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We study numerically the flow around a spherical droplet set fixed in a linear shear flow
with moderate shear rates (Sr ≤ 0.5, Sr being the ratio between the velocity difference
across the drop and the relative velocity) over a wide range of external Reynolds numbers
(0.1 < Re ≤ 250, Re based on the slip velocity and the viscosity of the external fluid)
and drop-to-fluid viscosity ratios (0.01 ≤ μ∗ ≤ 100). The flow structure, the vorticity
field and their intrinsic connection with the lift force are analysed. Specifically, the
results on lift force are compared with the low-Re solution derived for droplets of
arbitrary μ∗, as well as prior data at finite Re available in both the clean-bubble limit
(μ∗ → 0) and the solid-sphere limit (μ∗ → ∞). Notably, at Re = O(100), the lift force
exhibits a non-monotonic transition from μ∗ → 0 to μ∗ → ∞, peaking at μ∗ ≈ 1. This
behaviour is related to an internal three-dimensional flow bifurcation also occurring under
uniform-flow conditions, which makes the flow to evolve from axisymmetric to biplanar
symmetric. This flow bifurcation occurs at low-but-finite μ∗ when the internal Reynolds
number (Rei, based on the viscosity of the internal fluid) exceeds approximately 300. In
the presence of shear, the corresponding imperfect bifurcation enhances the extensional
rate of the flow in the wake. Consequently, the streamwise vortices generated behind
the droplet can be more intense compared with those behind a clean bubble. Given the
close relation between the lift and these vortices, a droplet with Re = O(100) and μ∗ ≈ 1
typically experiences a greater lift force than that in the inviscid limit.
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1. Introduction

Predicting the motion of droplets in dispersed two-phase flows is a key problem in
fluid mechanics that has a bearing on a wide range of applications from epidemiology,
microfluidic biotechnologies to chemical or petroleum engineering. Droplets maintain
a spherical shape when interfacial tension forces or viscous dissipation significantly
outweigh inertial and buoyancy effects, a condition commonly met by small-sized fluid
particles. Under steady state, the motion of a spherical droplet is governed by two distinct
hydrodynamic forces: drag (usually counterbalanced by the joint effects of the net gravity
force and hydrostatic pressure), which reduces the relative motion; and lift, which is
perpendicular to the relative motion and causes cross-stream droplet migration. While
much experimental and numerical studies have been devoted to the drag, knowledge about
lift, despite its nearly equal importance in predicting droplet motion in complex flows,
remains limited (Magnaudet 2003; Di Carlo 2009; Elghobashi 2019; Mathai, Lohse &
Sun 2020; Bourouiba 2021). Note, however, that the importance of lift cannot be fully
inferred by comparing its magnitude with drag, as the two forces are, by definition, always
perpendicular, and comparing their magnitudes does not reveal their relative importance
in the dynamics they influence (Colin, Fabre & Kamp 2012). A typical situation where lift
plays a key role while its magnitude remains vanishingly small with respect to drag is the
inertial migration of particles/droplets in a shear flow in the low (slip)-Reynolds-number
limit. This is the case, for instance, in the experiment of Segré & Silberberg (1962a,b),
where neutrally buoyant spheres in laminar pipe flow were found to accumulate at a
radial equilibrium position away from the centre. This equilibrium position results from
a competition between the inertial lift contributed from shear, slip and the wall (Asmolov
1999; Matas, Jeffrey & Guazzelli 2009).

Due to its fore–aft symmetry, a spherical droplet experiences a lift force only when
finite inertial effects are present (Bretherton 1962; Saffman 1965; Legendre & Magnaudet
1997). This inertia is characterized by the (external) Reynolds number Re = urel(2R)/ν,
where urel represents the relative velocity, R the radius of the droplet and ν the kinematic
viscosity of the external fluid. At low Re, the lift force arises from the vortical mechanism
(Legendre & Magnaudet 1997; Magnaudet, Takagi & Legendre 2003): the shear in the
ambient flow causes weak asymmetric advection of the vorticity from the droplet surface,
causing a correction force which has a non-zero component in the transverse direction, i.e.
a lift force. A key feature revealed by this mechanism is that the lift force is proportional to
ω2

s , the square of the maximum vorticity generated at the droplet surface. Specifically, the
matching of the internal and external tangential velocity and viscous stress at the interface
yields ωsR/urel ∝ (2 + 3μ∗)/(2 + 2μ∗), where μ∗ is the (dynamic) viscosity ratio of the
internal and external fluids. Therefore, to leading order, the lift force on a droplet in the
clean-bubble limit (i.e. μ∗ → 0) differs from that in the solid-sphere limit (i.e. μ∗ → ∞)
by only a factor of (2/3)2.

The lift force generated by the vortical mechanism decreases as Re increases. Then,
if μ∗ is small, a second, inviscid mechanism takes over. This mechanism involves the
tilting of the ambient vorticity by the sphere, which leads to the generation of a pair
of counterrotating vortices in the wake of the droplet. This is the classical Lighthill
mechanism (Lighthill 1956; Auton 1987) (hereafter referred to as the ‘L’ mechanism),
which corresponds to a lift force proportional to the ambient vorticity and pointing in
the same direction as that predicted by the low-Re vortical mechanism. In addition to the
‘L’ mechanism, a so-called ‘S’ mechanism (Adoua, Legendre & Magnaudet 2009) also
comes into play at moderate-to-high Re. Similar to the ‘L’ mechanism, it also generates
two counter-rotating streamwise vortices in the wake. However, these are formed due to
the tilting of the surface-generated vorticity ωs by the velocity gradient of the ambient
1000 A88-2
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Lift on a spherical droplet in a linear shear flow

flow, with orientations opposite to those induced by the ‘L’ mechanism (refer to (3.2)
in § 3.3.2 for more details on the distinction between the two mechanisms). The ‘S’
mechanism, being intrinsically related to ωs, has a negligible effect in the clean-bubble
limit, as ωs(μ

∗ → 0) never exceeds 3urel/R (Batchelor 1967, p. 366). Conversely, in the
solid-sphere limit and at high enough Re, it likely overwhelms the ‘L’ mechanism, as
ωs(μ

∗ → ∞) scales with Re1/2 (Magnaudet, Rivero & Fabre 1995). The significance of
this ‘S’ mechanism for droplets with finite viscosity ratios, corresponding to liquid droplets
in an ambient immiscible liquid, remains an open question.

Previous studies on fluid spheres with finite μ∗ moving at finite Re have primarily
focused on specific scenarios like a water droplet in air (i.e. μ∗ ≈ 50) and an air bubble in
water (i.e. μ∗ ≈ 0.02) (Bothe, Schmidtke & Warnecke 2006; Fukuta, Takagi & Matsumoto
2008; Sugioka & Komori 2009; Suh & Lee 2013; Albert et al. 2015). Owing to the
substantial viscosity difference between water and air, the lift on a spherical water droplet
(respectively, a spherical air bubble) is found to be almost identical to that of a solid sphere
(respectively, a clean bubble). Specifically, in the limit μ∗ → ∞, the lift force switches
from positive (corresponding to the vortical mechanism) to negative (corresponding to
the ‘S’ mechanism) beyond Re ≈ 55 (Kurose & Komori 1999; Bagchi & Balachandar
2002; Shi & Rzehak 2019). In contrast, such a reversal is absent in the μ∗ → 0 limit, as
the inviscid mechanism takes over and remains dominant whatever the Reynolds number
(Legendre & Magnaudet 1998; Takagi & Matsumoto 1998, 2011).

Considering the various observations summarized above, three key questions emerge.
(i) How is the transition of lift force from the clean-bubble limit to the solid-sphere one?
(ii) How does the viscosity ratio influence lift reversal? (iii) At finite μ∗, are the two
previously mentioned mechanisms still active? Namely, the ‘L’ mechanism associated
with inviscid tilting of the ambient vorticity and the ‘S’ mechanism associated with the
vorticity generated at the droplet surface; and if so, how do they interact? This work aims
to address these questions by numerically solving the three-dimensional (3-D) flow around
and inside a spherical droplet set fixed in an uniform shear flow over a wide range of
Reynolds numbers and drop-to-fluid viscosity ratios. We then use the results obtained for
the flow field to elucidate the different mechanisms involved in generating the lift force.

The paper is organized as follows. In § 2, we formulate the problem, specify the
considered range of parameters and outline the numerical approach, which closely follows
the methodology used by Rachih (2019) and Legendre et al. (2019), supplemented with
preliminary tests to validate its reliability. Section 3 offers a comprehensive discussion
of the results obtained in this work. Specifically, § 3.1 focuses on the original evolution
observed for the drag and lift forces over the considered range of Reynolds numbers,
which imply a non-monotonic evolution of both drag and lift with the viscosity ratio at
Re = O(100). Section 3.2 outlines the identification of an internal 3-D flow bifurcation
occurring at moderate-to-high Reynolds numbers, which leads to a non-monotonic
variation in both the drag and lift forces in this regime. Section 3.3 is dedicated to
illustrating the physical mechanisms revealed from the flow field that contribute to the
lift force at high Reynolds numbers. The influence of the shear rate is discussed in § 3.4.
Empirical fits reproducing the observed variations in specific regimes are established in
§ 3.5. Concluding remarks, as well as issues remaining open from this work, are presented
in § 4.

2. Statement of the problem and outline of the numerical approach

We consider a spherical droplet with radius R, density ρi and dynamic viscosity μi,
fixed at the origin of a Cartesian frame of reference (ex, ey, ez), as illustrated in figure 1.
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ez

ex

(ρe, μe)

(ρi, μi)

ey

urel

u∞ = (urel + αy) ex

θ

ϕ

Figure 1. Sketch of the problem. Here, u∞ denotes the flow in the undisturbed far field with a shear rate α; ρe

and μe (respectively, ρi and μi) denote the density and dynamic viscosity of the external (respectively, internal)
fluid; and θ and ϕ represent the polar and azimuthal angles, respectively.

This droplet is immersed in a Newtonian fluid characterized by density ρe and dynamic
viscosity μe. In its undisturbed state, the external flow is a linear shear along ex, described
by

u∞ = (urel + αy)ex, (2.1)

where urel represents the norm of the slip velocity urel, i.e. urel = ||urel||. The entire flow
field is governed by the incompressible Navier–Stokes equations,

∇ · uk = 0, ρk
(

∂uk

∂t
+ uk · ∇uk

)
= −∇pk + ∇ · τ k, (2.2a,b)

where τ k = μk(∇uk + T∇uk) is the viscous part of the stress tensor Σk = −pkI + τ k, uk

and pk denote the disturbed velocity and the pressure, respectively, with k = i (likewise,
k = e) denotes the fluid inside (outside) the droplet. Right at the surface of the droplet, the
normal velocity must vanish, owing to the non-penetration condition, while the tangential
velocity and shear stress are continuous. These yield the following boundary conditions at
the droplet surface r = R:

ui · n = ue · n = 0, n × ui = n × ue, n × (τ i · n) = n × (τ e · n), (2.3a–c)

where r = (x2 + y2 + z2)1/2 is the distance to the centre of the droplet and n is the outward
unit normal to the droplet surface.

In the region far from the droplet, we assume that the disturbance induced by the droplet
vanishes, namely

ue = u∞ for r = ∞. (2.4)

The steady-state solution of the problem is characterized by four key parameters: the
viscous ratio μ∗ = μi/μe, the external Reynolds number Re, the dimensionless shear rate
Sr and the Reynolds number ratio Re∗. The last three are defined as

Re = ρeurel(2R)

μe , Sr = α(2R)

urel
, Re∗ = Rei

Re
= ρ∗

μ∗ , (2.5a–c)

where ρ∗ = ρi/ρe denotes the drop-to-fluid density ratio and Rei the Reynolds number
based on the kinematic viscosity of the internal fluid. Unless otherwise stated, we fix
Sr = 0.2 and Re∗ = 5 by default, but vary μ∗ and Re within the ranges of [0.01, 100]
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Lift on a spherical droplet in a linear shear flow

and (0.1, 250], respectively. In practice, Sr = 0.2 corresponds, for example, to a 1.1 mm
diameter n-pentane droplet rising at 16.4 cm s−1 in water with a shear of 40 s−1, an order
of magnitude typical of turbulent shear layers. To address the influence of the shear rate,
cases with smaller (Sr = 0.02) and larger (Sr = 0.5) shear rates under selected conditions
are considered as well.

