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Abstract

In this paper we study some properties of vector measures with values in various topological vector
spaces. As a matter of fact, we give a necessary condition implying the Pettis integrability of a
function f: S -* E, where S is a set and E a locally convex space.

Furthermore, we prove an iff condition under which (Q, E) has the Pettis property, for an algebra
Q and a sequentially complete topological vector space E.

An approximating theorem concerning vector measures taking values in a Frechet space is also
given.

1980 Mathematics subject classification {Amer. Math. Soc): 38 B 05.

Notations and terminology

We denote by S a non void set, Q (resp. 2) an algebra (resp. a-algebra) of
subsets of 5 and E a real Hausdorff locally convex space.

A function ju from the algebra Q to E is said to be a finitely additive vector
measure (or simply a vector measure) ifju(^41 U A2) = /A(V4X) + n(A2), whenever
Ax, A2 are disjoint members of Q.

If in addition nQJ™=lAn) = T,^=1n(An) for all sequences (An) of pairwise
disjoint members of Q with U"_1/ln e Q in the topology of E, then p. is called a
o-additive vector measure. We say that /J is strongly bounded (^-bounded) iff
limn n(An) = 0 for every sequence (An) of mutually disjoint sets from Q.
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If ju is an £-valued vector measure on Q and P a seminorm on E, we shall
define the P-semivariation P(/i) by P([i.){A) = sup{P(Ej_ 1 a ; / t (^ ) )} , A & Q,
where the supremum is taken over all disjoint sets Av..., An from Q with
A = A1 U • • • L)An and all scalars ax,...,an with |a,| < 1 (/ = 1,2, . . . , n). We
say that the function / : S -> £ is weakly X-summable with respect to measure A:
Q -» [0, oo) if /^ | JC'/ | JX < oo for all JC' e £ ' , .4 in Q.f is called X-summable or
Pettis integrable if it is weakly X-summable for every A in Q and there exist an
element fA fdX, of E, such that

fd\= I x'fdX, (x' G £').
A JA

A locally convex space E has the Bessaga-Peiczyhski property (shortly (B-P)-
property), if for every sequence (xn) from £ with Y.™=1\x'(xn)\ < oo for all
x' G £ ' , there exists x e £ such that x = £"_!*„, where the series converges
unconditionally.

Finally, a sequence {xn} in £ is a Schauder basis if every x G £ has a unique
representation in the form x = Y%-Xanxn, where {an} is a sequence of scalars.
For each n e N the «th coefficient functional /„ on £ is defined by fn(x) = an,
for all x G £ and so u.(A) = E M C M / L ( U ( ^ ) U M = E n c N ! u n ( ^ U n , A in 0 .

I. On Pettis integral

The purpose of this section is to extend a result of ([13], Theorem 1) to the case
of vector measures which take values in a locally convex space £ . This is given in
4. Theorem below.

1. LEMMA ([9], Proposition 1). Let X: 2 -» [0, + oo) be a measure and let /J,:

2 —> £ be a s-bounded vector measure with x'fi <s: X, for every x' G £ ' . Then
H « : X.

2. LEMMA. L e / / : S ^> E be a vector function, v: 2 -» £ a vector measure and
(s, 2 , X) a finite non negative measure space. We denote by H the set H = {x' G £ ' :
(i) jc ' /e LX(X) am/ (ii) JC'°I;(,4) = /^ x'/JX A in 2} . 77ie«, /or every x' e # ,
//iere exirt a continuous seminorm Px, on E such that

^\x'f\d\<Px.(r)(A), (A in-2).
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P R O O F . If x'° v = ju, then n(A) = jA x'fdX and U(/x., A) = jA \x'f\d\ (where

U(ju,, A) < H/ilK^) (where \\\i\\ denotes the semivariation of ju), for if Ax,..., An

are pairwise disjoint sets of 2 , then there exist complex numbers a1,...,an with

|a,.| = 1 (i = ! , . . . , « ) such that

1 = 1

On the other hand,

7 = 1

for some continuous seminorm Px, on E, thus ||/i||(^) < Px-(v)(A). The results
now follows. *

3. LEMMA. Let f: S —> E, X: 2 —> [0, + oo) a a-additive measure and v: 2 —> E

a X-continuous s-bounded vector measure. Then the set

H = (x' G E': (i) x'f
\

is weak* sequentially closed.

(ii) x'< = f x'fdX

PROOF. 2. Lemma implies that, for every x' G H, there exists a continuous
seminorm Pr. on £ such that

(1) f \x'f\d\<Px.(")(A), (A in 2).
JA

-* x\x) (for all x G H). Since ><«\we haveSuppose {x'n}™=1 in H and x^(x) -» X
that ^ ( P ) « X, /i = 1,2,....

