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Abstract

During lateral root (LR) development, morphological alteration of the developing single LR
primordium occurs continuously. Precise observation of this continuous alteration is important
for understanding the mechanism involved in single LR development. Recently, we reported
that very long-chain fatty acids are important signalling molecules that regulate LR develop-
ment. In the study, we developed an efficient method to quantify the transition of single LR
developmental stages using time-lapse imaging followed by a deep neural network (DNN)
analysis. In this ‘insight’ paper, we discuss our DNN method and the importance of time-
lapse imaging in studies on plant development. Integrating DNN analysis and imaging is a
powerful technique for the quantification of the timing of the transition of organ morphology; it
can become an important method to elucidate spatiotemporal molecular mechanisms in plant
development.

Elucidation of the molecular mechanisms through which root architecture is controlled is an
important topic in plant development. Plant roots consist of primary root and lateral root (LR).
For both root types, maintaining a balance between cellular proliferation and differentiation is
key for adequate growth. The differentiation of LRs from the pericycle cells starting from lateral
root primordia (LRP) formation can be considered a model case of novel tissue development.
The primary root forms a series of cellular lineages from the root tip to the base; the cells in the
developing LRP undergo dynamic changes in identity, at least until the LRP matures (Torres-
Martínez et al., 2019). For such events, it is vital to control cellular function by regulating the
function of phytohormones and their transcriptional in response to them (Banda et al., 2019;
Fukaki & Tasaka, 2009). Although extensive genetic and molecular analyses have revealed the
molecular mechanisms of root architecture development, root development is a continuous
process; therefore, spatiotemporal analysis must be performed.

Time-lapse imaging is a powerful tool used to reveal continuous root growth regulations
because it enables the observation of spatiotemporal changes such as molecular signalling,
organelle behaviour and organ development. To understand the regulation of target tissue
development by genes, it is necessary to link quantitative phenotypic information with gene
expression through time-series analysis. Therefore, a method for quantitatively analysing phe-
notypic changes and gene expression in the same time series with a high temporal resolution by
observing gene expression and phenotypes in living plants is required.

In Arabidopsis thaliana, fluorescence time-lapse imaging of GCaMP, a fluorescent protein-
based cytosolic [Ca2+] sensor, revealed momentary and dynamic Ca2+ signalling, which prop-
agates to a leaf different from the one that accepts the signal at approximately 1 mm/s (Toyota
et al., 2018). Microscopic live tracking of organelle behaviour involving the process of root cap
cell detachment, together with cell organelles, has revealed that the intracellular position of the
nucleus changes during root cap detachment (Goh et al., 2022). In the case of organ development,
confocal microscopy time-lapse imaging has provided direct evidence of the division patterns
of stem cells and the proximal meristem in root tips (Campilho et al., 2006). Furthermore, the

https://doi.org/10.1017/qpb.2024.2 Published online by Cambridge University Press

https://dx.doi.org/10.1017/qpb.2024.2
mailto:thiro@meijo-u.ac.jp
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-0058-4926
https://doi.org/10.1017/qpb.2024.2


2 Y. Uemura and H. Tsukagoshi

cell division mechanism of LRP has been investigated by
continuously observing the number of cells at each developmental
stage of LRP, revealing differences in LRP development in
individual plants (Campilho et al., 2006; Lucas et al., 2013). It
is critical to analyse and interpret continuous images captured
via time-lapse imaging to elucidate seamless plant development.
However, the number of images obtained from time-lapse imaging
tends to be extremely high, and accurately discriminating and
quantifying the growth of plants from such big data requires
automation of image analysis. In this regard, analysis methods that
apply machine learning are effective and indispensable. Digital
image processing, including deep neural network (DNN) analysis,
is an efficient and powerful technique for automatic image analysis.
DNN analysis is superior to conventional digital image processing
approaches in terms of computational programming simplicity.
Conventional image recognition must quantify organ morphology
through digital image processing, such as colour thresholding,
feature extraction, statistics and algorithms. PlantCV provides a
useful Python package for computational image processing that
focuses on plant research (Fahlgren et al., 2015; Gehan et al.,
2017). To date, 181 digital image analysis tools, such as BRAT,
a root length measurement tool, and GiA Roots, a root system
architecture characterisation tool, have been developed; however,
there are no DNN-based image processing tools with high contrast
and background noise-reduction features (Galkovskyi et al., 2012;
Lobet, 2017; Lobet et al., 2013; Slovak et al., 2014). None of
the DNN-based image-processing methods comprises multiple
algorithms; however, the DNN model is composed of neural
network layers, and a combination of these layers determines the
accuracy and application target. A DNN allows us to develop an
image-recognition model by training an image dataset with high
accuracy without complicated computer programming.

