
J. Austral. Math. Soc. Sen B 38(1996), 163-171

OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
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Abstract

The authors consider the higher-order nonlinear neutral delay difference equation

A"1 [>>,,_m+1 + pn_m+1yn_m+1_t] + 8F(n, >>„_,) = 0

and obtain results on the asymptotic behavior of solutions when {/>„} is allowed to oscillate
about the bifurcation value — 1. We also consider the case where the sequence {pn} has
arbitrarily large zeros. Examples illustrating the results are included, and suggestions for
further research are indicated.

1. Introduction

Difference equations of the form

Am|jn-m+i + pyn-m+i-k\ + qnyn-i = 0 (e)

are commonly called delay difference equations of neutral type, and have been studied
by a number of different authors in the last few years (see, for example, [1-12] and the
references contained therein). Here k and / are nonnegative integers, m is a positive
integer, p is a constant, and \qn} is a sequence of real numbers. Equations of this type
arise in a number of important applications including problems in population dynamics
when maturation and gestation are included, in "cobweb" models in economics where
demand depends on current price but supply depends on the price at an earlier time,
and in electrical transmission in lossless transmission lines between circuits in high
speed computers.
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164 JohnR.Graefetal [2]

From the study of such equations, it is known that the value p = — 1 behaves as a
bifurcation point for the behavior of nonoscillatory solutions of (e) (see, for example,
[3] and [5 - 10]). That is, the nonoscillatory solutions behave in a considerably
different fashion depending on whether p > — I or p < — 1. In particular, it is known
that for qn > 0 and m odd, if p > — 1 all nonoscillatory solutions converge to zero
as n —>• oo, while if p < — 1 any nonoscillatory solution {yn} satisfies \yn\ —> oo
as n —> oo. On the other hand, if m is even and again qn > 0, for p > — 1 all
nonoscillatory solutions converge to zero, and for p < — 1 bounded nonoscillatory
solutions converge to zero as n —• oo. Moreover, examples show that it is possible to
have unbounded solutions in the latter case.

For the case of equation (e) with qn < 0, nonoscillatory solutions satisfy yn —>• 0 or
\yn\ —> oo if m is even and —1 < p < 0, while \yn\ —>• oo if m is even and p < — 1.
With m odd either yn -» 0 or \yn \ -*• oo if — 1 < p < 0 and bounded nonoscillatory
solutions converge to zero if p < — 1. It is possible to construct examples illustrating
all these types of behaviors.

In this paper we examine the solutions of nonlinear equations of this type with
p replaced by a sequence which is allowed to oscillate about the value — 1 in some
regular fashion. In another direction, the study of the asymptotic behavior of solutions
of (e) often requires that the sequence [pn] satisfies either pn > 0 or pn < 0 (again
see [1 - 12]). Here, we also examine the case where the sequence {/?„} has arbitrarily
large zeros. Our results appear to be new even in the case where F is linear. We
illustrate our results with examples, and make some suggestions for further research.

2. Asymptotic behavior of solutions

We consider the nonlinear neutral delay difference equation

Am[yn-m+i + pn-m+iyn-m+l-k] + 8F(n, yn_;) = 0, (E)

where m > l , 6 = ± l , A denotes the forward difference operator Ayn = yn+l — yn,
A'yn = A(A'~lyn), 1 < i < m, k, I e N = {0, 1,2,...}, {/?„} is a sequence of
real numbers, F : N x E -> R is continuous with uF{n, u) > 0 for u ^ 0 and
n > No € N, and F(n, u) # 0 for u e K \ {0} and n > Nx for every Nx > No.
By a solution of (E), we mean a sequence [yn} of real numbers which is denned for
n > No — M, where M = max{jfc, /} + m — 1 and which satisfies (E) for n > No. Such
a solution [yn] of (E) is said to be nonoscillatory if the terms yn are either eventually
all positive or eventually all negative. Otherwise the solution is called oscillatory.

In many of our results we will require the condition that if {«„} is a sequence with
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un > 0 («„ < 0) and liminf^oo \un\ > 0, then

oo

]T W, «/) = OO (-00). (1)
i=M>

For notational purposes, we shall let

zn = yn + pnyn-k-

The following lemma will be used in proving the main results in this paper.

