SOME PROPERTIES OF VECTOR MEASURES TAKING VALUES IN A TOPOLOGICAL VECTOR SPACE

EFSTATHIOS GIANNAKOULIAS

(Received 19 March 1986; revised 31 July 1986)
(Communicated by H. Lausch)

Abstract

In this paper we study some properties of vector measures with values in various topological vector spaces. As a matter of fact, we give a necessary condition implying the Pettis integrability of a function $f: S \rightarrow E$, where S is a set and E a locally convex space.

Furthermore, we prove an iff condition under which (Q, E) has the Pettis property, for an algebra Q and a sequentially complete topological vector space E.

An approximating theorem concerning vector measures taking values in a Fréchet space is also given.

1980 Mathematics subject classification (Amer. Math. Soc.): 38 B 05.

Notations and terminology

We denote by S a non void set, Q (resp. Σ) an algebra (resp. σ-algebra) of subsets of S and E a real Hausdorff locally convex space.

A function μ from the algebra Q to E is said to be a finitely additive vector measure (or simply a vector measure) if $\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)$, whenever A_{1}, A_{2} are disjoint members of Q.

If in addition $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ for all sequences $\left(A_{n}\right)$ of pairwise disjoint members of Q with $\cup_{n=1}^{\infty} A_{n} \in Q$ in the topology of E, then μ is called a σ-additive vector measure. We say that μ is strongly bounded (s-bounded) iff $\lim _{n} \mu\left(A_{n}\right)=0$ for every sequence $\left(A_{n}\right)$ of mutually disjoint sets from Q.

[^0]If μ is an E-valued vector measure on Q and P a seminorm on E, we shall define the P-semivariation $P(\mu)$ by $P(\mu)(A)=\sup \left\{P\left(\sum_{j=1}^{n} a_{j} \mu\left(A_{j}\right)\right)\right\}, A \in Q$, where the supremum is taken over all disjoint sets A_{1}, \ldots, A_{n} from Q with $A=A_{1} \cup \cdots \cup A_{n}$ and all scalars a_{1}, \ldots, a_{n} with $\left|a_{i}\right| \leqslant 1(i=1,2, \ldots, n)$. We say that the function $f: S \rightarrow E$ is weakly λ-summable with respect to measure λ : $Q \rightarrow[0, \infty)$ if $\int_{A}\left|x^{\prime} f\right| d \lambda<\infty$ for all $x^{\prime} \in E^{\prime}, A$ in $Q . f$ is called λ-summable or Pettis integrable if it is weakly λ-summable for every A in Q and there exist an element $\int_{A} f d \lambda$, of E, such that

$$
x^{\prime} \int_{A} f d \lambda=\int_{A} x^{\prime} f d \lambda, \quad\left(x^{\prime} \in E^{\prime}\right)
$$

A locally convex space E has the Bessaga-Petczynski property (shortly ($B-P$)property), if for every sequence (x_{n}) from E with $\sum_{n=1}^{\infty}\left|x^{\prime}\left(x_{n}\right)\right|<\infty$ for all $x^{\prime} \in E^{\prime}$, there exists $x \in E$ such that $x=\sum_{n=1}^{\infty} x_{n}$, where the series converges unconditionally.

Finally, a sequence $\left\{x_{n}\right\}$ in E is a Schauder basis if every $x \in E$ has a unique representation in the form $x=\sum_{n=1}^{\infty} a_{n} x_{n}$, where $\left\{a_{n}\right\}$ is a sequence of scalars. For each $n \in \mathbf{N}$ the nth coefficient functional f_{n} on E is defined by $f_{n}(x)=a_{n}$, for all $x \in E$ and so $\mu(A)=\Sigma_{n \in \mathbf{N}} f_{n}(\mu(A)) x_{n}=\Sigma_{n \in \mathbf{N}} \mu_{n}(A) x_{n}, A$ in Q.