In most practical situations, rising or settling droplets do not remain spherical at
high Reynolds numbers. Rather, they transform into oblate spheroids, characterized by
an aspect ratio, χ , which is the length ratio of the major-to-minor axis. The value of
χ largely depends on the Weber number, We = ρeu2

rel(2R)/γ , where γ represents the
surface tension. For instance, an n-pentane droplet rising in water remains nearly spherical
(χ < 1.1) for Reynolds numbers up to approximately 400 (Godé 2023), corresponding to
We ≈ 2. For a droplet of arbitrary ρ∗ and μ∗ moving at Re = O(100), previous direct
numerical simulation and experimental results (Dandy & Leal 1989; Loth 2008) have
indicated that χ at a given We depends only weakly on ρ∗, but increases with decreasing
viscosity ratio μ∗. In pure water under standard conditions, bubbles with χ = 1.1 have
an equivalent radius of approximately 0.52 mm and a rise velocity of urel ≈ 0.27 m s−1

(Duineveld 1995), corresponding to a Weber number of approximately 1 and a rise
Reynolds number of approximately 280. This is why, in the present work, we set the
upper limit of the Reynolds number at 250. If one regards a droplet with χ < 1.1 as
nearly spherical, the results obtained with spherical droplets may be considered valid up
to a Weber number of approximately 1, regardless of ρ∗ and μ∗. Since we only consider
moderate shear rates (Sr = 0.2 for most cases), shear-induced deformations are smaller
than those due to slip (Adoua et al. 2009), and the above conclusion extends to droplets
rising in a linear shear flow.

The considered range of μ∗ allows us to examine the transition of the hydrodynamic
force from the clean-bubble limit (μ∗ → 0) to the solid-sphere limit (μ∗ → ∞). Similarly,
the selected Re range helps investigate the hydrodynamic force from the Stokes-flow
regime (Re → 0), pertinent in inertial microfluidics, to a moderately inertial yet stationary
regime (Re = O(100) such that no vortex shedding takes place), relevant in applications
like spray drying (Michaelides 2006), inkjet printing (Lohse 2022) and airtanker
firefighting (Legendre 2024). Although the internal Reynolds number Rei (and thus
Re∗) does not influence the quasi-steady hydrodynamic force in the Stokes-flow regime
(Magnaudet et al. 2003), it appears to significantly affect the force in the moderately
inertial regime, especially when the wake of a droplet subjected to a uniform flow becomes
asymmetric (Edelmann, Le Clercq & Noll 2017; Rachih et al. 2020). To explore this, we
also vary Re∗ within the range of [0.2, 10] at Re = 200.

We are particularly interested in obtaining the hydrodynamic force acting on the droplet.
This force can be decomposed into a drag component FD, parallel to urel (and hence ex)
and a lift or transverse component, FL, parallel to ey. They are defined as

FD = ex ·
∫

Γ

Σe · n dΓ, FL = ey ·
∫

Γ

Σe · n dΓ, (2.6a,b)

where Γ denotes the droplet surface. The results for these two forces are expressed in
terms of the dimensionless drag and lift coefficients, CD and CL, calculated by normalizing
the forces with πR2ρeu2

rel/2. Additionally, we denote the drag and lift coefficients in the
clean-bubble and solid-sphere limits as CB

D, CB
L and CS

D, CS
L, respectively.

Note that the imposed boundary conditions (continuity of velocity and tangential stress)
at the interface allow the internal and external fluids to move freely. Only the spherical
shape is imposed and a circulating interface is possible. Note also that the lift coefficient
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defined above differs from that used in previous studies investigating the lift force on
bubbles (e.g. Auton 1987; Legendre & Magnaudet 1998; Tomiyama et al. 2002). In these
studies, the lift force is normalized by ρeVsurel × ω∞, where ω∞ = ∇ × u∞ represents
the vorticity of the local undisturbed flow and Vs is the volume of the droplet. In the
inviscid limit, the lift coefficient according to this previous normalization is 0.5, whereas
it is 2Sr/3 with the normalization used in this work. The reason for adopting a different
normalization of the lift force concerns the possible presence of a non-zero lift force in
an irrotational flow where ω∞ = 0. Specifically, for a uniform flow past a solid sphere,
the axial symmetry in the wake is known to break down at a critical Reynolds number
ReSS ≈ 212.6 through a stationary (external) bifurcation (Fabre, Tchoufag & Magnaudet
2012), leading to a non-zero lift force at larger Reynolds numbers whose orientation is
selected by some initial disturbance. This force grows proportionally to the square root of
Re − ReSS, as shown by Citro et al. (2016) and Shi & Rzehak (2019), particularly when Re
increases up to 250 (the maximum Re considered in this work). Consequently, following
the previous normalization method (i.e. normalized by ρeVsurel × ω∞), the lift coefficient
would reach infinity when the flow with ω∞ = 0 becomes non-axisymmetric. No such
singularity appears if CL is calculated by normalizing the lift force with πR2ρeu2

rel/2.
A summary of previously obtained expressions for CS

L and CB
L , following the normalization

in this work, is given in Appendix B.
The simulations were performed using the JADIM code developed at IMFT. This code

has been applied previously to simulate the lift on bubbles and solid spheres (Legendre
& Magnaudet 1998; Adoua et al. 2009; Shi 2021), and extended for calculating the
3-D flows around and inside spherical droplets (Legendre et al. 2019; Rachih et al.
2020; Godé et al. 2023). The Navier–Stokes equations are solved using velocity-pressure
variables in orthogonal curvilinear coordinates, discretized on a staggered grid. Spatial
integration is achieved through a finite-volume method with second-order accuracy. The
advection and viscous terms are evaluated using second-order centred schemes, while time
advancement is managed with a second-order Runge–Kutta–Crank–Nicolson algorithm.
Incompressibility is ensured at the end of each time step by solving, for each fluid, a
Poisson equation for an auxiliary potential.

The computational domain is cylindrical, aligned along ex and divided into two blocks
by the droplet surface. To mitigate the confinement effects at low Reynolds numbers, we set
the radius (R∞

y ) and height (R∞
x ) of the cylinder to 100R for Re < 10. For 10 ≤ Re ≤ 250,

R∞
y is reduced to 50R to leverage the faster decay of the disturbance flow at higher Re,

while R∞
x is increased to 200R to ensure adequate dissipation of the far wake within the

computational domain. The domain is discretized using an axisymmetric mesh, detailed by
Rachih et al. (2020, figure 1). Inside the droplet, we employ a polar mesh with Nθ nodes
in the polar direction (spanning from θ = 0 to π; refer to figure 1 for the definition of
θ ) and Nr nodes radially. The external domain, in the same (θ, r)-plane, is discretized
using an orthogonal mesh based on constant streamlines η = const. and equipotential
lines ζ = const. of the potential flow around a circle moving along ex. The entire grid
in the (θ, r)-plane is then rotated around the x axis by ϕ = 2π, with Nϕ nodes along
ϕ. The grid inside the droplet comprises Nθ × Nr × Nϕ nodes, while the external grid
has (2Nζ + Nθ ) × Nη × Nϕ nodes. Following Legendre et al. (2019), Rachih et al. (2020)
and Shi (2021), we set Nθ = 80, Nr = 40, Nϕ = 64 and Nη = 50, regardless of Re. We
increase Nζ from 60 to 120 as Re exceeds 10 to better resolve the far wake downstream at
moderate-to-high Re. The nodes are uniformly distributed along θ and ϕ, while a geometric
progression is chosen along r, ζ and η, ensuring at least five nodes located within the
internal and external boundary layers at the interface for Reynolds numbers up to 1000.
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Lift on a spherical droplet in a linear shear flow

The numerical boundary conditions are outlined as follows. The velocity at the top
and bottom surfaces of the cylinder (x = ±R∞

x ) and the cylindrical surface [(x2 +
y2)1/2 = R∞

y ] is assumed to match the undisturbed flow, as defined in (2.1). At the
droplet interface, boundary conditions (2.3b,c) are implemented using a second-order
finite-difference discretization (Legendre et al. 2019; Rachih et al. 2020). The artificial
singularity introduced by the ex-symmetry axis is addressed using a specific condition
detailed by Legendre & Magnaudet (1998). The computation initiates from an undisturbed
external flow and a stagnant internal flow.

The reliability of our numerical approach is verified in Appendix A, where three
additional tests are carried out. In the first test, simulations at extreme viscosity ratios μ∗
are performed for 0.1 < Re ≤ 250. The hydrodynamic forces at μ∗ = 0.01 and 100 align
well with existing correlations and data for spherical bubbles (Auton 1987; Mei, Klausner
& Lawrence 1994; Legendre & Magnaudet 1997, 1998) and solid spheres (Schiller &
Naumann 1933; Kurose & Komori 1999; Bagchi & Balachandar 2002; Shi & Rzehak 2019;
Candelier et al. 2023). The second test examines a droplet with μ∗ = 0.5 at Re = 200 in a
uniform flow (Sr = 0), varying Re∗ from 0.2 to 10. This replicates the finding of Edelmann
et al. (2017) that the flow around a droplet of μ∗ = O(1) undergoes a bifurcation when
Rei exceeds approximately 300. Our results for the drag and separation angle (after the
bifurcation sets in) agree well with those from Feng & Michaelides (2001, CD prior to
the onset of flow bifurcation) and Edelmann et al. (2017). The final test cross-checks our
results at moderately high Re against those from Zhang (2023, private communication), in
which simulations are carried out using the numerical code Basilisk (Popinet 2009, 2015).
We focus on two cases with different viscosity ratios, one at μ∗ = 0.2 and the other at
μ∗ = 0.5, while both correspond to Re = 200, Re∗ = 5 and Sr = 0.2. The time histories
of CD and CL from both codes show excellent agreement, further confirming the reliability
of the numerical approach applied in this work.

3. Results and discussion

3.1. Drag and lift forces
Figure 2 shows the numerical results for the drag and lift coefficients at Re = 0.2. Clearly,
both coefficients increase monotonically with increasing μ∗. This is consistent with the
low-Re vortical mechanism (Legendre & Magnaudet 1997; Magnaudet et al. 2003), which
suggests that the drag and lift increase with increasing surface vorticity (i.e. the vorticity
generated on the external side of the droplet) and, hence, with increasing viscosity ratio μ∗.
Specifically, the vortical mechanism indicates that, to leading order, the drag (respectively,
lift) force in the solid-sphere limit at low-but-finite Re differs from that in the clean-bubble
limit only by a prefactor of 3/2 (respectively, (3/2)2), 3/2 being the ratio of the maximum
surface vorticity, ωs, in these two limits. This is confirmed by our numerical results, noting
that CD (respectively, CL) at μ∗ = 100 is larger than that at μ∗ = 0.01 by a factor of 1.54
(respectively, 2.15).

Figure 3 presents the results for CD and CL within the low-to-moderate Reynolds
number regime, 0.5 ≤ Re ≤ 20. At a given Re, the computed CD gradually increases with
increasing μ∗, still aligning with the low-Re vortical mechanism. However, the behaviour
of CL differs. Specifically, CL increases gradually with increasing μ∗ only up to Re ≈ 2.
For Re ≥ 5, it decreases as μ∗ increases. This latter behaviour is not surprising. As Re
increases, the ratio of the Oseen and Saffman lengths, ε = (Sr/Re)1/2, a key parameter
characterizing the magnitude of inertial lift (McLaughlin 1991), decreases as well. For
Re � 5, the lift generation is governed by the competition between the ‘L’ and ‘S’
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Figure 2. Results for CD and CL as a function of μ∗ for Re = 0.2, Re∗ = 5 and Sr = 0.2. Red circles, present
numerical results. In panel (a), CD is multiplied by Re for better readability; fitted line, (3.3a) with m = 1. In
panel (b), fitted line, (3.3b); solid line, CS(2)

L according to (B3); dotted line, CB(1)
L according to (B4b).
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Figure 3. Similar to figure 2, but for 0.5 ≤ Re ≤ 20, Re∗ = 5 and Sr = 0.2. Different Re values are
distinguished using the colours indicated in panel (a). Different types of symbols are used to represent data
for Re > 5, providing a clearer distinction for the CL results. In panel (a), solid lines correspond to predictions
using (3.3a) with the expression for m from (3.4). In panel (b), solid lines denote predictions from (3.3b) and
the horizontal thin dashed line represents CL = 0.

mechanisms outlined in § 1. This competition will be elaborated on in more detail in § 3.3.
Here, we briefly mention that the decrease in CL with increasing μ∗ for Re ≥ 5 is closely
related to the increase in the maximum surface vorticity ωs. This increase enhances the
‘S’ mechanism, resulting in an increasingly negative lift contribution (i.e. towards −ey)
(Adoua et al. 2009; Hidman et al. 2022).

