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Abstract
Can we acquire apriori mathematical knowledge from the outputs of computer programs?
Although we claim Appel and Haken acquired apriori knowledge of the Four Color Theorem
from their computer program insofar as it merely automated human forms of mathematical
reasoning, the opacity of modern LLMs and DNNs creates obstacles in obtaining apriori math-
ematical knowledge in analogous ways. If however a proof-checker automating human forms
of proof-checking is attached to such machines, we can indeed obtain apriori mathematical
knowledge from them, even though the original machines are entirely opaque to us and the
outputted proofs are not human-surveyable.

1. Introduction
Our main question is what role computers can play in expanding our purely rational
capacities and purely rational knowledge. When we learn a fact from a computer, should
we think of ourselves as merely having done an experiment of sorts and thus hav-
ing acquired only empirical knowledge? Or can learning something from a computer
sometimes expand our non-empirical (i.e., our purely rational or apriori) knowledge?

The obvious case to focus on is mathematics. Suppose a computer tells us that some
mathematical claim is true. In the right circumstances, might we then know that math-
ematical fact on purely rational (i.e., apriori) grounds? Presumably the answer to this
question will depend on what sort of computer we are talking about. We thus phrase our
question as follows:

Main Question: Are there situations in which we can acquire apriori knowledge
of a mathematical fact X purely on the basis of a computer outputting the claim
that X is true? If so, what sorts of situations are these?

This question concerns the acquisition of apriori knowledge purely on the basis of
a computer outputting the claim that something is true. Thus, suppose that a computer
outputs the claim that some mathematical fact X is true, and a correct proof of X . If in
some circumstances merely witnessing the computer output the claim X yields apriori
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knowledge of X , then in such circumstances apriori knowledge of X is acquired purely
on the basis of the computer outputting the claim X . But if it is only once we check the
proof of X ourselves that we acquire apriori knowledge of X , then it is not true that in
those circumstances we come to know X apriori purely on the basis of the computer
outputting the claim X .

Early discussions of our Main Question were motivated by Appel and Haken’s 1977
computer proof of the Four Color Theorem (henceforth 4CT) (Appel and Haken, 1989),
which is so long that it cannot be human-checked. Because of this, some thought
(Tymoczko, 1979) that the idea that mathematical knowledge is essentially apriori had
to be rejected and room created for merely empirical or experimental mathematical
knowledge.

However, following Burge 1998 we argue in Section 2 that when the running of
a computer program can be understood as a mechanized exercise of ordinary human
mathematical capacities, the output of a program can indeed give us apriori mathemati-
cal knowledge. In this way, Appel and Haken did acquire apriori knowledge of the truth
of 4CT from the output of their computer program. Thus our Main Question can be
answered affirmatively in the case of the Appel and Haken in 1977.

The problem, however, is that the argument of Section 2 does not apply to the output
of machines like deep neural networks (henceforth DNNs) and large language mod-
els (henceforth LLMs), whose inner workings are (in a sense) opaque to us, but are
nevertheless increasingly important to mathematicians. In Section 3, we argue that out-
side special cases we cannot directly acquire apriori mathematical knowledge from the
reports of DNNs or LLMs. This result seems to impose a strong limitation on our ability
to acquire apriori mathematical knowledge from AI.

However, in Section 4 we argue that mathematicians can overcome this limitation
by applying a transparent proof-checker to an appropriately structured output of a DNN
or LLM. So long as this proof-checker may be understood as a mechanized exercise of
human proof-checking capacities, we claim that we can acquire genuine mathematical
knowledge from the output of the proof-checker, even though this knowledge may not
be obtained directly from the DNN or LLM itself.

We thus arrive at the surprising result that it is possible to acquire genuine apriori
knowledge of a mathematical fact X purely on the basis of the output of a computer,
where a proof of X has been generated by a process that is entirely opaque to us, and
is so complex that the proof is not human-checkable. This suggests that AI can indeed
play a role in generating substantive mathematical knowledge and that there is a large
set of cases in which we can answer our Main Question affirmatively and acquire apriori
knowledge purely on the basis of the output of a computer.