LEMMA 1. Suppose condition (I) holds, and [yn] is an eventually positive (negative)
solution of(E) with S =+1 {8 = - 1 } . Then:

(i) Ifzn —>• 0 as n —»• oo, then {A'zn] is monotonic and

A'zn - • 0 as n -> oo and A'zn A'+1zn < 0 (A)

for i = 0, 1, . . . , m — 1.
(ii) Let zn —>• 0 as n —> oo. Ifm is even {odd}, then zn < 0 (zn > 0). Ifm is odd

[even], then zn > 0 (zn < 0).
(iii) If there exists a constant P\ such that

Pl<Pn< 0, (2)

then either {A'zn} is decreasing (increasing) [increasing (decreasing)} with

A'zn -> —oo (oo) {oo (—oo)} as n -> oo (B)

for i = 0, 1, . . . , m — 1, or {A'zn} is monotonic and (A) holds.
(iv) If (2) holds and m is even, then zn < 0 (zn > 0) {> 0 (< 0)}. / / (A) holds

and m is odd, then zn > 0 (zn < 0) {< 0 (> 0)}.

REMARK. The parts of this lemma appear as parts (c) - (f) respectively of Lemma 1
in [10].

For our first result, we are interested in the situation where the sequence [pn} is
allowed to oscillate about the value — 1. We ask that this behavior occur in a regular
fashion, and in fact, we say that the sequence {/?„} has property (S) if:

for every /z, > No there exists N > nt with the property
that for each fixed n with N < n < N + k there is a (S)
nonnegative integer Mn such that pn+Mnk = ~Qn > — 1.

In all our results we give proofs only for the case when a nonoscillatory solution is
eventually positive since the proofs for an eventually negative solution are similar.
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THEOREM 2. Suppose that conditions (1) - (2) hold and {pn} has property (S). / /
8 = +1 and m is even, then any solution {yn} of (E) is either oscillatory or satisfies
yn —> 0 as n —> oo, while if 8 = — 1 and m is odd, then either [yn] is oscillatory,
yn -+ 0, or \yn\ - • oo as n -> oo.

PROOF. Let{_yn}beaneventuallypositivesolutionof(E),say,>'n_m+i_t > Oandyn_, >
0 for n > N\ for some Nt > No. Lemma l(iv) implies that zn = yn + pnyn-k < 0
for n > N2 for some N2 > N\. Since (2) holds and the sequence {/?„} has property
(S), there exists N > N2 with the property that for each fixed n with N < n < N +k
there is a nonnegative integer Mn such that 0 > pn+Mnk = — Qn > — 1. Hence, for
each fixed n with N < n < N + k

yn+Mnk + Pn+Mnkyn+(M.-W ~ Zn+M»k < 0,

and so

Iterating this inequality, we obtain

< {Qn)1 yn+(M,-\)k —*• 0

as j —>• oo. Since for each fixed n with N < n < N + k, we have yn+/t —> 0 as
/ —> oo, it follows that yn -» 0 as n —> oo.

Our next result is for the case where {/?„} has arbitrarily large zeros.

THEOREM 3. Suppose conditions (1) - (2) hold and the set of zeros of[pn] is unboun-
ded from above. If 8 = +1 and m is even, then any solution {yn} of(E) is oscillatory,
while if8 = —l and m is odd, then either {yn} is oscillatory or \yn \ —> oo as n —> oo.

PROOF. Let {>>„} be a nonoscillatory solution of (E), say, yn_m+x_k > 0 and yn-i > 0
for n > Nx > No. Part (iii) of Lemma 1 implies that either (A) or (B) holds. If (A)
holds, part (ii) of Lemma 1 implies there exists N2 > Ni such that zn < 0 for n > N2,
so choose N > N2 such that pN = 0. Then yN = zN < 0, which is a contradiction.
If (B) holds, then zn < yn —> oo as n —> oo if 8 = — 1, and we again have zn < 0 if

In the results in the remainder of this paper, we shall make use of the following
condition on the function F. Assume that there is a continuous increasing function
/ : K ->• K with uf(u) > 0 for u ^ 0 and constants Ku K2 > 0 such that

Kxfiu) < F(n, u) if u >-0 and F(n, u) < K2f{u) if u < 0 (3)

for all n > No- The following lemma provides some additional information on the
behavior of the nonoscillatory solutions of (E).
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LEMMA 4. Suppose that condition (3) holds and there is a positive constant P2 such
that

\Pn\ < P%. (4)

If{yn] is a nonoscillatory solution of(E), then either (A) or (B) holds.