Figure 4 shows the drag and lift results at Re = O(100). In contrast to the
low-to-moderate Re regime, where CD and CL vary monotonically with increasing μ∗,
these coefficients exhibit non-monotonic behaviour at low-but-finite μ∗. For instance,
CD at Re = 250 reaches a local maximum of 0.65 at μ∗ = 2, corresponding to 91 % of
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Lift on a spherical droplet in a linear shear flow
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Figure 4. Similar to figure 2, but for 50 ≤ Re ≤ 250, Re∗ = 5 and Sr = 0.2. Different colours denote different
Re as indicated in panel (a). Symbols crossed by dashed lines represent numerical results. In panel (a), solid
lines denote CD predictions using (3.3a) with m given by (3.4). In panel (b), solid lines denote CL predictions
using (3.5)–(3.9a–e), horizontal dashed line denotes the lift solution in the inviscid limit (Auton 1987), namely
CL = 2Sr/3.

that for a solid sphere, and then gradually decreases as μ∗ increases from 2 to 5. At the
same Re, CL attains a local maximum of 0.24 at μ∗ ≈ 0.5, approximately 1.8 times larger
than that predicted by the inviscid solution (Auton 1987), namely CL = 2Sr/3. This latter
behaviour is particularly surprising since, as discussed in § 1 and shown in figure 3(b),
the competition between the ‘L’ and ‘S’ mechanisms in generating the lift at Re = O(100)

would suggest that: (i) an increase in μ∗ should result in a monotonic decrease in CL and
(ii) the maximum CL should correspond to the inviscid solution and be achieved at the
smallest μ∗. Moreover, to the best of our knowledge, no such non-monotonic behaviour in
the lift force has been reported until now.

In figure 4, the non-monotonic evolution of CD and CL sets in beyond Re ≈ 100.
However, it is not immediately clear whether this Reynolds number dependency is
driven by the inertia of the external fluid (i.e. Re) or the internal fluid (i.e. Rei). So
far, the Reynolds number ratio has been fixed at Re∗ = Rei/Re = 5, where Rei is based
on the kinematic viscosity of the internal fluid, meaning both Reynolds numbers were
varied simultaneously. To clarify the dependency on the internal fluid inertia, additional
simulations were conducted at a fixed external Reynolds number of Re = 200, varying Re∗
from 0.2 to 10. This covers a range for Rei from 40 to 2000. Given the relation ρ∗ = Re∗μ∗,
these additional runs also cover a wide range of density ratios, for ρ∗ from 10−2 to 103. The
corresponding results for CD and CL are summarized in figure 5. These results distinctly
demonstrate that it is the inertia of the internal fluid that drives the non-monotonic
variation of both CD(μ∗) and CL(μ∗). Notably, for Rei smaller than approximately 300 (i.e.
Re∗ � 1.5), both CD and CL depend solely on μ∗, consistent with findings in the low-Re
limit (Magnaudet et al. 2003). Intriguingly, the computed CD under this condition aligns
well with numerical data at Sr = 0 from Feng & Michaelides (2001), which were obtained
by imposing the flow to be axisymmetric regardless of μ∗. Conversely, for Rei > 300 (i.e.
Re∗ > 1.5) and μ∗ below a critical value μ∗

c that increases with Rei, the computed CD
and CL are typically larger than their counterparts in cases where Rei � 300. The sole
exception occurs at (Rei, μ∗) = (2000, 5), where CL is smaller than those at lower Rei

values. These distinct behaviours for μ∗ < μ∗
c are found to be closely linked to the internal

3-D flow bifurcation, a scenario that will be detailed in § 3.2.
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Figure 5. Results for CD and CL as a function of μ∗ for 0.2 ≤ Re∗ ≤ 10, Re = 200 and Sr = 0.2. Different
values of Re∗ are denoted by different colours as indicated in panel (a). The internal Reynolds number is
Rei = ReRe∗. In panel (a), fitted line, CD prediction using (3.3a) and (3.4); black triangle, data at Sr = 0 from
Feng & Michaelides (2001) obtained by imposing the flow to be axisymmetric. In panel (b), fitted line, CL
prediction using (3.5)–(3.9a–e).

3.2. Identification of the internal 3-D flow bifurcation
The non-monotonic evolution of CD(μ∗) outlined in the preceding section is not exclusive
to shear flows. To corroborate this, we conducted additional simulations for droplets with
varying viscosity ratios in a uniform flow (i.e. with Sr = 0). Figure 6 compares the
time histories of CD obtained at Sr = 0 (red dashed line) and Sr = 0.2 (red solid line);
for both cases, (Re, Re∗, μ∗) = (200, 5, 0.5). By introducing a time shift t0 = 166R/urel
and setting t∗ = (t − t0)urel/R (respectively, t∗ = turel/R) for Sr = 0 (respectively, 0.2),
the two evolutions almost coincide beyond t∗ ≈ 30. Before this, both cases reach a
quasi-steady value of CD ≈ 0.32, close to the value reported by Feng & Michaelides
(2001) for an axisymmetric flow. These observations suggest a flow bifurcation sets
in prior to t∗ ≈ 30, after which the flow becomes strongly non-axisymmetric. This
non-axisymmetric flow structure can be visualized using the streamwise vorticity, ωx, as
illustrated in figure 7.

When the ambient flow is uniform (Sr = 0), the flow remains axisymmetric prior to the
bifurcation (up to t∗ ≈ 20), as indicated by the absence of ωx structure in figure 7(a-i)
(corresponding to t∗ = 20). The flow bifurcation sets in at t∗ ≈ 25, first manifesting as
non-axisymmetric flow inside the droplet (figure 7b-i), while the external flow retains its
axisymmetry. This disturbance grows in time, eventually extending outside the droplet
by t∗ ≈ 30 (figure 7c-i), peaking in intensity at t∗ ≈ 37.5 (figure 7d-i), and then slightly
decaying and stabilizing after t∗ ≈ 120 (figure 7e-i). Correlating this with the time
evolution of CD in figure 6, a direct link is evident between the drag increase (compared
with the drag in the axisymmetric case) and the vortical intensity in the wake. This
correlation can be attributed to the ‘sucking’ effect by the droplet’s 3-D wake, where the
low-pressure cores of vortical threads increase the pressure difference between the front
and back regions of the droplet. Thus, a stronger ωx in the wake is related to a larger drag
increase. Moreover, as the streamwise vorticity structure remains bi-planar symmetric,
no lift force is expected on the droplet throughout the process, as confirmed by figure 6
(dashed green line).

In the presence of shear (Sr = 0.2), the flow exhibits slight non-axisymmetry prior to
the onset of the corresponding imperfect bifurcation. This is evident from the vortical
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Lift on a spherical droplet in a linear shear flow
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Figure 6. Time history of CD (in red) and CL (in green) for (Re, Re∗, μ∗) = (200, 5, 0.5). Dashed lines, Sr =
0; solid lines, Sr = 0.2. For Sr = 0, a time shift t0 = 166R/urel is applied and evolutions are plotted versus
the normalized, modified time t∗ = (t − t0)urel/R. For Sr = 0.2, no such time shift is applied and t∗ = turel/R.
For the case Sr = 0, since no flow perturbation was imposed to trigger the bifurcation, CL is calculated as
CL =

√
C2

y + C2
z , where Cy and Cz are the coefficients of the hydrodynamic force components along y and z,

respectively.

x
z

y
Sr = 0:

t∗ = 20 t∗ = 25 t∗ = 30 t∗ = 37.5 t∗ = 120

Sr = 0.2:

(a)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(b) (c) (d) (e)

Figure 7. Isosurfaces of the streamwise vorticity (R/urel)ω · ex = ±0.5 in the wake of the droplet for
(Re, Re∗, μ∗) = (200, 5, 0.5) at five selected time points. Panels (i) correspond to Sr = 0 and panels (ii) to
Sr = 0.2. In all panels, negative values are denoted by black threads, while the droplet surface is represented
as a partially transparent, light blue-coloured sphere.

structure at t∗ = 20 (figure 7a-ii), where two streamwise vorticity threads are visible inside
and extending outside the droplet in the near wake. Owing to the ‘sucking’ effect, the drag
is slightly higher than in the Sr = 0 case. Additionally, the orientation of these vortical
threads results in a small but measurable lift force (Auton 1987; Legendre & Magnaudet
1998), as shown in figure 6 (solid green line). Moreover, CL = Sr at t = 0+ according
to figure 6, consistent with the analytical solution derived by Legendre & Magnaudet
(1998). As the bifurcation sets in, similar to the Sr = 0 case, it is initially the internal flow
that shows pronounced non-axisymmetry (figure 7b-ii). This non-axisymmetry intensifies
over time, extending outside the droplet by t∗ ≈ 30 (figure 7c-ii), and peaks at t∗ ≈ 37.5
(figure 7d-ii). Interestingly, the ωx structure at t∗ ≈ 37.5 resembles the bi-planar symmetry
seen in the Sr = 0 case, which is why the lift at this time moment is even smaller than
that before the onset of bifurcation. However, as time progresses, the ωx threads in the
half-space y > 0 shrink rapidly, and the reverse is the case for the other two threads,
leading the flow to revert to its initial structure with only two significant ωx threads in the

1000 A88-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1072


P. Shi, É. Climent and D. Legendre

0.7

0.6

0.5

0.4

0.3

0.3

0.2

0.1

0

0.2

10–1 100 101 10–1 100 101

CD CL

Re∗ Re∗

(b)(a)

Figure 8. Results for CD and CL as a function of Re∗ for Sr = 0 (+, red) and 0.2 (©, red) under the condition
Re = 200 and μ∗ = 0.5. The shaded grey region corresponds to the regime where the flow past the droplet
remains axisymmetric for Sr = 0.

final stage (compare figure 7e-ii with figure 7a-ii). Since the intensity of the two vortical
threads in the final stage is significantly larger that that before the onset of bifurcation, the
lift force is highly increased.

Similar flow characteristics are observed in cases at different Re∗. Figure 8 summarizes
the final-state results for CD and CL at different Re∗, all obtained at (Re, μ∗) = (200, 0.5).
These results confirm a critical Reynolds number for flow bifurcation at Rei

c ≈ 300 (i.e.
Re∗ = 1.5 at Re = 200), aligning with findings in figure 5. From these final-state results,
and the time evolution of the hydrodynamic forces and flow structures (figures 6 and 7),
we conclude that irrespective of the presence of shear, the flow can undergo bifurcation
leading to strong non-axisymmetry, marked by multiple threads of streamwise vorticity in
the droplet wake. The flow bifurcation identified here differs from that in prior work on
a uniform flow past a solid sphere or an oblate spheroidal bubble (Johnson & Patel 1999;
Magnaudet & Mougin 2007; Fabre et al. 2012; Citro et al. 2016), where the internal flow
is irrelevant, and bifurcation occurs when the maximum vorticity on the external side of
the body surface exceeds a critical, Re-dependent value, say ωe

c(Re). Here, internal flow
is crucial, as non-axisymmetry initially manifests only within the droplet. Conversely, the
external vorticity at the droplet surface, which increase with the viscosity ratio, is not
relevant, as the bifurcation only happens for μ∗ < μ∗

c , a regime where the external surface
vorticity remains lower than the corresponding ωe

c. Given these distinct features, we term
the phenomenon in our work internal bifurcation, distinguishing it from the external
one observed with solid spheres or non-spherical bubbles. The underlying mechanism
of this internal bifurcation warrants a further systematic investigation under uniform-flow
conditions, which is beyond the scope of the present work. Nevertheless, some preliminary
ideas will be provided in § 4.