2. Knowledge of the Four Color Theorem
Serious discussion of our Main Question began in 1977 when Appel and Haken used
a computer to verify 4CT (Appel and Haken, 1989). Appel and Haken argued that to
prove 4CT it sufficed to verify the 4-colorability of a particular set of 1,834 finite graphs.
For complex graphs, verifying 4-colorability is extremely time-consuming. Appel and
Haken thus used a supercomputer to verify that all 1,834 graphs were 4-colorable,
and this was regarded as establishing 4CT. The sheer length of this calculation meant
however that human mathematicians could not survey it step-by-step. Indeed, even
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today no-one has produced a proof of the 4CT that can be checked without computer
assistance.

Philosophers immediately began reflecting on what this meant for mathematics.
Tymoczko 1979 argued that mathematics had now become an empirical discipline in
which proofs could be obtained by performing experiments such as the running of com-
puter programs.1 More specifically, Tymoczko thought that our knowledge of the 4CT
rested on an argument involving the premise

Rel: Carefully written computer programs reliably output true claims.

Tymoczko saw Rel as an emprical claim stating the reliability of a piece of scientific
equipment. Knowledge obtained using Rel was thus empirical. Tymoczko concluded
that our knowledge of 4CT, while genuine knowledge, was not apriori – i.e., not justified
purely on rational grounds – but rather merely empirical. Others concurred (Detlefsen
and Luker, 1980).

We however do not find this view compelling. Instead, we are persuaded by another
way of looking at things due to Burge 1998. Rejecting the views just described, Burge
argued that the output of Appel and Haken’s program gives a genuinely apriori2 warrant
for believing 4CT.3

2.1. Memory as a Rational Resource
To motivate this view, consider that in proving or surveying a theorem we typically
must use our memories. When proving a theorem, there come points where we may
wonder whether we have already proven some lemma. Perhaps we pause, recall that we
have, and then continue reasoning. In that pause when we ask ‘Have we already proven
this lemma?’ and decide upon consulting our memory that we have, are we doing an
experiment with our brains? Is the resulting knowledge thus merely empirical? And like
ordinary pieces of scientific equipment, can we only rely on our memory if we have
empirical knowledge of its reliability?

Burge thinks that relying on our memory is not doing an experiment that yields at
most empirical knowledge. His view is rather that we have defeasible, apriori grounds
for believing what we seemingly remember. So when we have a seeming memory of
proving a lemma, we are entitled on purely rational grounds to believe that we have
proved the lemma. It is not the case that we must first do memory-tests to establish
the reliability of our memory before we have grounds to believe what we seemingly
remember. Rather, Burge’s view is that we have purely rational grounds for believing the
lemma, because we have a memory of proving it. These grounds are of course defeasible.

1Detlefsen and Luker 1980 further argued that mathematics had always been an empirical discipline and
that there was therefore nothing philosophically novel about Appel and Haken’s accomplishment.

2Burge uses the term ‘apriori’ to indicate that the justification does not rely on empirical evidence.
While there is debate about how to define the apriori (see (Williamson, 2013)), we simply assume ordinary
mathematical arguments are apriori, without making any contentious claims about what this means.

3Appel and Haken’s program strictly proves only the 4-colorability of 1,834 graphs; an additional human-
generated argument is required to yield 4CT. For simplicity, we treat the program as offering an apriori
warrant for 4CT, though technically it only warrants belief in the 4-colorability of these 1,834 graphs.
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We might later realize that we were misremembering. Purely rational grounds are not
infallible on this picture.

To be sure, searching our memories for an episode of proving a lemma is something
like an empirical investigation. It is only an empirical fact that I proved the lemma
yesterday, and it is only an empirical fact that I have a memory of this happening.
Nevertheless, upon finding the memory, I have purely rational (i.e., apriori) grounds
for believing the lemma. Critically, note that the lemma is not inferred from the exis-
tence of the memory – rather, the lemma is inferred from the reasoning that has been
remembered.

