SOME PROPERTIES OF VECTOR MEASURES TAKING VALUES IN A TOPOLOGICAL VECTOR SPACE

EFSTATHIOS GIANNAKOULIAS

(Received 19 March 1986; revised 31 July 1986)

(Communicated by H. Lausch)

Abstract

In this paper we study some properties of vector measures with values in various topological vector spaces. As a matter of fact, we give a necessary condition implying the Pettis integrability of a function $f: S \rightarrow E$, where S is a set and E a locally convex space.

Furthermore, we prove an iff condition under which (Q, E) has the Pettis property, for an algebra Q and a sequentially complete topological vector space E.

An approximating theorem concerning vector measures taking values in a Fréchet space is also given.

1980 Mathematics subject classification (Amer. Math. Soc.): 38 B 05.

Notations and terminology

We denote by S a non void set, Q (resp. Σ) an algebra (resp. σ -algebra) of subsets of S and E a real Hausdorff locally convex space.

A function μ from the algebra Q to E is said to be a finitely additive vector measure (or simply a vector measure) if $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$, whenever A_1 , A_2 are disjoint members of Q.

If in addition $\mu(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}\mu(A_n)$ for all sequences (A_n) of pairwise disjoint members of Q with $\bigcup_{n=1}^{\infty}A_n \in Q$ in the topology of E, then μ is called a σ -additive vector measure. We say that μ is strongly bounded (s-bounded) iff $\lim_{n \to \infty} \mu(A_n) = 0$ for every sequence (A_n) of mutually disjoint sets from Q.

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

On vector measures

If μ is an *E*-valued vector measure on *Q* and *P* a seminorm on *E*, we shall define the *P*-semivariation $P(\mu)$ by $P(\mu)(A) = \sup\{P(\sum_{j=1}^{n} a_{j}\mu(A_{j}))\}, A \in Q$, where the supremum is taken over all disjoint sets A_{1}, \ldots, A_{n} from *Q* with $A = A_{1} \cup \cdots \cup A_{n}$ and all scalars a_{1}, \ldots, a_{n} with $|a_{i}| \leq 1$ $(i = 1, 2, \ldots, n)$. We say that the function $f: S \to E$ is weakly λ -summable with respect to measure λ : $Q \to [0, \infty)$ if $f_{A} | x'f | d\lambda < \infty$ for all $x' \in E'$, *A* in *Q*. *f* is called λ -summable or Pettis integrable if it is weakly λ -summable for every *A* in *Q* and there exist an element $f_{A} f d\lambda$, of *E*, such that

$$x'\int_{A}fd\lambda = \int_{A}x'fd\lambda, \quad (x'\in E').$$

A locally convex space *E* has the *Bessaga-Pelczyński property* (shortly (*B-P*)property), if for every sequence (x_n) from *E* with $\sum_{n=1}^{\infty} |x'(x_n)| < \infty$ for all $x' \in E'$, there exists $x \in E$ such that $x = \sum_{n=1}^{\infty} x_n$, where the series converges unconditionally.

Finally, a sequence $\{x_n\}$ in E is a Schauder basis if every $x \in E$ has a unique representation in the form $x = \sum_{n=1}^{\infty} a_n x_n$, where $\{a_n\}$ is a sequence of scalars. For each $n \in \mathbb{N}$ the *n*th coefficient functional f_n on E is defined by $f_n(x) = a_n$, for all $x \in E$ and so $\mu(A) = \sum_{n \in \mathbb{N}} f_n(\mu(A)) x_n = \sum_{n \in \mathbb{N}} \mu_n(A) x_n$, A in Q.

I. On Pettis integral

The purpose of this section is to extend a result of ([13], Theorem 1) to the case of vector measures which take values in a locally convex space E. This is given in 4. Theorem below.

1. LEMMA ([9], Proposition 1). Let $\lambda: \Sigma \to [0, +\infty)$ be a measure and let $\mu: \Sigma \to E$ be a s-bounded vector measure with $x'\mu \ll \lambda$, for every $x' \in E'$. Then $\mu \ll \lambda$.