Before moving to the next section, it is important to highlight another key change in the
flow structure before and after the onset of internal bifurcation, due to its close relation
to lift generation. To begin, we illustrate in figure 9(a-i–a-iii) the streamlines for the
case (Sr, Re, Re∗, μ∗) = (0, 200, 5, 0.5) at t∗ = 120. Four threads of swirling flow can
be identified both inside and outside the drop, particularly in the region close to the back
surface of the drop. It then becomes clear that the counter-rotating streamwise vortices
in the wake originate largely from the swirling flow generated inside the drop during the
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Figure 9. Streamlines and streamtubes for the case (Sr, Re, Re∗, μ∗) = (0, 200, 5, 0.5). (a-i–a-iii) Streamlines
inside (red) and outside (black) the drop, and close to the back surface of the drop at t∗ = 120. The coordinates
y and z denote the extension and compression directions of the straining flow in the wake, respectively. (b-i,c-i)
Streamtubes formed by all streamlines (coloured in magenta) passing through the circle [x = −2R, ( y2 + z2) =
(0.25R)2] at t∗ = 20 and t∗ = 120, respectively. (b-ii,c-ii) Corresponding profiles of the streamtube at different
distances downstream: red line, x = R green line, x = 1.5R; blue line, x = 2R; and cyan line, x = 3R.

transition from axisymmetric to biplanar symmetric flow. As the swirling flow propagates
downstream in the wake, the radial pressure gradient associated with the swirling motion
tends to confine the flow, driving the fluid particles towards the centre of each vortical
thread. Mass conservation indicates that the flow must accelerate along the streamwise
direction, leading to an increase in the extensional rate (i.e. ∂ux/∂x) in the wake. To
highlight this confinement induced by the swirling flow, we compare the streamtubes
before (t∗ = 20) and after (t∗ = 120) the onset of flow bifurcation. Specifically, we
consider the streamtube formed by all streamlines passing through the circle [x =
−2R, ( y2 + z2) = (0.25R)2]. Before the onset of flow bifurcation (figure 9b-i–b-ii), the
cross-stream section of the streamtube remains circular downstream and experiences
only moderate confinement for x � 1.5R. In contrast, after the onset of flow bifurcation
(figure 9c-i–c-ii), the streamtube is highly squeezed, such that the cross-sectional area
in the wake is concentrated into the four vortical threads. Specifically, from x = 2R to
x = 3R, the cross-sectional area decreases from 0.316R2 to 0.182R2, a relative decrease of
approximately 42 %, whereas the relative decrease is only approximately 24 % in the case
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Figure 10. Isosurfaces of the streamwise vorticity (R/urel)ω · ex = ±0.2 in the droplet wake (black thread
denotes negative values). In each panel, the left part shows only the vortical structure inside the droplet, while
the right part shows the vortical structure both inside and outside the droplet. (a-i–a-vi) Variations at Re =
200, Re∗ = 5, Sr = 0.2 for different μ∗. (b-i–b-vi) Variations at Re = 200, μ∗ = 0.5, Sr = 0.2 for different
Re∗.

without the onset of flow bifurcation. This pronounced confinement is closely linked to
the amplification of the streamwise vorticity and, hence, to lift generation. The details of
this will be discussed in § 3.3.

3.3. Mechanism of the lift generation at Re = O(100)

3.3.1. Relation between lift force and streamwise vorticity
The lift force on a three-dimensional body moving at Re = O(100) is closely related to the
presence of a pair of streamwise vortices in its wake (Auton 1987; Legendre & Magnaudet
1998; Adoua et al. 2009; Shi et al. 2021; Hidman et al. 2022). Specifically, the direction
of the lift force is determined by the orientations of these vortices. Figure 10(a-i–a-vi)
illustrates the isosurfaces of the streamwise vorticity at various μ∗ for Re = 200, Re∗ = 5
and Sr = 0.2. The intensity of the streamwise vortices increases as μ∗ increases from
0.01, reaching a local maximum at μ∗ ≈ 0.5, beyond which it starts to decrease. Notably,
for 0.1 ≤ μ∗ ≤ 2, the vortical intensity is significantly larger than in the clean-bubble limit
(figure 10a-i). This trend aligns with the behaviour of CL depicted in figure 4(b), where
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Lift on a spherical droplet in a linear shear flow

CL(Re = 200) peaks at μ∗ = 0.5 and remains above the inviscid solution CL = 2Sr/3
for 0.1 ≤ μ∗ ≤ 2. As μ∗ further increases, the streamwise vortices (figure 10a-iv–a-vi)
decrease in intensity, becoming negligible at μ∗ = 10, beyond which the sign of the
vorticity switches. Correspondingly, the lift coefficient (CL(Re = 200) in figure 5b)
changes its sign at μ∗ ≈ 10 and remains negative up to μ∗ = 100.

Figure 10(b-i–b-vi) presents the same vortical structure but at various Re∗ for Re =
200, μ∗ = 0.5 and Sr = 0.2. For Re∗ < 1.5, the intensity of the streamwise vorticity is
nearly independent of Re∗ and smaller than that in the clean-bubble limit (figure 10a-i).
Consequently, the corresponding CL (figure 8b) remains smaller than the inviscid solution.
However, for Re∗ > 1.5, the streamwise vortices begin to intensify with increasing Re∗, in
line with the gradual increase in CL in this regime as observed in figure 8(b). Combined
with the results for CD(Sr = 0) shown in figure 8(a), it becomes evident that the internal
bifurcation enhances the streamwise vortices, making the lift to exceed the inviscid
solution for Re∗ > 1.5.

Up to this point, the relation between the streamwise vortices and the lift force exerted on
a droplet has been only qualitatively confirmed. For a quantitative description, we revisit
in Appendix D a simplified model proposed by de Vries, Biesheuvel & van Wijngaarden
(2002), later revised and used by Veldhuis (2007) and Zenit & Magnaudet (2009). This
model allows the estimation of the lift force from the streamwise vorticity in the wake.
We confirm that, provided the streamwise vorticity is known at a cross-stream plane
sufficiently far downstream, the lift force can be quantitatively reproduced using the
following expression:

Cwake
L = − 4

πR2urel

∣∣∣∣
∫
S

zωx dS
∣∣∣∣ (e+

ω · ex), (3.1)

where Cwake
L denotes the lift coefficient estimated from the streamwise vorticity, e+

ω

denotes the orientation of the vortex in the half-space z > 0, and S represents a surface in
the cross-stream plane surrounding one of the streamwise vortices (see figure 22(a) for an
illustration of S).

In Appendix D, the relation mentioned above is found applicable in qualitatively
reproducing the lift force on a clean bubble. Its applicability in the case of a droplet is
assessed in the following. Specifically, figure 11 compares Cwake

L with CL, i.e. the lift
coefficient calculated by integrating the pressure and viscous stresses over the interface
using (2.6a–c), for a droplet in a linear shear flow of (Re, Sr) = (200, 0.2). It turns out
that Cwake

L , as per (3.1), matches well with CL except when μ∗ > 10, where Cwake
L slightly

overestimates the magnitude of the lift force. This mismatch can be understood by noting
that in implementing (3.1), the cross-stream plane S is placed at 10R downstream in the
wake. Farther downstream, the grid resolution is incapable of fully resolving the vortical
structure (for more details, see Appendix D). The comparison in figure 11(a) indicates that
while this distance is sufficient to exclude the viscous effects for μ∗ up to 10, it probably
becomes insufficient at higher μ∗, where the surface vorticity is strong and the associated
viscous effects require longer distances downstream to be fully dissipated. Despite this
mismatch, the comparison in figure 11 indicates that Cwake

L can reproduce the sign reversal
of CL at μ∗ ≈ 10, as well as the increase in CL when the flow bifurcation occurs (i.e. when
Re∗ ≥ 2).

3.3.2. Mechanism for the modulation of streamwise vorticity
Given the close relation between the lift and the streamwise vorticity, understanding the
observed lift variation, particularly the increase in lift when the internal bifurcation occurs,
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Figure 11. Comparison between the lift coefficient CL (©, red) and the vorticity-based lift coefficient Cwake
L

(×, red) for a droplet across (a) various viscosity ratios and (b) Reynolds number ratios in a linear shear flow
with (Re, Sr) = (200, 0.2). (a) Re∗ = 5; (b) μ∗ = 0.5.

necessitates exploring the mechanisms that cause corresponding changes in the streamwise
vortices. The generation of streamwise vorticity ωx = ω · ex is governed by (Adoua et al.
2009)

Dωx

Dt
− ν∇2ωx = ω∞

z
∂ux

∂z︸ ︷︷ ︸
Source ‘L’

+ (ωz − ω∞
z )

∂ux

∂z
+ ωy

∂ux

∂y︸ ︷︷ ︸
Source ‘S’

+ ωx
∂ux

∂x︸ ︷︷ ︸
Amplification

, (3.2)

where D/Dt = ∂/∂t + u · ∇ represents the material derivative and ui = u · ei, ωi = ω · ei
(with i = x, y, z) are projections along i of the velocity and vorticity, respectively, and
ω∞

z = (∇ × u∞) · ez = −α denotes the vorticity in the ambient flow.
At Re = O(100), viscous effects become less significant, and the generation of ωx is

primarily influenced by the three terms on the right-hand side of (3.2). The first term,
labelled as Source ‘L’, corresponds to the contribution to the stretching/tilting term,
(ω · ∇)ux, due to the vorticity in the ambient flow. Since the external flow has to accelerate
to go around the droplet, ω∞

z ∂ux/∂z = −α∂ux/∂z is negative for z > 0 (respectively,
positive for z < 0). The resulting streamwise vorticity, similar to that in figure 10(a-i),
forms two counter-rotating vortices that entrain the flow within their gap downwards,
towards negative y. Consequently, the droplet experiences a lift force directed towards
positive y. This inviscid vortex tilting mechanism, documented by Lighthill (1956) and
Auton (1987), is hereafter referred to as the ‘L’ mechanism. The second term, labelled as
Source ‘S’, relates to the stretching/tilting term due to the vorticity generated at the droplet
surface, ωs. Regardless of the boundary conditions at the droplet surface, its contribution to
(ω · ∇)ux always attenuates that by the ambient vorticity ω∞

z and can induce a lift reversal
(Legendre & Magnaudet 1998; Adoua et al. 2009). This second mechanism is hereafter
termed the ‘S’ mechanism. Thus, the combination of ‘S + L’ controls the direction of
the lift. The final term on the right-hand side of (3.2) is the interaction of the streamwise
vorticity itself with the extensional rate ∂ux/∂x. Unlike the source terms, this term remains
zero if ωx is absent and serves to amplify it when ωx is present in the droplet wake.

To gain some insights into the contribution of the three terms in generating the
streamwise vorticity before and after the onset of flow bifurcation, we analysed their values
at various Re∗ for Re = 200, μ∗ = 0.5 and Sr = 0.2. Figure 12(a-i–a-v) illustrates the
corresponding contributions from the combined source ‘L + S’. For the cases considered
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Lift on a spherical droplet in a linear shear flow

Source: ‘L + S’ Amplification

x

z

Re∗ = 0.2

Re∗ = 1

Re∗ = 2

Re∗ = 5

Re∗ = 10

(a) (b)

(i) (i)

(ii) (ii)

(iii) (iii)

(iv) (iv)

(v) (v)

Figure 12. Isosurfaces constructed at values of ±0.1(urel/R)2 for different ωx-budgets at 0.2 ≤ Re∗ ≤ 10,
Re = 200, μ∗ = 0.5 and Sr = 0.2. The orange threads denote positive values. (a-i–a-v) Combined source
‘L + S’. (b-i–b-v) Amplification term ωx∂ux/∂x.

here, the orientation of ωx in the wake points towards −x for z > 0 and towards x for z < 0,
indicating that the generation of ωx is largely governed by the L mechanism. Nevertheless,
the intensity of the combined source in the wake remains weak for Re∗ < 1.5. However,
in cases where internal bifurcation occurs (i.e. for Re∗ > 1.5), the combined source in the
wake gradually intensifies with increasing Re∗, especially just after the onset of internal
bifurcation (compare figure 12a-ii with figure 12a-iii). Figure 12(b-i–b-v) depicts the same
isosurfaces but for the amplification term. For Re∗ < 1.5, amplification is concentrated
into two threads, the sign of each closely follows that of the combined source. internal
bifurcation takes place at Re∗ ≥ 2. As seen from figure 12(b-iii), the amplification is now
concentrated into two pairs of threads: a major pair in the half-space y < 0, whose sign
follows that of the combined source, and a minor pair in the half-space y > 0, displaying
a sign opposite to that of the combined source. As Re∗ further increases, the minor pair
shrinks, nearly disappearing at Re∗ = 10, while the major pair continuously grows and
saturates at Re∗ = 5. A comparison of the amplification term with the combined source
reveals that before the onset of internal bifurcation, the streamwise vortices generated in
the wake (figure 10b-i–b-iii) predominantly arise from the amplification term, though their
orientations are determined by the combined source. Conversely, after the onset of internal
bifurcation (figure 10b-iv–b-vi), both terms actively contribute to the generation of the
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Figure 13. Isocontours of the normalized extensional rate (R/urel)∂ux/∂x in the cross-stream plane in the wake
at x = 2R downstream of the droplet for Re = 200 and μ∗ = 0.5, but at different values of Re∗ as indicated in
the figure. The dashed circle in each panel represents the boundary where ( y2 + z2)1/2 = R. In each panel, the
number in brackets at the bottom-right indicates the mean value over the surface denoted by the black dashed
line, namely the result for (R/urel)(πR2)−1 ∫ R

0 ∂ux/∂x2πr dr.

streamwise vorticity. Specifically, the rapid increase in ωx as Re∗ increases from 2 to 5
(compare figure 10b-iv with 10b-v) is largely attributed to the amplification term, since
the combined source undergoes only a moderate increase during this phase.