I. On Pettis integral

The purpose of this section is to extend a result of ([13], Theorem 1) to the case of vector measures which take values in a locally convex space E. This is given in 4. Theorem below.

1. Lemma ([9], Proposition 1). Let $\lambda: \Sigma \rightarrow[0,+\infty)$ be a measure and let μ : $\Sigma \rightarrow E$ be a s-bounded vector measure with $x^{\prime} \mu \ll \lambda$, for every $x^{\prime} \in E^{\prime}$. Then $\mu \ll \lambda$.
2. Lemma. Let $f: S \rightarrow E$ be a vector function, $\nu: \Sigma \rightarrow E$ a vector measure and (s, Σ, λ) a finite non negative measure space. We denote by H the set $H=\left\{x^{\prime} \in E^{\prime}\right.$: (i) $x^{\prime} f \in L_{1}(\lambda)$ and (ii) $x^{\prime} \circ \nu(A)=\int_{A} x^{\prime} f d \lambda A$ in $\left.\Sigma\right\}$. Then, for every $x^{\prime} \in H$, there exist a continuous seminorm $P_{x^{\prime}}$ on E such that

$$
\int_{A}\left|x^{\prime} f\right| d \lambda \leqslant P_{x^{\prime}}(\nu)(A), \quad(A \text { in } \Sigma)
$$

Proof. If $x^{\prime} \circ \nu=\mu$, then $\mu(A)=\int_{A} x^{\prime} f d \lambda$ and $U(\mu, A)=\int_{A}\left|x^{\prime} f\right| d \lambda$ (where $U(\mu, A) \leqslant\|\mu\|(A)$ (where $\|\mu\|$ denotes the semivariation of μ), for if A_{1}, \ldots, A_{n} are pairwise disjoint sets of Σ, then there exist complex numbers a_{1}, \ldots, a_{n} with $\left|a_{i}\right|=1(i=1, \ldots, n)$ such that

$$
\sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right|=\left|\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)\right| \leqslant\|\mu\|(A)
$$

On the other hand,

$$
\left|\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)\right|=\left|x^{\prime}\left(\sum_{i=1}^{n} a_{i} \nu\left(A_{i}\right)\right)\right| \leqslant\left|P_{x^{\prime}}\left(\sum_{i=1}^{n} a_{i} \nu\left(A_{i}\right)\right)\right| \leqslant P_{x^{\prime}}(\nu)(A)
$$

for some continuous seminorm $P_{x^{\prime}}$ on E, thus $\|\mu\|(A) \leqslant P_{x^{\prime}}(\nu)(A)$. The results now follows.
3. Lemma. Let $f: S \rightarrow E, \lambda: \Sigma \rightarrow[0,+\infty)$ a σ-additive measure and $\nu: \Sigma \rightarrow E$ $a \lambda$-continuous s-bounded vector measure. Then the set

$$
H=\left\{x^{\prime} \in E^{\prime}: \text { (i) } x^{\prime} f \in L_{1}(\lambda) \text { and (ii) } x^{\prime} \circ \nu(A)=\int_{A} x^{\prime} f d \lambda\right\}
$$

is weak* sequentially closed.

Proof. 2. Lemma implies that, for every $x^{\prime} \in H$, there exists a continuous seminorm $P_{x^{\prime}}$ on E such that

$$
\begin{equation*}
\int_{A}\left|x^{\prime} f\right| d \lambda \leqslant P_{x^{\prime}}(\nu)(A), \quad(A \text { in } \Sigma) \tag{1}
\end{equation*}
$$

Suppose $\left\{x_{n}^{\prime}\right\}_{n=1}^{\infty}$ in H and $x_{n}^{\prime}(x) \rightarrow x^{\prime}(x)$ (for all $x \in H$). Since $\nu \ll \lambda$ we have that $P_{x_{n}^{\prime}}(\nu) \ll \lambda, n=1,2, \ldots$.