In virtue of equality (1), we have limA(/<)_0/^ |JC^/| JX = 0 uniformly in
n G N. Vitali's convergence theorem now says that JC'/ G L^X), hence

/" x'/JA = f l im(*;/) dX = Urn [ x'JdX = ]imx'nv(A) = x'v(A)

and so x' G H.

4. THEOREM. Let f: S -» £, X: £ -» [0, + oo) a a-additive measure and v.
2 —> E a finite additive vector measure. Assume that:

(i) / / /5 a weak* sequentially dense subset of E,
(ii) X ' / G Lx(X)(forallx' G # ) ,

(iii) x'v(A) = fA x'fdX {for all A e 2 and for all x' e ^ ) .
Then f is Pettis X-integrable and

v(A) = (P)f fdX
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PROOF. Assumption (iii) implies x'p <sc X, for every x' e H. Since H is a weak*
sequentially dense subset of E', we have that x'v «: X, for every x' G E'. Hence,
x'v is a-additive for every x' G E' and thus v is a-additive by the Orlicz-Pettis
theorem. Since 2 is a a-algebra v is also a ^-bounded vector measure and from 1.
Lemma we have that v «: X. 3. Lemma now implies that H is weak* sequentially
closed and so H = E'. Hence we have that

x'v (A) = f x'fdX, for every x' e E',
J A

which proves the assertion.

II. The Pettis property

If Q is a Boolean algebra and X is a Banach space, we shall say that the pair
(Q, X) has the Pettis property if every weakly countably additive set function ju:
Q -* X is a-additive. It is proved by [7] that a pair (Q, X) has the Pettis property,
for every algebra Q, if and only if X 2 c0. A generalization of this is 5. Theorem
below for the case of a sequentially complete topological vector space.

5. THEOREM. Let Q be an algebra of sets and let E be a q sequentially complete
topological vector space. Then the following propositions are equivalent:

(i) (Q, E) has the Pettis property,
(ii) E has the (B-P)-property.

PROOF, (i) => (i). We suppose that E does not have the (B-P)-property. Then,
there exists a sequence (xn) on E such that Y.™=i\x'(xn)\ < oo, for every x' G E'
and the series T.^lxn does not converge. From ([14], Theorem 4) now we have
that c0 is isomorphic to a subspace of E. But there exists a vector set function /x:
Q -> c0 which is weakly a-additive but not a-additive ([11], example 7).

(ii) =» (i). Let /x: Q -* E be weakly a-additive and (An) a disjoint sequence of
sets in Q with U^An e Q. Then x X U ^ L ^ J = L™=1x'ii(An) (the series
converges unconditionally) for all x' G E'. Hence Y.™=i\x'n(An)\ < oo. Since E
has the (B-P)-property, the series E"_1ju(^4n) converges unconditionally and so,
for x' e £', we have x'(Z™_lti(An)) = lZ_lX

fp(AH) = x'nQJ^A,,) and

However, in the case of locally convex space with a Schauder basis, the
a-additivity of the measure, with respect to the topology, is equivalent to the
a-additivity of the real measures nn — fn °n, where the /„ are the functionals
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associated to the basis. As a matter of fact, one obtains

6. PROPOSITION ([8], PROPOSITION 2). Let E be a locally convex space with a
Schauder basis (xn, /„) and ju: Q —> E a vector measure. Then the following are
equivalent:

(i) fi is a a-additive,
(ii) jun is a-additive, (n e N).

III. An approximation theorem for vector measures

Let E be a Frechet space, <2r a fundamental system of neighbourhoods of zero
in E (consisting of closed and absolutely convex sets) and (Pv)ve<& the family of
the Minkowski functionals.

The function / : S -> E is called X-integrable with respect to the measure X:
2 -» [0, + oo), if / is strongly measurable and, for every v G <%, we have
hpv(f)d^< °°- W e denote L\S,X,E) the quotient space yl(S,X,E)/n,
where ^CX(S, X, E) is the space of all X-integrable functions f:L S -* E and
n = { / e SC\S, X, E) such that qv(F) = 0 , u e « } . Note that L}(S, X, E) is a
Frechet space with the topology defined by the family of seminorms qv, v G "2C,
where qv(f)= fs Pv(f)dX. Let JU: 2 -» £ be a vector measure. We say that /i is
of bounded variation if

F(Ju,u)(S) = sup £ PB(ii(S,)), S,. e 2 , S, c S disjoint < oo
11=1 i

for every u G °tl.
We define the measure Xf(S) = fs fdX, for all f^L\S,X,E), satisfying

V(Xf, v)(S) = /5 Pv(f)dX. It is a measure of bounded variation and satisfies ([3],
page 372)

Pv{Xf(S))^fpv(f)dX

We are able to state and prove the second main theorem.