The discussion above indicates in particular that the amplification term experiences
a rapid increase due to the onset of internal bifurcation. Referring back to the budget
equation (3.2), this implies a rapid increase in the extensional rate ∂ux/∂x as a result of the
internal bifurcation. This is in line with the discussion in § 3.2, where we confirm that the
swirling flow inside the drop leads to strong confinement of the flow downstream in the
wake and, hence, an increase in ∂ux/∂x. Figure 13 illustrates the structures of ∂ux/∂x in
the cross-stream plane x = 2R at different Re∗. In the absence of the internal bifurcation,
i.e. for Re∗ ≤ 1.5, ∂ux/∂x exhibits a slight decrease with increasing Re∗. Specifically, its
mean value over the surface y2 + z2 ≤ R2 decreases from 0.131 to 0.128 as Re∗ increases
from 0.2 to 1 (see the number in brackets at the bottom-right of each panel). As the internal
bifurcation occurs, i.e. for Re∗ ≥ 2, its intensity starts to increase with Re∗, reaching 0.178
at Re∗ = 10. As may be observed from the up-down asymmetry of the contours as the
bifurcation sets in, the ambient shear also entrains the flow in the wake downwards, i.e.
towards −y, making ∂ux/∂x more pronounced in the half-space y < 0. Given that the
two (major) streamwise vortices in the presence of shear are also largely located in this
half-space (see figure 7e-ii), the entrainment above leads to a rapid relative increase in the
amplification term ωx∂ux/∂x.

With the insights gained on the effects of internal bifurcation at a fixed μ∗, we now
turn our attention to the ωx-budgets for broader cases where μ∗ varies from 0.01 to 100.
Starting with the simpler scenarios at Re∗ = 1 – where, as revealed from figure 5, no
internal bifurcation takes place – we assess the contributions of the combined source
and the amplification term at various μ∗. These are illustrated in figures 14(a-i–a-vii)
and 14(c-i–cvii), respectively. For μ∗ ≤ 0.1, both contributions remain largely unchanged;
however, as μ∗ increases from 0.1, they start to monotonically decrease and even reverse
sign at approximately μ∗ ≈ 10. Notably, for μ∗ ≥ 2, the intensity of the combined source
becomes negligible in the wake, whereas the amplification term reaches substantial values
once μ∗ exceeds approximately 10. These findings support the extension of an earlier
conclusion concerning the role of amplification, initially drawn from results at μ∗ = 0.5,
to a wider range of μ∗. They reaffirm that, prior to internal bifurcation, the streamwise
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Lift on a spherical droplet in a linear shear flow

Source: ‘L + S’ Amplification

Re∗ = 1
µ∗ :
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(a) (b)
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(c) (d)
(i) (i)

(ii) (ii) (ii) (ii)
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(v) (v) (v) (v)

(vi) (vi) (vi) (vi)
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Figure 14. Same as figure 12, but for different viscosity ratios μ∗ at two different Reynolds number ratios
Re∗.

vortices generated in the wake are predominantly due to the amplification term, although
their orientations are determined by the combined source.

Figure 14(b-i–b-vii) (respectively, figure 14(d-i–d-vii) shows the contribution from the
combined source (respectively, amplification) under the same conditions as previously
discussed, but at a higher Reynolds number ratio, Re∗ = 5. According to figure 5, no
internal bifurcation occurs for μ∗ ≥ 5. As expected, the contributions from the combined
source and amplification exhibit structures identical to their counterparts at Re∗ = 1.
However, for μ∗ ≤ 2, there are significant deviations from those at Re∗ = 1. Particularly,
for μ∗ ≤ 0.5, both the combined source and amplification terms experience a sharp
increase with increasing μ∗, leading to a rapid augmentation of the streamwise vortices,
as observed in figure 10(a-i–a-iii).

Gathering all the information above, a clear picture emerges. For a droplet moving at
moderate-to-high Re with an internal Reynolds number Rei less than a critical value of
approximately Rei

c = 300, the lift force acting on the droplet remains independent of Rei.
As μ∗ increases, the lift transitions monotonically from the clean-bubble limit (μ∗ → 0),
where the lift is positive (i.e. towards +y), to the solid-sphere limit (μ∗ → ∞), where
the lift is negative. This monotonic transition results from the competition between the
‘L’ and ‘S’ mechanisms. The former primarily relies on the ambient vorticity, while the
latter also depends on the vorticity generated at the droplet surface, with its intensity
increasing alongside μ∗ and Re. Consequently, the critical viscosity ratio at which the
lift force changes its sign gradually decreases with increasing Re. This sign reversal is
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Figure 15. Sign of the lift force in (a) the (μ∗, Re∗)-plane for Re = 200, and (b) the (μ∗, Re)-plane for Re∗ =
5. Open symbols indicate CL > 0, while solid symbols represent CL < 0. Red open symbols denote cases
where the lift is observed to increase due to the onset of internal bifurcation. In each panel, the density ratio
increases from left to right, with the dashed blue line denoting ρ∗ = 0.15.

depicted in figure 15(b), which shows the sign of the lift force at Re∗ = 5 in the phase
diagram in terms of (μ∗, Re). Solid (for CL < 0) and open (for CL > 0) symbols are used
to distinguish the sign of the lift force.

When the internal Reynolds number surpasses approximately 300, the dynamics change
notably. First, in the absence of the ambient shear, an internal bifurcation takes place,
causing the flow to transition from axisymmetric to bi-planar symmetric, as outlined in
§ 3.2. This transition is accompanied with a swirling flow inside the drop, which squeezes
the flow in the wake (figure 9) and, hence, increases the extensional rate ∂ux/∂x therein.
Then, in the presence of shear, the amplification term in the ωx-budget equation (3.2)
increases, due to the enhanced extensional rate ∂ux/∂x. This increase intensifies the
streamwise vorticity generated in the droplet wake (figures 10, 12 and 14), causing the lift
force to exceed its counterpart in cases with Rei

c ≤ 300 and, in some cases, even surpass
the value in the inviscid limit (figures 4b, 5b and 8b). However, even when Rei exceeds
300, the internal bifurcation is found to disappear for approximately μ∗ ≥ 5 (figure 14),
and thus the pattern of lift reversal, typically occurring at μ∗ ≈ 10, remains unaffected
by Rei up to Rei = 1000 (figure 15a). Nevertheless, at the highest internal Reynolds
number considered in this work (Rei = 2000), we do observe some deviation in lift reversal
behaviour. Specifically, the lift is already negative at μ∗ = 5 (figures 5b and 15a), while it
remains positive for all other cases where Rei ≤ 1000. To unravel the mechanism behind
the premature lift reversal at this high Rei, we examine various flow structures under this
condition in Appendix C. It turns out that the combined source downstream in the wake
is predominantly positive for z > 0, contrasting the corresponding case at Rei = 200. This
suggests that the internal bifurcation at high Rei significantly enhances the ‘S’ mechanism,
while primarily augmenting the ‘L’ mechanism for cases with Rei ≤ 1000.

To close this subsection, we have compiled in figure 15 the cases (denoted by red open
symbols) where an increase in lift is observed due to the onset of internal bifurcation.
These results indicate that, in addition to requiring Rei > 300, the viscosity ratio must be
smaller than a critical value, approximately μ∗

c = 3, for such an increase in lift force to
occur. However, as already shown in figures 4 and 5, the lift increase remains modest at
low μ∗, especially when the Reynolds number ratio Re∗ is small. A closer inspection of
cases where μ∗ ≤ 1 reveals that the difference between the lift in the final state and that in
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Lift on a spherical droplet in a linear shear flow

the quasi-steady state prior to the onset of internal bifurcation (as illustrated in figure 6) is
less than 5 % when ρ∗ ≈ 0.15. Moreover, this difference diminishes with a decrease in ρ∗.
Given this trend, it is not surprising that for a gas bubble rising in liquid where μ∗ → 0
and Rei > 300, while internal bifurcation may still occur, the induced modifications in the
drag and lift forces remain negligible as ρ∗ → 0.

3.4. Influence of the relative shear rate
For all the shear-flow cases discussed above, the relative shear rate is fixed at Sr = 0.2.
The influence of Sr will be discussed in this section. In the low-to-moderate Reynolds
number regime, as indicated in § 3.1, the computed lift and drag to leading order can be
satisfactorily predicted using the low-Re expression. This suggests that the generation of
both forces is still governed by the vortical mechanism (Legendre & Magnaudet 1998;
Magnaudet 2003). More specifically, the drag is directly proportional to the strength of
the vorticity generated at the droplet surface, while the lift results from: (i) the non-zero
surface vorticity diffusion and (ii) the asymmetric advection produced by the shear. Hence,
in addition to the dependency on ωs outlined in § 3.1, while the drag force is only
weakly influenced by Sr, the lift force is proportional to Sr1/2, provided that Sr ≤ O(0.1).
These Sr-related features have been confirmed in prior work concerning spherical bubbles
(Legendre & Magnaudet 1998; Shi et al. 2020) and solid spheres (Kurose & Komori 1999;
Bagchi & Balachandar 2002; Shi et al. 2021) in linear shear flow for Sr up to 0.5 or even
higher.

At Re = O(100), it is interesting to see how the ambient shear affects: (i) the onset
of internal bifurcation at low-to-moderate viscosity ratio μ∗ and (ii) the sign reversal of
the lift force which occurs at relatively larger μ∗. For this purpose, we conducted two
additional series of simulations, one at Sr = 0.02 and the other at Sr = 0.5. In both series,
we fixed (Re, Re∗) = (200, 5) but varied the viscosity ratio from 0.01 to 100. Figure 16
illustrates the variation of the obtained CD and CL (together with those at Sr = 0.2) as a
function of μ∗. Recall that the onset of internal bifurcation is accompanied by an increase
in CD; the results in figure 16(a) indicate that the critical viscosity ratio, μ∗

c , below which
the internal bifurcation sets in, is between 2 and 5 for Sr ≤ 0.2 and between 5 and 10
for Sr = 0.5. Moreover, in the regime where μ∗ ≤ 2 and internal bifurcation occurs at all
three considered Sr values, the calculated CD at a given μ∗ experiences a slight increase
with Sr for Sr ≥ 0.2. This shear-induced drag increase is not directly linked to the internal
bifurcation. Rather, it results from the interaction between the ambient vorticity and the
velocity disturbance associated with the streamwise vortices in the wake. The resulting
drag increase, say, �CD = CD(Sr /= 0) − CD(Sr = 0), is proportional to Sr2 and Sr in the
limits μ∗ → 0 (Legendre & Magnaudet 1998; Shi et al. 2020) and μ∗ → ∞ (Kurose
& Komori 1999; Shi et al. 2021), respectively. Nevertheless, for 0.1 < μ∗ < μ∗

c , the
drag increase arises largely from the internal bifurcation even at Sr = 0.5 (comparing
the data points with the solid line in figure 16), indicating that the shear-induced drag
increase is only of secondary importance. Piecing together the information above, it may
be concluded that the ambient shear promotes the internal bifurcation by increasing the
threshold viscosity ratio below which the internal bifurcation can occur, yet it does not
strongly affect the resulting drag increase.