2. LEMMA. Let $f: S \to E$ be a vector function, $v: \Sigma \to E$ a vector measure and (s, Σ, λ) a finite non negative measure space. We denote by H the set $H = \{x' \in E': (i) x'f \in L_1(\lambda) \text{ and } (ii) x' \circ v(A) = \int_A x'fd\lambda A \text{ in } \Sigma\}$. Then, for every $x' \in H$, there exist a continuous seminorm $P_{x'}$ on E such that

$$\int_{A} |x'f| d\lambda \leq P_{x'}(\nu)(A), \quad (A \text{ in } \Sigma).$$

PROOF. If $x' \circ \nu = \mu$, then $\mu(A) = \int_A x' f d\lambda$ and $\bigcup(\mu, A) = \int_A |x'f| d\lambda$ (where $\bigcup(\mu, A) \leq ||\mu||(A)$ (where $||\mu||$ denotes the semivariation of μ), for if A_1, \ldots, A_n are pairwise disjoint sets of Σ , then there exist complex numbers a_1, \ldots, a_n with $|a_i| = 1$ ($i = 1, \ldots, n$) such that

$$\sum_{i=1}^{n} |\mu(A_i)| = \left| \sum_{i=1}^{n} a_i \mu(A_i) \right| \leq ||\mu||(A).$$

On the other hand,

$$\left|\sum_{i=1}^{n} a_{i}\mu(A_{i})\right| = \left|x'\left(\sum_{i=1}^{n} a_{i}\nu(A_{i})\right)\right| \leq \left|P_{x'}\left(\sum_{i=1}^{n} a_{i}\nu(A_{i})\right)\right| \leq P_{x'}(\nu)(A)$$

for some continuous seminorm $P_{x'}$ on E, thus $\|\mu\|(A) \leq P_{x'}(\nu)(A)$. The results now follows.

3. LEMMA. Let $f: S \to E$, $\lambda: \Sigma \to [0, +\infty)$ a σ -additive measure and $v: \Sigma \to E$ a λ -continuous s-bounded vector measure. Then the set

$$H = \left\{ x' \in E': (i) \ x'f \in L_1(\lambda) \ and \ (ii) \ x' \circ \nu(A) = \int_A x'fd\lambda \right\}$$

is weak* sequentially closed.

PROOF. 2. Lemma implies that, for every $x' \in H$, there exists a continuous seminorm $P_{x'}$ on E such that

(1)
$$\int_{\mathcal{A}} |x'f| d\lambda \leq P_{x'}(\nu)(A), \quad (A \text{ in } \Sigma).$$

Suppose $\{x'_n\}_{n=1}^{\infty}$ in *H* and $x'_n(x) \to x'(x)$ (for all $x \in H$). Since $\nu \ll \lambda$ we have that $P_{x'_n}(\nu) \ll \lambda$, n = 1, 2, ...

In virtue of equality (1), we have $\lim_{\lambda(A)\to 0} \int_A |x'_n f| d\lambda = 0$ uniformly in $n \in \mathbb{N}$. Vitali's convergence theorem now says that $x' f \in L_1(\lambda)$, hence

$$\int_{A} x' f d\lambda = \int_{A} \lim_{n} \left(x'_{n} f \right) d\lambda = \lim_{n} \int_{A} x'_{n} f d\lambda = \lim_{n} x'_{n} \nu(A) = x' \nu(A)$$

and so $x' \in H$.