PROOF. Suppose that {yn} is an eventually positive solution of (E), say yn^m+i-k > 0
and yn_, > 0 for n > N{ for some A^ > No. From (E), we have SAmzn_m+i =
— F(n, yn-i) < 0, so {A'zn} is monotonic and Am~lzn —> 8L < oo as n —> oo. If
8L = — oo, then clearly (B) holds. If 8L > — oo, then summing (E) from A^ to n and
then letting n —>• oo, we have

5Am-'zWl_m+1 - SL =

This implies that f(yn) -*• 0 as n -> oo, and since / is increasing, we have yn —> 0
as n —> oo. Condition (4) then implies that zn —> 0 as n —> oo, and it follows
immediately from Lemma l(i) that (A) holds.

THEOREM 5. Suppose conditions (3 ) - (4) hold and the sequence [pn] is not eventually
negative. If 8 = + 1 and m is even, then all solutions of(E) are oscillatory, while if
8 = — 1 and m is odd, then all bounded solutions are oscillatory.

PROOF. Let [yn} be a nonoscillatory solution of (E) with >>n_m+i_t > 0 and yn-i > 0
for n > Ni > No. Since {/?„} is not eventually negative, (B) cannot hold if 8 = + 1 ,
so in this case (A) holds. Moreover, if m is even, Lemma l(ii) again yields the
contradiction that zn < 0. For 8 = — 1, (B) contradicts the boundedness of {>>„}, and
Lemma l(ii) yields a contradiction when m is odd.

The next theorem considers the complementary cases to those in Theorem 5.

THEOREM 6. Suppose conditions (3) - (4) hold and pn>0.If8 = +l and m is odd,
then any solution {yn} of (E) is either oscillatory or satisfies yn -* 0 as n —> oo. If
8 = — 1 and m is even, then any bounded solution [yn] o/(E) is either oscillatory or
satisfies yn —> 0 as n —> oo.

PROOF. Again let {yn} be a nonoscillatory solution of (E) with yn_m+i_k > 0 and
ytt-i > 0 for n > A/, > No. By Lemma 4, either (A) or (B) holds. Now (B)
contradicts pn > 0 if 8 = +1 and contradicts the boundedness of [yn] if 8 = — 1.
Part (ii) of Lemma 1 yields the contradictions needed to complete the proof after it is
observed that zn -> 0 and yn < zn implies yn -> 0.
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Our next theorem is just for the case S = + 1 ; in it we allow {/?„} to oscillate about
0.

THEOREM 7. Suppose S = +1, condition (3) holds, and there exist P3 and P4 such
that

-l<Pi<pn< /V (5)

Ifm is odd, then every nonoscillatory solution {yn} of(E) satisfies yn -> 0 as n —> oo.
If m is even, then any nonoscillatory solution is bounded; in addition, if P3 > — 1,
yn —>• 0 as n —>• oo.

PROOF. Suppose {yn} is a nonoscillatory solution of (E) with yn_m+l_k > 0 and
>>„_/ > 0 for n > N > No. First note that (5) implies (4), so by Lemma 4, either (A)
or (B) holds. If (B) holds, then —yn-k < zn -> - o o as n -*• oo and so yn —> oo as
« —>• oo. But y» = zn — pnyn-k < —P3yn-k < >>„_* which contradicts the fact that
yn -*• oo as n -*• oo. Therefore (A) holds.

Suppose that mis odd. ByLemmal(ii), zn > 0, and since (A) holds, ^ ^ F O ' , y,_/)
converges. As in the proof of Lemma 4, this implies that yn —> 0 as n —»• oo.

If m is even, Lemma l(ii) implies that zn < 0, and this in turn implies that pn

must eventually be negative. If lim supn_fOO yn = oo, then there exists an increasing
sequence {mn} with mn -> oo as n —>• oo such that pn < 0 for n > mu ymn -> oo
as n -> oo, and ^ = max{>>, : Nt < i < mn). Hence, zmn = >-Wn + pmnyMn-k >
ymn + Pmnymn = [1 + Pmn]ymn > 0. This contradicts zn < 0 for sufficiently large n.
Thus, limsupn^.ooyn < oo, and so {yn} is bounded. Finally, if P3 > —1, we have
yn < —pnyn-k 5 —Piyn-k, and iterating, we obtain j n -> 0 as n —> oo.

Our final result is a consequence of Theorem 7 for the case when m is odd. As
discussed in the introduction, solutions of the equation

Am[yn_m+1 + pyn_m+l-k] + qnyn-\ = 0 (e)

behave in a considerably different fashion depending on whether p > —I or p < — 1.
The following corollary completes the picture by considering the case p = —I.

COROLLARY 8. Suppose S = + 1 , m is odd, condition (3) holds, and pn = —1. Then
every solution o/(E) is oscillatory.