Figure 16(b) illustrates the variation of CL with increasing μ∗. For all three shear rates,
CL reverses from positive to negative at μ∗ ≈ 10, indicating that the lift reversal is not
influenced by the intensity of the ambient shear. To understand this feature, let us revisit
the budget equation of ωx, namely, (3.2). In a cylindrical coordinate system (r, φ, x), the
droplet surface may be considered as a vortex sheet with ωs = ωφeφ , provided that the
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Figure 16. Results for CD and CL against μ∗ at (Re, Re∗) = (200, 5) for different Sr. In panel (a), the black
solid line denotes CD prediction using (3.3a) and (3.4).

ambient shear is not too strong (i.e. for Sr ≤ O(0.1)) such that the base flow remains
largely axisymmetric. Then, the ‘S’ source term, which now takes the form ωφ∂ux/(r∂φ),
is of O(Srωφ(urel/R)) because ux varies by 2αR over one droplet diameter. However, the
‘L’ source term is of O(Sr∂ux/∂z(urel/R)). Given that both terms are proportional to Sr,
the critical viscosity ratio characterizing the lift reversal depends largely on the difference
in the intensity of the spanwise gradient ∂ux/∂z and the azimuthal vorticity ωφ in the
corresponding uniform base flow, and is minimally influenced by the ambient shear.

Another interesting feature revealed in figure 16(b) is the distinct profiles of CL(μ∗)
at the three different Sr for μ∗ ≤ μ∗

c . Specifically, it is only in the moderate shear rate
case (Sr = 0.2) that the lift variation is strongly influenced by the internal bifurcation. To
better understand the interaction between the ambient shear and the velocity disturbance
associated with the internal bifurcation, we present in figure 17 the structure of the
streamwise vorticity at μ∗ = 0.5 for Sr increasing from 0 to 0.5. Note that the view
direction is −ez, so that the level of up-down asymmetry characterizes the magnitude
of the wake-induced lift. At Sr = 0, the vortical structure remains up-down symmetric,
in line with the zero lift for this case seen in figure 8(b). With the presence of a weak
shear (Sr = 0.02), asymmetry sets in such that the upper vortex pair shrinks slightly, and
the reverse is the case for the vortex pair in the half-space y < 0. As outlined in § 3.3.2,
this change in the vortical structure is linked to the entrainment of the droplet wake by
the ambient shear, which causes a redistribution of vorticity intensity, enhancing the lower
vortex pair at the expense of the upper one. This redistribution is the key mechanism
responsible for the lift re-increase as the internal bifurcation sets in. At Sr = 0.2 and 0.5,
the upper vortex pair disappears, indicating that the redistribution process saturates at
Src ≤ 0.2. This saturation can also be observed by examining the lift increase caused by
the internal bifurcation, say, CBi

L , for these two cases. By examining the time evolution of
the lift coefficient, it is observed that CL after the internal bifurcation sets in increases from
0.11 to 0.21 at Sr = 0.2 (see figure 6) and from 0.22 to 0.32 at Sr = 0.5 (without figure),
indicating CBi

L = 0.1 for both cases. Hence, once the ambient shear is strong enough for
the redistribution process to saturate, the lift increase due to bifurcation depends only on
the corresponding uniform base flow (hence on (Re, Re∗, μ∗)) and is not directly linked
to the ambient shear. Piecing together the information above, the CL(μ∗) evolution in the
internal bifurcation regime depends on two parameter ratios: (i) Sr/Src, which measures
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Lift on a spherical droplet in a linear shear flow
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Figure 17. Isosurfaces of the streamwise vorticity (R/urel)ω · ex = ±0.2 in the droplet wake (black thread
denotes negative values) for different Sr. For all cases, μ∗ = 0.5 and (Re, Re∗) = (200, 5).

the relative intensity of the ambient shear Sr with respect to the threshold shear rate Src
characterizing the saturated bifurcation and (ii) CL,0/CBi

L , which measures the relative
magnitude of the base-flow lift (proportional to Sr) with respect to the bifurcation-induced
lift (independent of Sr). Specifically, the evolution of CL(μ∗) is strongly affected by the
internal flow bifurcation only if Sr/Src = O(1) and CL,0/CBi

L ≤ O(1). This is because,
for Sr � Src, the shear–wake interaction remains weak such that the flow structure
remains nearly bi-planar symmetric (comparing, e.g. figures 17a and 17b). However, for
CL,0/CBi

L � 1, the disturbance flow associated with the internal bifurcation is too weak
to affect the flow structure in the quasi-steady state prior to the onset of bifurcation
(comparing, e.g. figures 17a and 17d).

3.5. Drag and lift expressions obtained from the numerical data
Based on the numerical data from the present work and prior asymptotic predictions
established in the low- or high-Reynolds-number limits, we propose in this section
semiempirical expressions for the drag and lift forces that are valid over a wide range
of Reynolds numbers and viscosity ratios, provided that Sr ≤ 0.5.

At low Reynolds numbers, analytical solutions at leading order for the drag and lift
forces were derived by Legendre & Magnaudet (1997) and Magnaudet et al. (2003) using
a matched asymptotic expansion procedure. Building on these prior results, the drag and
lift force coefficients, CD and CL, for a droplet with arbitrary viscosity ratio μ∗ can be
proposed based on the values in the limits of μ∗ → 0 and μ∗ → ∞:

CD(μ∗) = CB
D + (Rm

μ − 1)
CS

D − CB
D

(3/2)m − 1
; (3.3a)

CL(μ∗) = CB
L + (R2

μ − 1)
CS

L − CB
L

(3/2)2 − 1
, (3.3b)

where Rμ = (2 + 3μ∗)/(2 + 2μ∗) denotes the Stokeslet variation with μ∗ and m = 1
for Re � 1. Here, CB

L (respectively, CB
D) and CS

L (respectively, CS
D) represent the lift
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(respectively, drag) coefficients in the clean-bubble (μ∗ → 0) and solid-sphere (μ∗ → ∞)
limits, respectively.

The low-Re predictions using (3.3) appear in figure 2 as black solid lines. The
leading-order solution for CL in the small and large viscosity ratio limits is also shown
(blue lines in panel b). The predicted CD from (3.3a) with m = 1 shows good agreement
with the numerical data. Regarding CL, at μ∗ = 100, our numerical data yield CL = 2.94,
slightly lower than the leading-order solution (in terms of (SrRe)1/2) for a solid sphere
(Saffman 1965; McLaughlin 1991; Legendre & Magnaudet 1997; Candelier, Mehlig
& Magnaudet 2019), which gives CS(1)

L = 3.13. However, considering the second-order
inertial lift correction of �CS(2)

L = −0.504Sr from recent analysis (Candelier et al.
2023) (see (B3) in Appendix B), our numerical result differs from the refined low-Re
solution CS(2)

L = CS(1)
L + �CS(2)

L by only approximately 5 %. The trend of �C(2)
L (μ∗) as

μ∗ decreases is not fully understood. Nevertheless, at μ∗ = 0.01, CL according to our
numerical results is 1.35, which aligns closely with the leading-order low-Re solution
for a spherical clean bubble, CB(1)

L = 1.39 ((B4b) in Appendix B). This suggests that the
second-order correction becomes negligible at low μ∗. Thus, for intermediate μ∗, it seems
feasible to approximate CL using (3.3b) together with CB

L and CS
L approximated using CB(1)

L
and CS(2)

L , respectively, as confirmed in figure 2(b).
As Re increases from 0.2, the ratio CS

D/CB
D increases from 1.6 at Re = 1 to 3.7 at

Re = 250 according to the numerical data, indicating that the low-Re expression for CD
with m = 1 no longer applies when Re ≥ O(1). The increase in CS

D/CB
D can be attributed

to two phenomena: (i) the surface vorticity ωs increases with Re for Re ≥ O(1) and
(ii) the evolution of ωs(Re) is dependent on μ∗. Specifically, ωs ∝ Re1/2(urel/R) in the
solid-sphere limit for Re ≥ 10 (Magnaudet et al. 1995), whereas ωs → 3(urel/R) in the
clean-bubble limit beyond Re ≈ 100 (Legendre 2007). Based on the present numerical
data up to Re = 250, we propose the following fitted expression for the exponent m in
(3.3a):

m(Re ≥ O(1)) = 1 + 0.01Re1.1. (3.4)

As figure 3(a) and 4 show, the simple drag model based on (3.3a) and (3.4) satisfactorily
reproduces the numerical data for all considered μ∗, provided that no internal flow
bifurcation takes place.

As for the lift force, the low-Re expression for CL is capable of reproducing the
numerical data qualitatively up to Re = 20 (solid lines in figure 3b). For Re ≥ 20, an
approximate expression inspired by the competition between the ‘L’ and ‘S’ mechanisms
is proposed as follows:

CL(μ∗, Re ≥ 20) ≈ CB
LgL + CS

L(1 − gL), (3.5)

with
gL(μ∗, Re) = exp[−A(Re)(μ∗)B(Re)], (3.6)

where

A(Re) =
4∑

n=0

an

(
Re
100

)n

and B(Re) =
4∑

n=0

bn

(
Re
100

)n

. (3.7a,b)

The coefficients of an and bn in (3.7a,b) are fitted based on the numerical data for Re ≥ 20,
resulting in

a0 = 1, a1 = −2.2, a2 = 3, a3 = −1.7, a4 = 0.32, (3.8a–e)
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Lift on a spherical droplet in a linear shear flow

and
b0 = −0.5, b1 = 4, b2 = −5.4, b3 = 2.9, b4 = −5.2. (3.9a–e)

The predictions using (3.5)–(3.9a–e) appear as solid lines in figure 4(b).

4. Summary and final discussion

4.1. Main findings
We have carried out comprehensive 3-D simulations of a linear shear flow past a spherical
droplet over a wide range of external Reynolds numbers (Re) and drop-to-fluid viscosity
ratios (μ∗). Our primary focus is on the hydrodynamic forces, especially the lift force,
acting on the droplet in the quasi-steady flow limit. In this context, we have dedicated
significant effort to understanding how the lift force transitions from the clean-bubble limit
(μ∗ → 0) to the solid-sphere limit (μ∗ → ∞) at both low and high Reynolds numbers. For
most of our simulations, we maintained a constant dimensionless shear rate at Sr = 0.2
and a fixed ratio of the internal Reynolds number (Rei) to the external one (Re) at Re∗ = 5.
The key findings from these simulations are summarized as follows.

In the low (external)-Reynolds-number regime, prior work adopting matched asymptotic
expansions (Legendre & Magnaudet 1997; Magnaudet et al. 2003) indicated that the lift
on a droplet is proportional to ω2

s , the square of the maximum vorticity generated at
the droplet surface, while the drag is proportional to ωs. Particularly, this leads to the
conclusion that the ratio of lift (drag) in the solid-sphere limit to that in the clean-bubble
limit is (3/2)2 (respectively, 3/2) for Re � 1. Our numerical results align closely with
these theoretical predictions up to Re ≈ 0.5, as demonstrated in figures 2 and 3.

At moderate-to-high external Reynolds numbers, provided that the internal Reynolds
number is smaller than a critical value of Rei

c ≈ 300, the drag and lift forces at a given
Re are determined solely by the viscosity ratio μ∗, consistent with the low-Re theory
(Legendre & Magnaudet 1997; Magnaudet et al. 2003). Within this regime, our numerical
results for drag still follow the predictions of the low-Re theory up to Re = 250, the
maximum Re considered in this study, provided that finite-Re corrections to the surface
vorticity ωs are reasonably accounted for (figures 3, 4 and 5). However, the evolution of the
lift force with increasing μ∗ significantly deviates from the low-Re theory, which suggests
a gradual increase in the lift coefficient CL with increasing μ∗. Notably, at Re = 2, CL
exhibits only a weak dependence on μ∗ (figure 3b). Beyond this point, CL progressively
decreases with increasing μ∗ (figures 3, 4 and 5). This gradual decrease results from
a competition between two distinct mechanisms responsible for the lift generation at
high Reynolds numbers. The first, known as the ‘L’ mechanism (Lighthill 1956; Auton
1987), largely depends on the ambient vorticity and yields a positive lift contribution,
parallel to that predicted by the low-Re theory. The second is the so-called ‘S’ mechanism
(Adoua et al. 2009) which depends in addition on the maximum surface vorticity ωs and
contributes to a negative lift force. The interplay between these two mechanisms leads to
a decrease in the combined lift force with increasing μ∗ and a change in its sign beyond a
critical, Re-dependent μ∗ (figure 15).