4. THEOREM. Let $f: S \to E$, $\lambda: E \to [0, +\infty)$ a σ -additive measure and $v: \Sigma \to E$ a finite additive vector measure. Assume that:

(i) H is a weak * sequentially dense subset of E,

(ii) $x'f \in L_1(\lambda)$ (for all $x' \in H$),

(iii) $x'\nu(A) = \int_A x' f d\lambda$ (for all $A \in \Sigma$ and for all $x' \in H$). Then f is Pettis λ -integrable and

$$\nu(A) = (P) \int_{A} f d\lambda \qquad (A \in \Sigma)$$

On vector measures

PROOF. Assumption (iii) implies $x'\nu \ll \lambda$, for every $x' \in H$. Since H is a weak* sequentially dense subset of E', we have that $x'\nu \ll \lambda$, for every $x' \in E'$. Hence, $x'\nu$ is σ -additive for every $x' \in E'$ and thus ν is σ -additive by the Orlicz-Pettis theorem. Since Σ is a σ -algebra ν is also a s-bounded vector measure and from 1. Lemma we have that $\nu \ll \lambda$. 3. Lemma now implies that H is weak* sequentially closed and so H = E'. Hence we have that

$$x'\nu(A) = \int_A x' f d\lambda$$
, for every $x' \in E'$,

which proves the assertion.

II. The Pettis property

If Q is a Boolean algebra and X is a Banach space, we shall say that the pair (Q, X) has the *Pettis property* if every weakly countably additive set function μ : $Q \rightarrow X$ is σ -additive. It is proved by [7] that a pair (Q, X) has the Pettis property, for every algebra Q, if and only if $X \not\supseteq c_0$. A generalization of this is 5. Theorem below for the case of a sequentially complete topological vector space.

5. THEOREM. Let Q be an algebra of sets and let E be a q sequentially complete topological vector space. Then the following propositions are equivalent:

(i) (Q, E) has the Pettis property,

(ii) E has the (B-P)-property.

PROOF. (i) \Rightarrow (i). We suppose that *E* does not have the (B-P)-property. Then, there exists a sequence (x_n) on *E* such that $\sum_{n=1}^{\infty} |x'(x_n)| < \infty$, for every $x' \in E'$ and the series $\sum_{n=1}^{\infty} x_n$ does not converge. From ([14], Theorem 4) now we have that c_0 is isomorphic to a subspace of *E*. But there exists a vector set function μ : $Q \rightarrow c_0$ which is weakly σ -additive but not σ -additive ([11], example 7).

(ii) \Rightarrow (i). Let $\mu: Q \to E$ be weakly σ -additive and (A_n) a disjoint sequence of sets in Q with $\bigcup_{n=1}^{\infty} A_n \in Q$. Then $x'\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} x'\mu(A_n)$ (the series converges unconditionally) for all $x' \in E'$. Hence $\sum_{n=1}^{\infty} |x'\mu(A_n)| < \infty$. Since E has the (B-P)-property, the series $\sum_{n=1}^{\infty} \mu(A_n)$ converges unconditionally and so, for $x' \in E'$, we have $x'(\sum_{n=1}^{\infty} \mu(A_n)) = \sum_{n=1}^{\infty} x'\mu(A_n) = x'\mu(\bigcup_{n=1}^{\infty} A_n)$ and $\sum_{n=1}^{\infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$.

However, in the case of locally convex space with a Schauder basis, the σ -additivity of the measure, with respect to the topology, is equivalent to the σ -additivity of the real measures $\mu_n = f_n \circ \mu$, where the f_n are the functionals

associated to the basis. As a matter of fact, one obtains

6. PROPOSITION ([8], PROPOSITION 2). Let E be a locally convex space with a Schauder basis (x_n, f_n) and $\mu: Q \to E$ a vector measure. Then the following are equivalent:

(i) μ is a σ -additive,

(ii) μ_n is σ -additive, $(n \in \mathbb{N})$.

III. An approximation theorem for vector measures

Let *E* be a Fréchet space, \mathscr{U} a fundamental system of neighbourhoods of zero in *E* (consisting of closed and absolutely convex sets) and $(P_v)_{v \in \mathscr{U}}$ the family of the Minkowski functionals.