Phenotypic analysis of time-lapse images requires the quantifi-
cation of the developmental stage, cell or tissue size, length, and
population size. The automatic recognition of developmental stages
from image data is a typical task in DNN applications. Various
DNN classification models have been developed, such as Resnet50
and Xception, that can be used for stage classification without
the need for complicated analytical pipelines (Chollet, 2017; He
et al., 2016). Additionally, cell size, cell length and population size
estimation can be used to perform DNN image segmentation and
processing. DNN segmentation models, such as U-Net and X-Net,
have been proposed (Fujii et al., 2021; Ronneberger et al., 2015).
Each cell tissue size in a developed callus has been quantified
through DNN image segmentation and image processing, and the
DNN enables the quantification of different cell sizes (Ikeuchi et al.,
2022). PlantSeg has also been used for DNN segmentation and for
cell length and volume quantification from Z-stack 3D images of
roots and leaves captured using confocal laser microscopy (Graeff
et al., 2021; Wolny et al., 2020). These studies demonstrate that
DNN models can be applied to other studies and obtain robust,
accurate, and even efficient results for the quantification of plant
development.

Recently, we reported that very long-chain fatty acids (VLCFAs)
are involved in LR development through the regulation of the
expression of the transcription factor MYB93 (Uemura et al.,
2023). In addition to MYB93, ATML1, which has a START
domain (a lipid-binding region), reportedly binds to very long-
chain ceramides and plays a key role in epidermal differentiation
(Abe et al., 2003; Lu et al., 1996; Sessions et al., 1999). pas2
mutants, which lack the function of VLCFA synthase, reportedly
show abnormal cell proliferation in the shoot apical meristem

(Nagata et al., 2021; Nobusawa et al., 2013). These results
indicate that VLCFA synthesis and signalling are required for
plant development. Additionally, the 3-ketoacyl-CoA synthase 1
(KCS1) gene encoding one of the key VLCFA synthesis enzyme
is characteristically expressed in the LRP and LRP-peripheral
cells, suggesting the involvement of VLCFAs in LRP development.
Supporting these findings, several studies have shown that lower
VLCFA levels affect LR development (Shang et al., 2016; Trinh
et al., 2019). We identified a transcription factor, MYB93, through
RNA sequencing of a kcs1-5. The VLCFA levels decreased in kcs1-5
mutants, indicating that MYB93 is a novel transcription factor
whose expression responds to VLCFA levels. MYB93 expression
shows a specific response to fatty acid carbon chain length, with
no response at C18 but a response to C20–C24 VLCFAs (Uemura
et al., 2023). Moreover, genetic analysis has revealed that MYB93
is involved in the late stages of LR development by regulating the
expression of several cell wall remodelling genes, such as expansins
(Uemura et al., 2023).

In an analysis of LRP development under the regulation of
VLCFAs and MYB93, we developed a machine learning-based
method for quantifying LRP development. LRP development has
conventionally been assessed by inducing LRP development and
analysing the distribution of developmental stages by observing
the LRP at several time points. In general, the gravistimulation
assay has been used widely to count LRP stages (Lee et al., 2015;
Péret et al., 2012). In this assay, gravistimulated roots are fixed
at several time points, and the LRP developmental stages are
counted under a microscope. This analysis provides information
on LRP development-stage distribution in bulk samples. Therefore,
a single LRP development cannot be traced, and there is a lack of
information on the transition time among different LRP stages.
We deduced that the combination of time-lapse imaging and DNN
analysis would enable to measure the developmental transitions of a
single LRP. Furthermore, conducting multi-time point experiments
with different genotypes or chemical treatments increases the
sample size significantly even within a single experiment, placing
a substantial burden on researchers. Therefore, we developed a
machine learning-based method for quantifying LRP development,
as published in ‘A very long chain fatty acid responsive transcription
factor, MYB93, regulates LR development in Arabidopsis’ (Uemura
et al., 2023). Here, we describe the rationale, development and
implications of the DNN approach for LR studies, as well as
explore numerous other biological questions. We performed
LRP time-lapse imaging using VLCFA-related mutants, such
as kcs1-5, and image analysis using the DNN. For LRP time-
lapse imaging, we developed a system that could capture time-
lapse images under a microscope while the plants are growing
on the medium and monitored tissue development over several
days. However, high time-resolution time-series analysis makes it
difficult to quantify phenotypes because it requires processing a
large number of images. LRP development is classified into stages
I–VII based on morphological features. Therefore, it requires the
manual annotation of thousands of LRP time-lapse images of
different stages, times and genotypes. We solved this problem
by using DNNs to automatically quantify phenotypes, using
Resnet50 as the DNN model that was developed by training
approximately 8,000 images to create this model (Figure 1).
This method captures the transition time between LRP stages.
The assessment of LRP development using time-lapse image
analysis showed that developmental delay occurs in the later
stages of LRP development in kcs1-5 and MYB93 overexpressors
(Figure 1). In this study, we also conducted LR induction
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Figure 1. Comparison of conventional lateral root primordia (LRP) stage analysis methods (gravistimulation method) with a time-lapse imaging followed by a deep neural