More generally, Burge claims that even when only exercising our rational capacities,
there are various resources on which we can rely. He calls these rational resources.
When these rational resources offer us claims, we are (defeasibly) apriori entitled to
trust them. So, for example, my memory is a rational resource that I can rely on in my
reasoning, as is my visual system when I inspect a diagram in a proof. A thermometer
however is not a rational resource, because when I trust a thermometer, I am doing
something going beyond mere reasoning. A thermometer is rather an empirical resource.
Burge’s general claim is that ‘resources for rationality are, other things equal, to be
believed’ (Burge, 1998, p.5). This extends to the use of these resources outside cases of
pure reasoning, though we shall not dwell on this here.

2.2. Computers as Rational Resources
We now return to Appel and Haken’s computer program. This program is designed to
go through all 1,834 basic maps and verify their 4-colorability in exactly the way Appel
and Haken might. It organizes these maps systematically into a list and does exactly
what they would to check each case, though more quickly and indefatigably. Appel and
Haken’s computer is thus simply a mechanized application of their ordinary rational
capacities, performing their reasoning for them. Indeed, they understand exactly what
the computer does, so that at any moment they could (in principle) say something like
‘the computer is now considering map #734, and is at such-and-such a stage of checking
for a 4-coloring.’ We capture this aspect of Appel and Haken’s program by saying that
it is mathematically transparent to them.

Because Appel and Haken’s program simply performs their reasoning for them in
this way, we view Appel and Haken’s computer as a rational resource. Because ratio-
nal resources are (other things equal) to be believed, we agree with Burge that ‘we
have apriori prima-facie entitlement to accept [the print-outs of the program] as true’
(Burge, 1998, p.13). Thus, Appel and Haken can be understood to have defeasible,
apriori grounds for believing 4CT.

Crucially, this warrant does not depend on an empirical fact like Rel about the reli-
ability of computers. Appel and Haken infer 4CT from the reasoning that the computer
has done for them. This reasoning involves only purely mathematical considerations
and not Rel. Nevertheless, the warrant for believing 4CT is defeasible. For example,
Appel and Haken could come to learn that the computer was malfunctioning, in which
case they would no longer be justified in believing 4CT. This however does not mean
that justification for believing 4CT first requires positive empirical grounds for thinking
that the computer is not malfunctioning. Instead, they are entitled to believe the results
of mathematically transparent processes so long as they lack reason for thinking the
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relevant resource unreliable. So it is enough that they had no reason to think that their
computer was malfunctioning.

It is true that in writing the program, Appel and Haken had to perform all sorts of tests
to establish that the program was behaving as expected. But this does not mean that the
warrant for believing 4CT is merely empirical. Empirical tests are necessary to establish
that the computer is a device that is capable of performing our reasoning for us through
mathematically transparent processes. Nevertheless, once we are confident of this and
use the computer as Appel and Haken did, the ultimate ground for accepting 4CT is then
simply the existence of the mathematically transparent process demonstrating it. This
warrant is apriori insofar as it is just a mobilization of human mathematical capacities,
albeit in a way that relies on rational resources.

Thus, in the same way that ordinary mathematicians infer theorems from the exis-
tence of purely mathematical arguments not involving claims about their memories
(even though they rely on their memories in convincing themselves of the existence of
such arguments), so too Appel and Haken inferred 4CT from the existence of a purely
mathematical argument that did not make any claim like Rel about computers (even
though they relied on computers in convincing themselves of the existence of such an
argument).

3. Transparency and AI Assisted Proof
So far we have been talking about ‘old-fashioned’ computing. Recently, mathematicians
have turned to deep learning models (DLMs) for assistance with challenging mathemat-
ical problems in for instance low-dimensional topology (Davies et al., 2021), geometry
(Trinh et al., 2024), and combinatorics (Romera-Paredes et al., 2023). One might expect
that like Appel and Haken these mathematicians can gain apriori knowledge from com-
puters in the right circumstances. However, the notorious opacity of DLMs creates
significant differences between the use of traditional computers and contemporary AI
in mathematics.