The function $f: S \to E$ is called λ -integrable with respect to the measure $\lambda: \Sigma \to [0, +\infty)$, if f is strongly measurable and, for every $v \in \mathcal{U}$, we have $\int_{S} P_{v}(f) d\lambda < \infty$. We denote $L^{1}(S, \lambda, E)$ the quotient space $\mathscr{L}^{1}(S, \lambda, E)/n$, where $\mathscr{L}^{1}(S, \lambda, E)$ is the space of all λ -integrable functions $f: L S \to E$ and $n = \{f \in \mathscr{L}^{1}(S, \lambda, E) \text{ such that } q_{v}(F) = 0, v \in \mathscr{U}\}$. Note that $L^{1}(S, \lambda, E)$ is a Fréchet space with the topology defined by the family of seminorms $q_{v}, v \in \mathscr{U}$, where $q_{v}(f) = \int_{S} P_{v}(f) d\lambda$. Let $\mu: \Sigma \to E$ be a vector measure. We say that μ is of bounded variation if

$$V(\mu,\nu)(S) = \sup\left\{\sum_{i=1}^{n} P_{\nu}(\mu(S_i)), S_i \in \Sigma, S_i \subset S \text{ disjoint}\right\} < \infty$$

for every $v \in \mathcal{U}$.

We define the measure $\lambda_f(S) = \int_s f d\lambda$, for all $f \in L^1(S, \lambda, E)$, satisfying $V(\lambda_f, v)(S) = \int_s P_v(f) d\lambda$. It is a measure of bounded variation and satisfies ([3], page 372)

$$P_{\nu}(\lambda_f(S)) \leqslant \int_{S} P_{\nu}(f) \, d\lambda$$

We are able to state and prove the second main theorem.

7. THEOREM. Let (S, Q, λ) be a finite (positive) measure space, E a Fréchet space with the Radon-Nikodym property and $\mu: Q \to E$ an additive vector measure of bounded variation with $\mu \ll \lambda$. Then, there exist a sequence $\{\phi_n\}$ of simple functions $\phi_n: S \to E$ such that

$$P_{\nu}\left(\int_{A}\phi_{n}\,d\lambda-\mu(A)\right)\xrightarrow[n]{} 0$$

for every $A \in Q$ and for all $v \in \mathcal{U}$.

On vector measures

PROOF. By Stone's theorem ([5], Theorem 1) there exists a totally disconnected compact Hausdorff space K, for which the algebra \hat{Q} of all open-closed subsets of K is isomorphic to the algebra Q. Let ϕ be the above isomorphism. We define $\hat{\mu}$: $\hat{Q} \rightarrow E$ by $\mu(\phi(A)) := \mu(A)$ and $\hat{\lambda}: \hat{Q} \rightarrow [0, +\infty)$ by $\hat{\lambda}(\phi(A)) := \lambda(A)$. $\hat{\lambda}$ is regular ([1], Theorem 2); therefore, $\hat{\lambda}$ is σ -additive ([6], Theorem 13, page 138), Hahn's extension theorem now implies that exists a unique extension of $\hat{\lambda}$ (denoted also by $\hat{\lambda}$) to the σ -algebra Σ_0 generated by \hat{Q} . We consider the standard metric on Σ_0 , $d(E_1, E_2) = \hat{\lambda}(E\Delta E_2)$ and we denote the resulting metric space by $\Sigma_0(\hat{\Lambda})$. Recall that \hat{Q} is then a dense subset of $\Sigma_0(\hat{\lambda})$ ([10], [13], Theorem D). Therefore, the function $\hat{\mu}: Q \rightarrow \Sigma_0(\hat{\lambda}) \rightarrow E$ is continuous (since $\mu \ll \lambda$ implies $\hat{\mu} \ll \hat{\lambda}$) and it has an extension, denoted also by $\hat{\mu}, \hat{\mu}: \Sigma_0(\hat{\lambda}) \rightarrow E$. Now, from Radon-Nikodym's theorem, there exists $\hat{f} \in L_1(\hat{\lambda}, \Sigma_0, E)$ such that

$$\hat{\mu}(A) = \int_{A} \hat{f} d\lambda \quad (\text{for all } A \in \Sigma_0).$$