7. THEOREM. Let (S,Q,X) be a finite (positive) measure space, E a Frechet
space with the Radon-Nikodym property and fi: Q —> E an additive vector measure
of bounded variation with ju •« X. Then, there exist a sequence {<?>„} of simple
functions <f>n: S —> E such that

for every A e Q and for all v e <%.
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PROOF. By Stone's theorem ([5], Theorem 1) there exists a totally disconnected
compact Hausdorff space K, for which the algebra Q of all open-closed subsets of
K is isomorphic to the algebra Q. Let </> be the above isomorphism. We define /i:
Q -* E by n(4>(A)):= n(A) and X: Q -» [0, +oo) by %(4>(A)):= X(A). X is
regular ([1], Theorem 2); therefore, X is a-additive ([6], Theorem 13, page 138),
Hahn's extension theorem now implies that exists a unique extension of X
(denoted also by X) to the a-algebra 2 0 generated by Q. We consider the
standard metric on 20, d(Ev E2) = X(EAE2) and we denote the resulting metric
space by 20(A). Recall that Q is then a dense subset of 20(X) ([10], [13],
Theorem D). Therefore, the function £: Q -* 20(X) -» E is continuous (since
H «: X implies fl « X) and it has an extension, denoted also by ft, /i: 20(X) -» E.
Now, from Radon-Nikodym's theorem, there exists / e LL(X, 20, £ ) such that

fr{A)= ( fd\ (forall^l e 2 0 ) .

(This is denoted b>y /i = /X.) Hence there exists a sequence (f>n of simple functions
converging to the function / , that is,

(1) qAk-!)=fPAk-f)d\^O for all u G <T

We also have that

(2) \*-f)(S) = f(k~ f) dX = (*, -
J

is a vector measure of bounded variation.
From (1) and (2) we obtain

Hence Pv(\^ _f(A)) -> 0, for all A e Q, therefore />„[(<£„ - / )X(^ ) ] -^ 0. So
P[kMA)J\(A)]0d

> 0, for all y4 e g and u e ^ .

Acknowledgement

The author is indebted to the referee for his suggestions.

https://doi.org/10.1017/S1446788700029360 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029360


230 Efstathios Giannakoulias [7]

References

[1] R. Alo and A. Korvin, 'Some approximation theorems for vector measures', Rev. Roumaine
Math. PuresAppl. 23 (1979), 1289-1295.

[2] C. Bessaga and A. PeJczyhski, 'On bases and unconditional convergence of series in Banach
spaces', Studia Math. 18(1958), 151-164.

[3] H. Chi, 'A geometric characterization of Frechet spaces with the Radon-Nikodym property',
Proc. Amer. Math. Soc. 48 (1975), 371-380.

[4] J. Diestel and J. J. Uhl, Vector measures (Math. Surveys 15, Amer. Math. Soc., Providence,
R. I., 1977).

[5] N. Dinculeanu, Vector measures (Veb. Deutsher Verlag der wissenschaften, Berlin, 1966).
[6] N. Dunford and J. Schwartz, Linear operators, Part I (Interscience, New York, 1958).
[7] B. Faires, Grothendieck spaces and vector measures (Ph. D. Thesis, Kent State University, 1974).
[8] E. Giannakoulias, 'The Bessaga-Peiczyhski property and strongly bounded measures', Bull.

Soc. Math. Grece 24(1983).
[9] E. Giannakoulias, 'Absolute continuity and decomposability of vector measures taking values in

a locally convex space with basis', to appear.
[10] P. Halmos, Measure theory (Van Nostrand, 1950).
[11] J. Hofman-Jorgensen, 'Vector measures', Math. Scand. 28 (1971), 5-32.
[12] J. Kluvanek and G. Knowles, Vector measures and control systems (Notas Mat. 58 (1976),

North-Holland).
[13] Z. Lipecki and K. Musial, 'On the Radon-Nikodym derivative of a measure taking value in a

Banach space with basis', Rev. Roumaine Math. Pures Appl. 23 (1978), 911-915.
[14] D. Tumarkin, 'On locally convex spaces with basis', Dokl. Akad. Nauk SSSR 11 (1970),

1672-1675.

Department of Mathmatics
Section of Mathematical Analysis and its Applications
Athens University
Panepistemiopolis, 157 81 Athens
Greece

https://doi.org/10.1017/S1446788700029360 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029360