To see this, we consder the sense in which DLMs are opaque and thus not mathe-
matically transparent to us. Creel’s account of algorithmic and structural transparency
in complex computational systems is helpful here (Creel, 2020).

For Creel, computational systems can be ‘algorithmically’ and ‘structurally’ trans-
parent.4 A computational system is algorithmically transparent to the extent that the
procedures governing its behavior are known and intelligible. In the case of the pro-
cedures performed in the proof of the 4CT, the rules at the algorithmic level those
describing how a mathematician might check the 4-colorability of basic graphs.

The system is structurally transparent to the extent that it is possible to see how this
algorithm is realized in actual code. Thus, a program is structurally transparent just when
its code is surveyable, and it is possible to understand how the code generates results
in accordance with the algorithm it instantiates. In cases where a computational system
is algorithmically and structurally transparent (as in Appel and Haken’s program), the
reliability of the computational system at run-time can be (defeasibly) trusted (Frigg

4Creel’s treatment of computational transparency can be seen as a refinement of computational concepts
of understanding going back to Marr 2010.
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and Reiss, 2009; Duede, 2022), even if in practice one cannot transparently survey the
running of the program. (Humphreys, 2009).

While the computations used in Appel and Haken’s program resulted in an unsur-
veyable proof, the computations themselves were on Creel’s account algorithmically
and structurally transparent. Thus the computations were mathematically transparent in
the sense discussed in the last section. However, we will argue that the use of DNNs and
LLMs in mathematics are often neither structurally nor algorithmically transparent.

3.1. Opacity of Deep Learning
It is often said that DNNs lack epistemic transparency. It is important however to dis-
tinguish the training of a DNN from fully trained models. The procedure for training a
DNN is algorithmically and structurally transparent. In simple cases it is algorithmically
transparent that training works through the minimization of loss-functions via iterative
updating of weights on the connections between parameters by backpropagation of error
gradients. There are extensive repositories containing structurally transparent imple-
mentations for training a wide variety of network architectures in this way, and students
taking a class in machine-learning are often required to write their own implementations
of such algorithms. There is nothing opaque about how such models are trained.

However, fully trained DNNs are said to be epistemically opaque (Humphreys, 2004;
Boge, 2022), meaning that the epistemically relevant factors governing the model’s
behavior are fundamentally unsurveyable. In general, it is not possible to ‘fathom’
(Zerilli, 2022) in any meaningful sense the algorithmic principles governing the trans-
formation of inputs to outputs of the model. As such, DNNs are opaque at both the
algorithmic and structural levels. This lack of transparency is due to extreme dimen-
sionality and nonlinearity of the model, as well as the autonomous, error-driven, and
semi-stochastic processes of weight assignment guiding the final parameterization of
the model.

Of course, it is possible that with a DNN that determines 4-colorability, we might
be able to say at any moment which graph is being analyzed. There is also a numeri-
cally trivial sense in which the trained model is transparent insofar as the values on the
weights themselves are available to inspection (though not surveyable) (Lipton, 2018;
Duede, 2023). However, unlike Appel and Haken’s program, we would not generally be
able to say how that graph is being evaluated, and thus such an approach would neither
be algorithmically nor structurally transparent.

3.2. Mathematical Knowledge with DNNs
Suppose that a mathematician wants to know whether every graph in a set of graphs is
4-colorable. Approaching this problem with a DNN, the mathematician trains a model
on a large set of graphs known to be 4-colorable and a large set of graphs known not to
be 4-colorable. The model is then evaluated (in the usual way) on a collection of graphs
not included in the training set, and let us suppose that no graph is misclassified.

At this point, the mathematician unleashes their model on Appel and Haken’s 1,834
basic graphs. After several minutes the model states that all are 4-colorable. However,
given that the model is not algorithmically transparent, we cannot regard this machine
as having performed on our behalf the kind of reasoning we would perform in verifying
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the 4-colorability of the graphs. Because the system is not mathematically transparent,
we would not be justified in believing its output on purely rational grounds.