(This is denoted by $\hat{\mu} = \hat{f}\hat{\lambda}$.) Hence there exists a sequence $\hat{\phi}_n$ of simple functions converging to the function \hat{f} , that is,

(1)
$$q_{\nu}(\hat{\phi}_n - \hat{f}) = \int_{s} P_{\nu}(\hat{\phi}_n - \hat{f}) d\hat{\lambda} \to 0 \quad \text{for all } \nu \in \mathscr{U}.$$

We also have that

(2)
$$\hat{\lambda}_{(\hat{\phi}-\hat{f})}(S) = \int_{S} (\hat{\phi}_{n} - \hat{f}) d\hat{\lambda} = (\hat{\phi}_{n} - \hat{f})\hat{\lambda}(S)$$

is a vector measure of bounded variation.

From (1) and (2) we obtain

$$P_{\nu}(\hat{\lambda}_{\hat{\phi}_{n}-\hat{f}}(S)) = P_{\nu}\left(\int_{S} (\hat{\phi}_{n}-\hat{f}) d\hat{\lambda}\right) \leq \int_{S} P_{\nu}(\hat{\phi}_{n}-\hat{f}) d\hat{\lambda}.$$

Hence $P_{\nu}(\hat{\lambda}_{\hat{\phi}_n-\hat{f}}(A)) \to 0$, for all $A \in Q$, therefore $P_{\nu}[(\hat{\phi}_n - \hat{f})\hat{\lambda}(A)] \to 0$. So $P_{\nu}[\hat{\phi}_n\hat{\lambda}(A) - \hat{f}\hat{\lambda}(A)] \to 0$ and

$$P_{\nu}[\phi_n\lambda(A-\mu)(A)] \xrightarrow[n]{} 0, \text{ for all } A \in Q \text{ and } \nu \in \mathscr{U}.$$

Acknowledgement

The author is indebted to the referee for his suggestions.

[7]

References

- R. Alo and A. Korvin, 'Some approximation theorems for vector measures', Rev. Roumaine Math. Pures Appl. 23 (1979), 1289-1295.
- [2] C. Bessaga and A. Pełczyński, 'On bases and unconditional convergence of series in Banach spaces', Studia Math. 18 (1958), 151-164.
- [3] H. Chi, 'A geometric characterization of Fréchet spaces with the Radon-Nikodym property', Proc. Amer. Math. Soc. 48 (1975), 371-380.
- [4] J. Diestel and J. J. Uhl, Vector measures (Math. Surveys 15, Amer. Math. Soc., Providence, R. I., 1977).
- [5] N. Dinculeanu, Vector measures (Veb. Deutsher Verlag der wissenschaften, Berlin, 1966).
- [6] N. Dunford and J. Schwartz, Linear operators, Part I (Interscience, New York, 1958).
- [7] B. Faires, Grothendieck spaces and vector measures (Ph. D. Thesis, Kent State University, 1974).
- [8] E. Giannakoulias, 'The Bessaga-Pełczyński property and strongly bounded measures', Bull. Soc. Math. Gréce 24 (1983).
- [9] E. Giannakoulias, 'Absolute continuity and decomposability of vector measures taking values in a locally convex space with basis', to appear.
- [10] P. Halmos, Measure theory (Van Nostrand, 1950).
- [11] J. Hofman-Jørgensen, 'Vector measures', Math. Scand. 28 (1971), 5-32.
- [12] J. Kluvanek and G. Knowles, Vector measures and control systems (Notas Mat. 58 (1976), North-Holland).
- [13] Z. Lipecki and K. Musial, 'On the Radon-Nikodym derivative of a measure taking value in a Banach space with basis', Rev. Roumaine Math. Pures Appl. 23 (1978), 911-915.
- [14] D. Tumarkin, 'On locally convex spaces with basis', Dokl. Akad. Nauk SSSR 11 (1970), 1672-1675.

Department of Mathmatics

Section of Mathematical Analysis and its Applications

Athens University

Panepistemiopolis, 157 81 Athens Greece