Still at moderate-to-high external Reynolds numbers, things become different when
Rei exceeds approximately 300. Notably, for droplets with a viscosity ratio lower
than approximately μ∗

c = 3, an internal bifurcation occurs (see § 3.2). This leads to a
strongly non-axisymmetric disturbed flow, characterized by multiple threads of streamwise
vorticity in the wake downstream. In cases where this internal bifurcation takes place, the
hydrodynamic forces exerted on the droplet are substantially altered. Particularly, the drag
increases due to the ‘sucking’ effect caused by the droplet’s 3-D wake. We confirm that this
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increase in drag is nearly independent of the presence of shear, provided that Sr ≤ O(0.1).
Conversely, the effect on the lift force is shear dependent. Without shear (Sr = 0), the
flow after the onset of internal bifurcation remains bi-planar symmetric and hence no lift
is generated. However, with the presence of shear, the internal bifurcation significantly
enhances the two threads of streamwise vorticity formed before the onset of bifurcation,
leading to a notable increase in lift force. The underlying mechanism for this increase in
lift was further detailed in § 3.3. First, we established in § 3.3.1 (also see Appendix D) a
close relationship between the lift force and the streamwise vorticity, ωx, in the wake of
the droplet. Subsequently, in § 3.3.2, we examined the impact of the internal bifurcation
on the generation of ωx. It was demonstrated that the internal bifurcation is marked by a
significant increase in the extensional rate ∂ux/∂x (figures 9 and 13). This amplifies the
ωx generation (see (3.2)) irrespective of μ∗ (figures 14 and 10), thereby resulting in a
substantial increase in the lift acting on the droplet.

Based on these findings, we discussed in § 3.4 the influence of the shear rate Sr at
Re = O(100), using results above together with those from additional runs at Sr = 0.02
and 0.5. These results indicate that CD is only weakly affected by Sr, provided that the
ambient shear remains not too strong, roughly for Sr ≤ 0.5. However, the lift reversal
occurs at μ∗ ≈ 10 irrespective of Sr, as both the ‘L’ and ‘S’ source terms depend linearly
on Sr. Moreover, in the regime μ∗ ≤ μ∗

c where a 3-D internal flow bifurcation sets in,
the resulting lift re-increase seems to saturate at O(Src) when the ambient shear exceeds
a critical shear rate Src. Hence, provided that Sr � Src, the lift force may still exhibit
a monotonic transition from μ∗ → 0 to μ∗ → ∞ even with the onset of internal flow
bifurcation.

Present work improves the current understanding of the mechanisms driving the
evolution of the lift force in relation to the viscosity ratio μ∗, particularly illustrating how
the transition from the clean-bubble limit (μ∗ → 0) to the solid-sphere limit (μ∗ → ∞)
varies across different Reynolds numbers (Re). From a practical point of view, this study
also offers empirical models for the drag [(3.3a) and (3.4)] and the lift [(3.3a) and
(3.5)–(3.9a–e)] forces acting on spherical droplets. These models are valid at arbitrary
μ∗ for Re up to 250, provided that the internal bifurcation does not take place. These
empirical models can be used in point-particle simulations to estimate the dispersion of
droplets in droplet-laden flows.

4.2. Discussion
One issue that deserves further discussion is the fundamental question concerning the
theoretical prediction of the flow bifurcation occurring when the internal Reynolds
number exceeds a critical value of approximately 300. As corroborated in § 3.2 and by
previous findings of Edelmann et al. (2017) and Rachih (2019), this notable shift in flow
structure already emerges in the corresponding uniform-flow conditions. In the presence
of shear, the critical Rei characterizing the (imperfect) bifurcation appears to be only
marginally influenced by the shear rate. While the underlying mechanism for the internal
bifurcation remains unclear, some hints may be inferred from the mechanism for the
external bifurcation of the flow past rigid bodies whose surfaces obey either free-slip or
no-slip conditions. In that case, external bifurcation sets in only when the surface vorticity
generated at the external side of the body, say ωe, exceeds a critical value that depends
on the (external) Reynolds number Re (Magnaudet & Mougin 2007). In analogies to the
external bifurcation, we believe the existence of a close relation between the maximum
vorticity at the internal side of the droplet surface, say ωi, and the onset of internal
bifurcation, and anticipate that internal bifurcation sets in once ωi exceeds a critical value
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Lift on a spherical droplet in a linear shear flow

that depends on the internal Reynolds number Rei. To corroborate this, let us first check
how ωi varies with the viscosity ratio μ∗ at Re = O(100). At steady state, continuity of
velocity and tangential stress across the interface yields the following relation between the
internal (ωi) and external vorticity (ωe) at the droplet surface:

ωi = 1
μ∗

[
ωe − 2

us

R
(1 − μ∗)

]
, (4.1)

where us denotes the local tangential velocity at the interface (see, e.g. Magnaudet &
Mougin (2007) for the detailed definition). This relation indicates that, for a fixed external
vorticity, the internal vorticity increases as the viscosity ratio decreases. Taken together
with our hypothesized cause of the internal bifurcation, there must exist a critical internal
surface vorticity, denoted ωi

c, which is reached as μ∗ decreases to μ∗
c , such that ωi ≥ ωi

c for
μ∗ ≤ μ∗

c . This is in line with the findings revealed from the present work. Moreover, the
fact that internal bifurcation sets in only when Rei > 300 simply means that ωi

c increases
with decreasing Rei such that it requires a very large ωi to trigger the internal bifurcation
for Rei ≤ 300, and this large ωi is not achieved in the range of parameters considered in
this work, probably owing to the still small external Reynolds number considered in this
work. Verifying the above speculation will likely require an extensive numerical study of
the flow around the critical bifurcation point in the uniform-flow condition, accompanied
by the development of a suitable linear stability analysis approach.
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Appendix A. Preliminary tests

In our initial series of tests, we assessed the drag and lift forces acting on a spherical
droplet at a shear rate of Sr = 0.2, particularly for extreme viscosity ratios μ∗ = 0.01
and μ∗ = 100. Considering the requirement for continuous tangent stress at the interface
(as per (2.3c)), we expect that the hydrodynamic forces on the droplet will approximate
those on a clean bubble (which has a shear-free surface) at low μ∗, and those on a
solid sphere (with a no-slip surface) at high μ∗. To enable a comprehensive comparative
analysis, we also conducted simulations for clean bubbles and solid spheres, employing the
same mesh configuration as outlined in § 2. However, we modified the dynamic boundary
conditions at the interface, originally defined by (2.3b,c), to better represent the physical
properties of clean bubbles and solid spheres. Specifically, the earlier conditions (2.3b,c)
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Figure 18. Results for CD and CL at Sr = 0.2 in the clean-bubble (μ∗ → 0) and solid-sphere (μ∗ → ∞)
limits. (©, red) and (•, red), present simulation results for μ∗ → ∞ and μ∗ = 100, respectively; © and •,
present simulation results for μ∗ = 0 and μ∗ = 0.01, respectively; (+, red) and (×, red), data for solid spheres
from Kurose & Komori (1999) and Bagchi & Balachandar (2002), respectively; +, data for clean bubbles from
Legendre & Magnaudet (1998). red line and black line in panel (a), drag correlations from Schiller & Naumann
(1933) and Mei et al. (1994), respectively; red line and red dashed line in panel (b), lift expression for solid
spheres from Shi & Rzehak (2019, valid for Re ≥ 50) and Candelier et al. (2023, valid for Re � 1), respectively;
black line and black dashed line in panel (b), lift expression for clean bubbles from Legendre & Magnaudet
(1998) and Auton (1987), respectively. All correlations used for predictions can be found in Appendix B.

were substituted with{
n × (τ i · n) = n × (τ e · n) = 0 for a clean bubble,
n × ui = n × ue = 0 for a solid sphere.

(A1)

As shown in figure 18, the calculated hydrodynamic forces for μ∗ = 0.01 and μ∗ = 100
align well with those for a clean bubble and a solid sphere, respectively. Figure 18 also
includes comparisons with drag and lift expressions as well as numerical data from prior
research, focusing on clean bubbles or solid spheres, as detailed in the figure caption. Our
results show very good agreement with these earlier studies, except for the CL values at low
Re. There, our results are consistent with the low-Re solution of Candelier et al. (2023) but
are higher than the numerical data of Kurose & Komori (1999). This discrepancy is likely
due to the smaller computational domain used in their simulations (R∞

x = 20R compared
with 100R in our study), which can lead to an underestimation of the lift force at low Re
(Takagi & Matsumoto 1998).

In the second series of tests, we examined the dynamics at moderate viscosity ratios
in a uniform flow, i.e. at Sr = 0. Assuming the flow to be axisymmetric, Rachih (2019,
chapter 3.8) conducted a grid study up to Re = 100 using a similar numerical approach as
implemented in this work. Their findings on flow structure and drag coefficients, derived
from a grid of lower resolution than that in the present work, were closely aligned with
earlier results from Oliver & Chung (1987) and Feng & Michaelides (2001), both of which
also assumed an axisymmetric flow. Beyond Re = 100, several previous studies (Thorsen,
Stordalen & Terjesen 1968; Edelmann et al. 2017; Rachih et al. 2020) have consistently
reported a transition in the flow from axisymmetric to planar symmetric when the internal
Reynolds number Rei exceeds a critical value of approximately 300. To evaluate the ability
of our numerical approach to replicate this transition, we focused on a scenario with
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Figure 19. (a) CD as a function of Re∗ for μ∗ = 0.5, Re = 200 and Sr = 0. (b) Streamlines in the symmetry
plane (red line represents the droplet surface) for Re∗ = 3. In panel (a) +, red, our numerical results; ©, data
from Edelmann et al. (2017); black line, the result from Feng & Michaelides (2001, CD = 0.317), obtained
under the assumption of axisymmetric flow.

Re = 200 and μ∗ = 0.5, varying Re∗ from 0.2 to 10, which corresponds to an internal
Reynolds number range of 40 to 2000.

The drag coefficients obtained from our simulations are presented in figure 19(a). They
show good agreement with the previous fully 3-D simulation results from Edelmann
et al. (2017). Specifically, our results indicate that the flow remains axisymmetric for
Re∗ ≤ 1.5 (i.e. Rei ≤ 300), within which CD exhibits only a weak dependency on Re∗ (and
consequently on ρ∗), closely aligning with the findings of Feng & Michaelides (2001).
However, beyond Rei ≈ 300, we observe a pronounced flow separation inside the drop
characterized by a distinct separation angle. Figure 19(b) shows the streamlines in the
symmetry plane at Re∗ = 3 (equivalent to Rei = 600), where the internal flow detaches at
the rear part of the droplet. The separation angle, measured from the rear stagnation point
to the separation point, is approximately 54.7◦, closely matching the 55.5◦ value reported
by Edelmann et al. (2017) under the same condition.

In the final series of tests, we focused on the drag and lift forces at Re = 200 and
Re∗ = 5 in a linear shear flow (Sr = 0.2), specifically at low-but-finite viscosity ratios
μ∗ = O(0.1). As highlighted in § 3.2 of the main paper, a notable characteristic in this
regime is the increase in lift force following an internal bifurcation. To validate the
reliability of this observation, we compared our numerical results with those from Zhang
(2023, private communication), where the open-source code Basilisk (Popinet 2009, 2015)
along with an innovative algorithm (Fang et al. 2021) for estimating the interfacial forces
on non-body-fitted grids were employed. Figure 20 presents the time history of the drag
and lift coefficients obtained at μ∗ = 0.2 (panel a) and μ∗ = 0.5 (panel b). Our results for
both CD and CL show good agreement with those from Basilisk. Notably, both simulations
indicate CL = Sr at t = 0 regardless of μ∗, consistent with the analytical solution derived
by Legendre & Magnaudet (1998). Furthermore, CL is observed to increase with time
precisely when CD reaches its peak value. The CL values achieved in the quasi-steady
state are found to be larger than the inviscid steady solution from Auton (1987), which
predicts CL = 2Sr/3. This excess is particularly evident in the case of μ∗ = 0.5.
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Figure 20. Time history of CD and CL for Re = 200, Re∗ = 5 and Sr = 0.2. (a) μ∗ = 0.2; (b) μ∗ = 0.5. Red
line, present numerical results; ©, results from Zhang (2023, private communication) using Basilisk.