Because the DNN reliably classifies graphs as 4-colorable or not, we do get strong
inductively justified belief in the 4CT. Such a result bears some resemblance to a case
(Davies et al., 2021) considered by Duede 2023, where mathematicians use a DNN
to guide mathematical attention to promising connections that led to the formulation
and proof of a theorem linking specific algebraic and geometric properties of low-
dimensional knots. Such cases exemplify the potential for AI to assist mathematicians in
their search for promising conjectures while leaving the actual proof of the conjectures
to humans. In such cases however, knowledge is not a direct result of the DNN, insofar
as ultimate responsibility for proof lies with human mathematicians.

Consider next a hypothetical case in which a DNN trained to classify graph 4-
colorability classifies all of Haken and Appel’s 1,834 graphs as 4-colorable, except for
one which it classifies as not 4-colorable. Here, the model has suggested a counterexam-
ple to 4CT. Let us suppose that whether it is a genuine counterexample is something we
can check ourselves by hand, that we check it, and we find that it is indeed a counterex-
ample. In this case we now have genuine mathematical knowledge of a mathematical
fact (namely, the falsehood of 4CT). However, this knowledge too cannot be said to
follow directly from the output of the DNN, as it required human verification.

3.3. Mathematical Knowledge with LLMs
LLMs are particularly useful for mathematics as they output reports that are potentially
linguistically and mathematically intelligible. However, like DNNs, LLMs are algorith-
mically and structurally opaque, and so they are afflicted by the epistemic limitations
discussed in the previous section.

A recent case leveraging LLMs to achieve mathematical breakthroughs in combi-
natorics involves the Cap Set Problem (Romera-Paredes et al., 2023). A ‘cap set’ is a
subset of (Z/3Z)n for which no three distinct elements sum to 0 (mod 3). For each n,
the problem is to determine the size of the largest cap set. It is known that this number
must be less than ≤ 3n (Grochow, 2019), but its exact value is only known for n ≤ 6.
Because the complexity of the solution space explodes for larger values of n, brute-force
computational approaches are infeasible.

In (Romera-Paredes et al., 2023), researchers leverage an LLM to construct a cap set
of size 512 for n = 8, a result significantly greater than the previously known largest
value of 496. Their approach begins by specifying an evaluation function that scores
a candidate solution, where a solution is itself a Python program for generating a
potential capset. The LLM then outputs a candidate Python program that is executed
and scored by the evaluation function. If the program executes sufficiently quickly and
without obvious error, it is sent to a program database. The system then samples the
database and passes prior output programs to the LLM as inputs to repeat the generative
process. This iterative approach generatively ‘evolves’ candidate programs. Eventually,
this process identified a cap set of size 512, which human mathematicians verified to be
correct.

Unlike 4CT, the solution-generating computational procedure here is not mathemat-
ically transparent. However, a human mathematician can easily survey and check its
output. So in this case we get apriori knowledge that for n = 8 there is a cap set of size
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512. Nevertheless, as this involves a human mathematician verifying this fact, we cannot
say that genuine mathematical knowledge has been obtained directly from the output of
the computer.

3.4. Main Claim
With such examples in mind, we offer the following answer to our Main Question posed
in Section 1.

Main Claim 1: If we want to acquire apriori mathematical knowledge directly
from the output of a computer, then what the computer is doing must be mathe-
matically transparent to us (as in the case of 4CT). If what a computer is doing is
not mathematically transparent to us (as in the case of typical DNNs or LLMs) then
we cannot directly acquire apriori mathematical knowledge from the output of a
computer, even though we may be able to gain a type of inductively justified belief
from it. However, even if we do not directly acquire apriori mathematical knowl-
edge from the output of a computer, if the computer outputs a human-checkable
proof or counterexample, then upon checking it appropriately we do gain apri-
ori mathematical knowledge (though not directly from the computer, as human
checking was required.)

