem is proved.

Remarks When Γ is generated by the shifted primes, application of Dirichlet’s theorem
on primes in arithmetic progression together with the sieve of Eratosthenes shows that G1

coincides with G; cf. [1, Lemma 7]. Every coset of Γ then has asymptotic density |G|−1.
It is clear that one may replace the lower density in the theorem by any other density

that is at least additive on disjoint sets and coincides with the standard asymptotic density
when that exists.

We thank the referee for a careful reading of the text.
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