network (DNN) analysis method. (a) Schematic model of time-lapse imaging followed by the DNN analysis. LRP images obtained through time-lapse imaging serve as input for

machine learning, facilitating the construction of a DNN model (in our case, utilising Resnet50). Subsequently, approximately 10 roots from experimental samples are subjected

to time-lapse imaging to capture the developing LRP. By employing the established DNN model, automated identification of LRP stages is executed. The LRP stage transitions are

then depicted graphically over time on the x-axis. Solid and dashed lines indicate LRP stage transition times for Col-0 and kcs1-5, respectively. The right bar graph presents

statistical analysis results of DNN analysis at 2,760 min (46 h). The y-axis indicates the LRP stage determined using DNN. White box, Col-0; hatched box, kcs1-5. Significant

difference from Col-0 was determined using the Welch’s t-test (∗∗P = 0.004). The data were retrieved from Uemura et al. (2023). (b) Schematic model of the gravistimulation

method. In each bio-replication experiment, at least 20 roots are subjected to gravity stimulation at a single time point. Following clearing of roots, the LRP stages are counted

under a microscope. The right bar graph is the percentage of LRP at different stages of development after 46 h (2,760 min) of gravistimulation. Data are presented as mean± SE of

three biological replicates, with 20 seedlings in each replicate. White box, Col-0; hatched box, kcs1-5. Significant differences from Col-0 were determined using the generalised

liner mixed model followed by Holm’s P-value adjustment in each stage (∗∗P < 0.01, ∗P < 0.05). Similar to the bar graph in (a), the transition to the later stages of LRP

development (stages VI and VII) was delayed in kcs1-5. The data were retrieved from Uemura et al. (2023). (c) Comparison of these two methods. One advantage of

gravistimulation method is its high capacity to detect statistical differences. Conversely, a disadvantage is that as the number of time points, genotypes and treatments becomes

enormous, data analysis becomes more complex. In the gravistimulation method, a minimal observation of at least 180 roots is required for a single genotype or treatment at a

given time. The advantage of time-lapse DNN lies in conducting imaging with temporal information, requiring fewer individuals. With DNN, time-lapse imaging of 10 roots for a

single genotype and treatment can be conducted, incorporating temporal information. However, a disadvantage is the need for pre-training the DNN with a substantial number of

LRP images.

experiments via gravistimulation and compared the results using
the DNN analysis. kcs1-5 and MYB93 overexpressors exhibited
reduction in the number of LRP in the later stages, consistent
with the DNN analysis results (Figure 1). In the gravistimulation
assay, the number of LRP in at least 180 roots was measured under
one condition, with biological replicates of three sets of 20 roots
at three different time points for a single genotype or chemical
treatment. Therefore, when considering mutants, overexpressors,
and each chemical treatment, the total number exceeds 1,000
roots. Combined LRP time-lapse imaging and DNN phenotypic
analysis quantitatively indicated the phenotypic changes over time
from only 20 roots. Moreover, using our system, we could classify
LRP stages in not only mutants but also plants subjected to any
chemical treatment. Compared with the gravistimulation assay,
our method offers major advantages in terms of reducing labour,
improving stage discrimination accuracy and increasing research
speed. However, to construct a DNN model, it is imperative to
initially acquire a substantial number of images. In our case, after
acquiring over 8,000 images of various LRP stages, we classified the
images manually and subsequently employed machine learning
techniques. Once the training phase is validated, the analysis
of newly captured time-lapse images becomes feasible with
considerably fewer images. Moreover, it is important to analyse
and interpret continuous images captured via time-lapse imaging
to elucidate seamless plant development. We have shown that it

is effective to quantify LRP development using a DNN with time-
lapse imaging. Even in time-lapse imaging, this technique is useful
for studying other tissues and cells. This is because it enables
the observation of spatiotemporal changes such as molecular
signalling, organelle behaviour and organ development along
with the imaging of certain reporters. However, our analysis was
conducted only in Arabidopsis. For other plant species with larger
root tissues than Arabidopsis, optimisation of imaging and other
preparations might be essential.

Time-lapse imaging is a tool for capturing a substantial number
of images over time. The development and growth processes of
plants undergo continuous changes, making it necessary to analyse
morphological changes accurately by considering multiple time
points. However, a gap persists owing to a lack of technique for
the automatic quantification and statistical processing of pheno-
typic information. In plants, deep learning has been leveraged for
tasks such as classification and segmentation. This facilitates the
automated identification of disease species through the analysis of
images depicting plant diseases and enumeration of leaf numbers
based on shoot images (Singh et al., 2018; Ubbens & Stavness, 2017;
Yuan et al., 2023). The application of deep learning has streamlined
the quantification of phenotypic information from images, which
was previously challenging. Through the quantitative analysis of
extensive image datasets, including time-lapse LRP images, insights
can be gleaned from the wealth of temporal information.
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