4. Transparent Proof Checking
The considerations of the previous section seem to entail that, while extraordinarily
useful, DNNs and LMMs can ultimately only be of limited use in acquiring apriori
mathematical knowledge. At best, their reports offer us inductively justified beliefs, and
it is only when they output results that are human-checkable that we can acquire apriori
mathematical knowledge from them.

In certain cases, however, these limits may be surpassed. We focus on the case in
which a machine (perhaps an LLM) outputs not only some mathematical claim X but
also something it claims to be a proof of X , and that this proof is stored somewhere on
a hard drive. If what has been stored on the drive can be human-checked, then we can
check it, and if it is indeed a correct proof, we thereby gain apriori knowledge of X .

Suppose however that the proof of X stored on the hard drive is so long that it cannot
be human-checked. It might then appear that apriori knowledge of X is beyond our
reach.

But this is not so. Let us suppose that the stored proof of X , while enormous, is
systematically organized as a tree of propositions of the sort one might encounter in
a mathematical logic class. We can imagine constraining the output of the machine
generating the proof to demand that its outputs be formulated in this way (as in (Romera-
Paredes et al., 2023) where the model outputs all results in Python or, as is common
(Avigad, 2024), in a formal language instantiated in Lean (De Moura et al., 2015)). We
can permit abbreviations, additional rules, and verbose articulations of steps in the proof
so that this proof has roughly the form of a human-generated proof,5 even though it was

5Of course, the proofs of practicing mathematicians are not like this, often involving large leaps (Kitcher,
1998).
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not human-generated and is so large that it is not human-surveyable. These assumptions
can easily be made to hold by adding some overhead to the original program.

Although we cannot check this proof ourselves, this does not stop us from writing a
proof-checking program that can. The proof-checking program goes through the proof,
verifying that it starts with genuine axioms and that each step is a legitimate application
of some standard inferential rule. We can imagine a version of this proof-checker that
is completely mathematically transparent, and checks the proof in exactly the way a
human would. When such a program runs, at any point we can (in principle) correctly
say something like ‘the computer is now checking inference 15435 and is verifying that
it is a correct application of modus-ponens.’

Let us assume that we run this proof-checker, and it reports no errors. Just as Appel
and Haken acquire apriori knowledge of the 4CT from the output of their mathematically
transparent program, so too we acquire apriori knowledge that there is a correct proof
of X from the output of our mathematically transparent proof-checker. Because there is
a correct proof of X , X is true, and thus we acquire apriori knowledge of X . This is true
even though no human has (or ever could have) any sort of rational grasp on the process
that led to the generation of the proof, and no human is capable of checking the stored
proof.

The important point is that in this case we have apriori knowledge of X not based
on the output of the LLM, whose workings are not transparent to us, but based on the
output of the proof-checker, whose workings are transparent to us.

Of course, if the LLM ‘claims’ to have proven X but cannot produce and store the
actual proof of X , then we cannot use a proof-checker in the way just described. In this
case, we see no way to acquire anything other than inductive grounds for believing X .

This leads us to the second of the two central claims of this paper, which may be
viewed as a counterpoint to Main Claim 1.

Main Claim 2: We can (indirectly) gain apriori knowledge from the output of
a computer program that is not mathematically transparent but which stores a
(not necessarily human-checkable) proof of a mathematical claim. This is accom-
plished by employing a mathematically transparent proof-checker to evaluate the
stored proof of the claim.

5. General Conclusions
Modern LLMs and DNNs are opaque to us in ways that create obstacles to obtain-
ing mathematical knowledge from them. However, if a proof-checker transparently
automating human forms of mathematical evaluation is attached to such machines, then
we can obtain apriori mathematical knowledge from them. Surprisingly, this applies
even when the original machines are entirely opaque to us and the proofs they output
are not human-surveyable.

A different question for further consideration is to what extent we may gain scientific
(Kidd and Birhane, 2023) knowledge outside of mathematics by appending analogous
transparent ‘checking’ mechanisms to the output of otherwise opaque algorithms. This
would get us closer to overcoming the perceived problems of confabulation and realizing
the ambition of fully automated scientific discovery.
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