In virtue of equality (1), we have $\lim _{\lambda(A) \rightarrow 0} \int_{A}\left|x_{n}^{\prime} f\right| d \lambda=0$ uniformly in $n \in \mathbf{N}$. Vitali's convergence theorem now says that $x^{\prime} f \in L_{1}(\lambda)$, hence

$$
\int_{A} x^{\prime} f d \lambda=\int_{A} \lim _{n}\left(x_{n}^{\prime} f\right) d \lambda=\lim _{n} \int_{A} x_{n}^{\prime} f d \lambda=\lim _{n} x_{n}^{\prime} \nu(A)=x^{\prime} \nu(A)
$$

and so $x^{\prime} \in H$.
4. Theorem. Let $f: S \rightarrow E, \lambda: E \rightarrow[0,+\infty)$ a σ-additive measure and ν : $\Sigma \rightarrow E$ a finite additive vector measure. Assume that:
(i) H is a weak* sequentially dense subset of E,
(ii) $x^{\prime} f \in L_{1}(\lambda)\left(\right.$ for all $\left.x^{\prime} \in H\right)$,
(iii) $x^{\prime} \nu(A)=\int_{A} x^{\prime} f d \lambda\left(\right.$ for all $A \in \Sigma$ and for all $\left.x^{\prime} \in H\right)$.

Then f is Pettis λ-integrable and

$$
\nu(A)=(P) \int_{A} f d \lambda \quad(A \in \Sigma)
$$

Proof. Assumption (iii) implies $x^{\prime} \nu \ll \lambda$, for every $x^{\prime} \in H$. Since H is a weak* sequentially dense subset of E^{\prime}, we have that $x^{\prime} \nu \ll \lambda$, for every $x^{\prime} \in E^{\prime}$. Hence, $x^{\prime} \nu$ is σ-additive for every $x^{\prime} \in E^{\prime}$ and thus ν is σ-additive by the Orlicz-Pettis theorem. Since Σ is a σ-algebra ν is also a s-bounded vector measure and from 1. Lemma we have that $\nu \ll \lambda$. 3. Lemma now implies that H is weak* sequentially closed and so $H=E^{\prime}$. Hence we have that

$$
x^{\prime} \nu(A)=\int_{A} x^{\prime} f d \lambda, \quad \text { for every } x^{\prime} \in E^{\prime}
$$

which proves the assertion.

II. The Pettis property

If Q is a Boolean algebra and X is a Banach space, we shall say that the pair (Q, X) has the Pettis property if every weakly countably additive set function μ : $Q \rightarrow X$ is σ-additive. It is proved by [7] that a pair (Q, X) has the Pettis property, for every algebra Q, if and only if $X \nsupseteq c_{0}$. A generalization of this is 5 . Theorem below for the case of a sequentially complete topological vector space.
5. Theorem. Let Q be an algebra of sets and let E be a q sequentially complete topological vector space. Then the following propositions are equivalent:
(i) $\left(Q, E_{i}\right)$ has the Pettis property,
(ii) E has the ($B-P$)-property.

Proof. (i) \Rightarrow (i). We suppose that E does not have the (B-P)-property. Then, there exists a sequence $\left(x_{n}\right)$ on E such that $\sum_{n=1}^{\infty}\left|x^{\prime}\left(x_{n}\right)\right|<\infty$, for every $x^{\prime} \in E^{\prime}$ and the series $\sum_{n=1}^{\infty} x_{n}$ does not converge. From ([14], Theorem 4) now we have that c_{0} is isomorphic to a subspace of E. But there exists a vector set function μ : $Q \rightarrow c_{0}$ which is weakly σ-additive but not σ-additive ([11], example 7).
(ii) \Rightarrow (i). Let $\mu: Q \rightarrow E$ be weakly σ-additive and $\left(A_{n}\right)$ a disjoint sequence of sets in Q with $\bigcup_{n=1}^{\infty} A_{n} \in Q$. Then $x^{\prime} \mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} x^{\prime} \mu\left(A_{n}\right)$ (the series converges unconditionally) for all $x^{\prime} \in E^{\prime}$. Hence $\sum_{n=1}^{\infty}\left|x^{\prime} \mu\left(A_{n}\right)\right|<\infty$. Since E has the (B-P)-property, the series $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ converges unconditionally and so, for $x^{\prime} \in E^{\prime}$, we have $x^{\prime}\left(\sum_{n=1}^{\infty} \mu\left(A_{n}\right)\right)=\sum_{n=1}^{\infty} x^{\prime} \mu\left(A_{n}\right)=x^{\prime} \mu\left(\cup_{n=1}^{\infty} A_{n}\right)$ and $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\mu\left(\cup_{n=1}^{\infty} A_{n}\right)$.