PROOF. Suppose [yn] is a solution of (E). By Theorem 5 in [11], either {yn} is
oscillatory or \yn\ —> oo as n —> oo. By Theorem 7 above, {yn} is bounded and
so the conclusion follows.

REMARK. Corollary 8 includes Theorem 2.1 of Lalli et al. [5] on first-order linear
equations as a special case.
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3. Examples and suggestions for further research

The equation

vn_m+I - ^ 2
} yn_m+1_*j + 2 m + 1 y ; _ ; = 0 , (£,)

where k is an odd integer, y is an odd positive integer, and / is an even integer satisfies
the hypotheses of Theorem 2. The sequence {yn} = {(—1)"} is an oscillatory solution
of (Ei). On the other hand, consider the equation

V ™_i_i — V _i_i

V ; e(Jf-""yB
y_, = 0, (£ 2 )

where k is odd and y is the ratio of odd positive integers with y > 1. If k is
chosen large enough so that ek > 2[2 + (1 + e)m/(l - e)m]/3, then the hypotheses
of Theorem 2 are satisfied (S = +1 if m is even and 5 = —1 if m is odd). Here
{yn} = {e~"[2 4- (—1)"]} is a nonoscillatory solution of (E2) converging to zero as
n -> oo. Also, if y is the ratio of odd positive integers with 0 < y < 1, k is even,
and e* > 1 + (e + l)m/2(e - l)m, then the equation

satisfies the hypotheses of Theorem 2 for the case S = — 1 and has the solution
{yn} = {en + (-1)"} such that \yn\ -> oo as n -» oo.

The equation

Am{yn_m+1 + [(-1)» - l]yn_m} + (-1)»"2"+I^_I = 0,

where y > 1 is an odd positive integer, satisfies the hypotheses of Theorems 3 and
5. Here, S = +1 if / is even and <5 = - 1 if / is odd. An oscillatory solution of this
equation is {yn} = {(-1)"}.

If k is even, the equation

{yn_
m+1

4. (_i)«
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will satisfy the hypotheses of Theorem 3 for the case 8 = — 1 provided k is chosen
large enough so that ek > (e + l)"7O - l)m + 1. The sequence [yn] = \e" + (-1)"}
is a nonoscillatory solution with \yn | —> oo as n —> oo.

The equation

Am{^_m+1 + [ ( - i r - m + 1 + l]yn.m+l_k} + (-I)>"21"+Itf_, = 0, (£6)

where /: is even and y > 0 is the ratio of odd positive integers, satisfies the hypotheses
of Theorems 5 and 6. We have 8 = +1 if / is even, 8 = — 1 if / is odd, and
[yn] = {(—1)"} is an oscillatory solution. The equation

Am[yn_m+1 + e-"+ m-Vm +i-*l - e^-y\e - \re"-m+1yy
n_, = 0, (£7)

where y is the ratio of odd positive integers with 0 < y < 1, satisfies the hypotheses
of Theorems 5 and 6 for 8 = — 1. Here, {yn} = [e"} is an unbounded solution which
does not oscillate. In addition, the equation

where k is an odd positive integer and y is the ratio of odd positive integers with
0 < y < 1, satisfies the hypotheses of Theorems 5 and 6 and has the unbounded
oscillatory solution {yn} = {( -1)V + (-1)"}.

For the equation

Am [>>„_„,+, + e-n+m-lyn.m+1.k] + 8[2m + ^ - " - ' ( l + e)m]yY
n-, = 0, (E9)

where k is even and y > 0 is the ratio of odd positive integers, the hypotheses of
Theorems 5 and 6 are satisfied if (i) 5 = +1, m is odd, and / is even, or (ii) <5 = — 1, m
is even, and / is odd. We have that \yn\ = {(—1)"} is an oscillatory solution of (E9).
The hypotheses of Theorem 7 are also satisfied if (i) holds.

The equation

Am[yn-m+i+e-n+m-lyn-m+l-k]-[(l-e)m +e-n(l-e2)mek-l]yn-l/e'+1 =0 (E10)

satisfies the hypotheses of Theorem 6, and if m is odd, it also satisfies the hypotheses
of Theorem 7. Here, {yn} = [e~n] is a nonoscillatory solution which converges to 0
as n -*• oo.

REMARK. AS to some directions for further research, the extension of any of the results
in this paper to the case where F{n,u) can oscillate in sign for fixed u would be of
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significant interest. Another suggestion is to study the effect of modifying property
(S) on the sequence {/?„} so that pn+Mnk = —Qn < — 1 and examining the effect on
the behavior of the nonoscillatory solutions especially in the cases where 8 = +1 and
m is odd or S = — 1 and m is even.
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