Appendix B. Correlations for CD and CL

We summarize in this section the available correlations for the drag and lift coefficients
concerning clean bubbles (denoted by CB

D and CB
L ) and solid spheres (denoted by CS

D and
CS

L). In both cases, the ambient shear is known to cause an increase in drag (Legendre &
Magnaudet 1998; Candelier et al. 2019). However, for Sr ≤ 0.2, the relative magnitude of
this shear-induced increase is small (Kurose & Komori 1999; Shi et al. 2020, 2021) and the
drag coefficients in these two cases can be satisfactorily approximated using correlations
for uniform-flow conditions (Schiller & Naumann 1933; Mei et al. 1994), namely

CB
D = 16

Re

{
1 +

[
8

Re
+ 1

2
(1 + 3.315Re−1/2)

]−1
}

, (B1a)

CS
D = 24

Re
(1 + 0.15Re0.687). (B1b)

These two expressions are valid throughout the range of Re considered in this work.
The lift coefficient for a clean bubble at arbitrary Re can be approximated using (Auton

1987; Legendre & Magnaudet 1997, 1998)

CB
L = {CB

L(Re � 1)2 + CB
L [Re = O(100)]2}1/2, (B2a)

CB
L(Re � 1) = 8

π2
2.255ε

(1 + 0.2ε−2)3/2 , (B2b)

CB
L [Re = O(100)] = 2

3
Sr

1 + 16Re−1

1 + 29Re−1 , (B2c)

where ε = (Sr/Re)1/2 and the term 2Sr/3 in (B4c) corresponds to the inviscid lift solution
from Auton (1987).

For a solid sphere, the low-Re lift solution comprising the second-order inertial
corrections (in terms of (SrRe)1/2) reads (Saffman 1965; McLaughlin 1991; Legendre &
Magnaudet 1998; Candelier et al. 2023)

CS
L(Re � 1) = 18

π2
2.255ε

(1 + 0.2ε−2)3/2 − 0.504Sr. (B3)
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Figure 21. Flow structures at μ∗ = 5, Re = 200 and Sr = 0.2 for different internal Reynolds numbers.
(a-i–a-iii) Isosurfaces of the streamwise vorticity ωx, the combined source ‘L + S’ in the budget equation
(3.2) and the amplification term in (3.2) at Rei = 2000. (b-i) and (c-i) (respectively, b-ii and c-ii) Extensional
rate and spanwise gradient at Rei = 2000 (respectively, Rei = 200).

(In (B3), the second-order lift of −0.504Sr was achieved by Candelier et al. (2023); its
magnitude is approximately 2.7 times smaller than Saffman’s incomplete prediction of
−11/8Sr.)

The lift becomes vanishingly small for Re = O(10) and changes its sign beyond Re ≈ 50
(Kurose & Komori 1999; Bagchi & Balachandar 2002). For 50 ≤ Re ≤ 500, its value can
be approximated using (Shi & Rzehak 2019)

CS
L(Re � 1) = −0.032 exp (0.525Sr){1 + tanh [5 log (ReSr0.08/120)]}. (B4)

Appendix C. The negative lift at (μ∗, Re, Rei) = (5, 200, 2000)

The presence of a negative lift force at (μ∗, Re, Rei) = (5, 200, 2000) (figure 5b) is
somewhat unexpected. Our numerical results at lower Rei suggested that: (i) the lift is only
weakly affected by Rei for viscosity ratios larger than approximately μ∗

c = 3 and (ii) lift
reversal occurs at a critical μ∗ of approximately 10 (figure 15a). To unravel the mechanism
behind the premature lift reversal at this high Rei, we examined various flow structures for
this condition, with key results summarized in figure 21.

Figure 21(a-i) illustrates the streamwise vorticity structure in the wake of the droplet.
The orientations of the two streamwise vortices are opposite to their counterparts observed
in the clean-bubble limit (figure 10a), in line with the negative lift force in this case. This
suggests that the mechanism responsible for the lift generation in this case may still be
understood by examining the various terms on the right-hand side of the budget equation
(3.2). Figures 21(b-i) and 21(c-i) (and figures 21b-ii and 21c-ii) display the contour plots
at the cross-stream plane x = 2R of the two velocity gradients, ∂ux/∂x and ∂ux/∂z,
respectively, at Rei = 2000 (and 200). The marked difference between results at the two
Rei, particularly the more pronounced ∂ux/∂z at Rei = 2000, confirms the onset of internal
bifurcation at (Rei, μ∗) = (2000, 5). Consequently, the threshold viscosity ratio μ∗

c = 3 is
only a reference value and loses its relevance at very high Rei. Not surprisingly, both the
combined source, ‘L + S’, and the amplification term at Rei = 2000 (figure 21a-ii,a-iii) are
significantly more intense than those at Rei = 200 (figure 14a-v,b-v). Specifically, at Rei =
2000, the combined source downstream in the wake is predominantly positive for z > 0,
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contrasting the corresponding case at Rei = 200. This suggests that the internal bifurcation
at high Rei significantly enhances the ‘S’ mechanism, while primarily augmenting the ‘L’
mechanism for cases with Rei ≤ 1000. Given these insights, a comprehensive investigation
into the shift in the primary enhanced mechanism at various Rei is warranted. We plan to
undertake this in future work, which will necessitate a much higher grid resolution to fully
resolve the flow within the internal boundary layer.

Appendix D. Lift force inferred from the streamwise vorticity

It is well established that the lift force exerted on an object can be inferred from the
vorticity field in the surrounding flow (Biesheuvel & Hagmeijer 2006; Hidman et al.
2022). In theory, once the vorticity distribution is experimentally or computationally
ascertained, it becomes feasible to evaluate the lift force without necessitating knowledge
of the pressure distribution at the body’s surface. This profound theoretical concept is,
however, of limited practical use in 3-D flows, primarily because the solution involves
volume integrals. These integrals demand an accurate determination of the vorticity
disturbance throughout the entire flow domain (Howe 1995; Magnaudet 2011). In this
section, we revisit the simplified model originally proposed by de Vries et al. (2002)
and later revised and used by Veldhuis (2007) and Zenit & Magnaudet (2009), which
facilitates the estimation of lift force from the streamwise vorticity in the wake. We will
demonstrate that, provided this vortical component is accurately known at a cross-stream
plane sufficiently far downstream in the wake of the object, a qualitative estimation of the
lift force is achievable.

To begin, we recall that the pair of streamwise vortices in the wake resemble two vortex
tubes. Following the coordinates defined in the main body of the paper, these tubes are
aligned in the x direction and symmetrically located with respect to the plane z = 0.
Specifically, the tube in the half-space z > 0 rotates along e+

ω , where e+
ω is either parallel

or anti-parallel to ex. Here, ex denotes the streamwise direction, parallel to urel. In the
inviscid limit, the induced velocity field of the two vortices generates a lift force acting on
the bubble (Auton 1987; Biesheuvel & Hagmeijer 2006). The expression for this force is
given by

Fω
L = −ρlzcΓ urel(e+

ω · ex)ey, (D1)

where Γ represents the circulation strength of each vortex tube and zc is the separation
between their centres.

For a viscous vortex, the vorticity is not compact but diffused around the vortex
centre. Additionally, downstream in the wake, the circulation strength Γ may vary with
the separation distance from the bubble due to viscous effects. The separation distance
between the vortex centres also changes owing to vorticity diffusion. These features
are highlighted in figure 22, which shows the structure of the streamwise vorticity at
different distances downstream of a clean bubble for Re = 200 and Sr = 0.2. Clearly, the
vorticity diffusion is not homogeneous and is significantly suppressed near the symmetry
plane z = 0. Furthermore, the distance between the two vortices gradually increases with
the separation from the bubble. Following Zenit & Magnaudet (2009), we estimate the
circulation and the separation between the two vortices using

Γ =
∣∣∣∣
∫
C

u · dr
∣∣∣∣ =

∣∣∣∣
∫
S

ωx dS
∣∣∣∣ , zc ≈ 2

∣∣∣∣∣∣∣∣

∫
S

ωxz dS∫
S

ωx dS

∣∣∣∣∣∣∣∣ , (D2a,b)
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Figure 22. Structure of the normalized streamwise vorticity (R/urel)ωx in the cross-stream plane (illustrated
in panel a) in the wake at varying distances downstream from a clean bubble at Re = 200 and Sr = 0.2.
(a), Isosurfaces corresponding to (R/urel)ωx = ±0.05. (b-i)–(b-iii) Isocontours of (R/urel)ωx in the
cross-stream plane, which is a circular surface with a radius of RS, centred at (x = xS, y = z = 0). Here, xS
takes values of 2R, 5R and 10R, respectively, the horizontal white arrowed line highlights the distance between
the two points of maximum vorticity.

where C is a closed curve in the cross-stream plane enclosing one of the vortices and S is
the area enclosed by C. Note that, given the non-axisymmetric distribution of the vortex,
the vortex centre is estimated from the centre of rotation of the velocity field (the point
around which streamlines rotate), rather than from the point of maximum vorticity (Zenit
& Magnaudet 2009).

To implement (D2a,b), we consider the cross-stream plane S as a half-circular surface
with a radius of RS, centred at (x = xS, y = z = 0), as illustrated in figure 22(a). To
examine the model, we fix RS at 10R, a radial distance beyond which the disturbance
induced by a sphere at Re = O(100) is almost negligible (Magnaudet 2011), and analyse
the flow past a clean bubble with Re = 200 at three different shear rates. The estimated Γ

and zc are depicted in figure 23(a,b) as functions of the normalized downstream distance
xS/R. As expected, both values exhibit a slight dependency on Sr in the near-wake
region where xS ≤ 5R. In this region, where viscous effects are still pronounced, the
orientation of the two vortex tubes is known to be slightly inclined downwards (Legendre
& Magnaudet 1998; Shi et al. 2020), i.e. towards −y, the extent of which depends on
Sr. This dependency, however, diminishes further downstream. Here, the normalized
circulation (when divided by Sr) decreases with increasing separation distance from the
bubble, whereas the reverse is true for zc/R.

Figure 23(c) presents the estimated lift coefficients, denoted as Cwake
L , using (D1)

and (D2a,b). The lift coefficients CL, calculated by integrating the pressure and viscous
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Figure 23. Results for (a) the circulation strength Γ , (b) separation distance zc and (c,d) the vorticity-based lift
coefficient Cwake

L of a clean bubble at Re = 200 with three different shear rates Sr. In panels (a–c), results are
estimated at various distances downstream (denoted by xS/R), and on the cross-stream plane S , a half-circular
surface centred along the line y = z = 0 with a fixed radius of RS = 10R. In panel (d), results are estimated at a
fixed distance downstream of xS/R = 10, but considering different sizes of S (characterized by its radius RS).
In panels (c,d), the dashed lines represent the lift coefficient calculated by integrating the pressure and viscous
stresses over the bubble interface, as described in (2.6a–c).

stresses over the bubble interface using (2.6a–c), are also presented (depicted as horizontal
dashed lines). Irrespective of Sr, Cwake

L accounts for only approximately 30 % of CL at
x = R, but it gradually increases with increasing separation distance downstream. This
increase saturates at xS ≈ 5R, beyond which Cwake

L closely aligns with CL. For instance, the
agreement between both is within 95 % at xS = 10R. For xS � 15R, the vorticity becomes
significantly diffused along the radial direction and the resolution of our numerical
approach can no longer be assured. Consequently, the agreement starts to deteriorate in
this extremely far-wake region.

The influence of the size of the cross-stream plane S on the estimated lift is examined
by varying RS, namely the radius of the cross-stream plane, from 1R to 20R while fixing
xS at 10R. The corresponding Cwake

L as a function of RS is shown in figure 23(d). Given
the rapid decay (R−3

S ) of the disturbance in the far field (Magnaudet 2011), Cwake
L quickly

converges to the reference value, CL, at approximately RS = 5R. A mismatch between the
two values starts to occur at approximately RS = 15R, owing to the insufficiency of grid
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resolution, as previously mentioned. Based on these examinations, we set xS and RS both
at 10R for estimating Cwake

L .
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