However, in the case of locally convex space with a Schauder basis, the σ-additivity of the measure, with respect to the topology, is equivalent to the σ-additivity of the real measures $\mu_{n}=f_{n} \circ \mu$, where the f_{n} are the functionals
associated to the basis. As a matter of fact, one obtains
6. Proposition ([8], Proposition 2). Let E be a locally convex space with a $S c h a u d e r$ basis $\left(x_{n}, f_{n}\right)$ and $\mu: Q \rightarrow E$ a vector measure. Then the following are equivalent:
(i) μ is a σ-additive,
(ii) μ_{n} is σ-additive, $(n \in \mathbf{N})$.

III. An approximation theorem for vector measures

Let E be a Fréchet space, \mathscr{U} a fundamental system of neighbourhoods of zero in E (consisting of closed and absolutely convex sets) and $\left(P_{v}\right)_{v \in \mathscr{G}}$ the family of the Minkowski functionals.

The function $f: S \rightarrow E$ is called λ-integrable with respect to the measure λ : $\Sigma \rightarrow[0,+\infty)$, if f is strongly measurable and, for every $v \in \mathscr{U}$, we have $\int_{s} P_{v}(f) d \lambda<\infty$. We denote $L^{1}(S, \lambda, E)$ the quotient space $\mathscr{L}^{1}(S, \lambda, E) / n$, where $\mathscr{L}^{1}(S, \lambda, E)$ is the space of all λ-integrable functions $f: L S \rightarrow E$ and $n=\left\{f \in \mathscr{L}^{1}(S, \lambda, E)\right.$ such that $\left.q_{v}(F)=0, v \in \mathscr{U}\right\}$. Note that $L^{1}(S, \lambda, E)$ is a Fréchet space with the topology defined by the family of seminorms $q_{v}, v \in \mathscr{U}$, where $q_{v}(f)=\int_{s} P_{v}(f) d \lambda$. Let $\mu: \Sigma \rightarrow E$ be a vector measure. We say that μ is of bounded variation if

$$
V(\mu, v)(S)=\sup \left\{\sum_{i=1}^{n} P_{v}\left(\mu\left(S_{i}\right)\right), S_{i} \in \Sigma, S_{i} \subset S \text { disjoint }\right\}<\infty
$$

for every $v \in \mathscr{U}$.
We define the measure $\lambda_{f}(S)=\int_{s} f d \lambda$, for all $f \in L^{1}(S, \lambda, E)$, satisfying $V\left(\lambda_{f}, v\right)(S)=\int_{s} P_{v}(f) d \lambda$. It is a measure of bounded variation and satisfies ([3], page 372)

$$
P_{\nu}\left(\lambda_{f}(S)\right) \leqslant \int_{s} P_{v}(f) d \lambda
$$

We are able to state and prove the second main theorem.
7. Theorem. Let (S, Q, λ) be a finite (positive) measure space, E a Fréchet space with the Radon-Nikodym property and $\mu: Q \rightarrow E$ an additive vector measure of bounded variation with $\mu \ll \lambda$. Then, there exist a sequence $\left\{\phi_{n}\right\}$ of simple functions $\phi_{n}: S \rightarrow E$ such that

$$
P_{v}\left(\int_{A} \phi_{n} d \lambda-\mu(A)\right) \underset{n}{\rightarrow} 0
$$

for every $A \in Q$ and for all $v \in \mathscr{U}$.

Proof. By Stone's theorem ([5], Theorem 1) there exists a totally disconnected compact Hausdorff space K, for which the algebra \hat{Q} of all open-closed subsets of K is isomorphic to the algebra Q. Let ϕ be the above isomorphism. We define $\hat{\mu}$: $\hat{Q} \rightarrow E$ by $\mu(\phi(A)):=\mu(A)$ and $\hat{\lambda}: \hat{Q} \rightarrow[0,+\infty)$ by $\hat{\lambda}(\phi(A)):=\lambda(A) . \hat{\lambda}$ is regular ([1], Theorem 2); therefore, $\hat{\lambda}$ is σ-additive ([6], Theorem 13, page 138), Hahn's extension theorem now implies that exists a unique extension of $\hat{\lambda}$ (denoted also by $\hat{\lambda}$) to the σ-algebra Σ_{0} generated by \hat{Q}. We consider the standard metric on $\Sigma_{0}, d\left(E_{1}, E_{2}\right)=\hat{\lambda}\left(E \Delta E_{2}\right)$ and we denote the resulting metric space by $\Sigma_{0}(\hat{\Lambda})$. Recall that \hat{Q} is then a dense subset of $\Sigma_{0}(\hat{\lambda})$ ([10], [13], Theorem D). Therefore, the function $\hat{\mu}: Q \rightarrow \Sigma_{0}(\hat{\lambda}) \rightarrow E$ is continuous (since $\mu \ll \lambda$ implies $\hat{\mu} \ll \hat{\lambda}$) and it has an extension, denoted also by $\hat{\mu}, \hat{\mu}: \Sigma_{0}(\hat{\lambda}) \rightarrow E$. Now, from Radon-Nikodym's theorem, there exists $\hat{f} \in L_{1}\left(\hat{\lambda}, \Sigma_{0}, E\right)$ such that

$$
\hat{\mu}(A)=\int_{A} \hat{f} d \hat{\lambda} \quad\left(\text { for all } A \in \Sigma_{0}\right)
$$

(This is denoted by $\hat{\mu}=\hat{f} \hat{\lambda}$.) Hence there exists a sequence $\hat{\phi}_{n}$ of simple functions converging to the function \hat{f}, that is,

$$
\begin{equation*}
q_{v}\left(\hat{\phi}_{n}-\hat{f}\right)=\int_{s} P_{v}\left(\hat{\phi}_{n}-\hat{f}\right) d \hat{\lambda} \rightarrow 0 \quad \text { for all } v \in \mathscr{U} \tag{1}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\hat{\lambda}_{(\hat{\phi}-\hat{j})}(S)=\int_{s}\left(\hat{\phi}_{n}-\hat{f}\right) d \hat{\lambda}=\left(\hat{\phi}_{n}-\hat{f}\right) \hat{\lambda}(S) \tag{2}
\end{equation*}
$$

is a vector measure of bounded variation.
From (1) and (2) we obtain

$$
P_{v}\left(\hat{\lambda}_{\hat{\phi}_{n}-\hat{f}}(S)\right)=P_{v}\left(\int_{s}\left(\hat{\phi}_{n}-\hat{f}\right) d \hat{\lambda}\right) \leqslant \int_{s} P_{v}\left(\hat{\phi}_{n}-\hat{f}\right) d \hat{\lambda}
$$

Hence $P_{v}\left(\hat{\lambda}_{\hat{\phi}_{n}-j}(A)\right) \rightarrow 0$, for all $A \in Q$, therefore $P_{v}\left[\left(\hat{\phi}_{n}-\hat{f}\right) \hat{\lambda}(A)\right] \rightarrow 0$. So $P_{v}\left[\hat{\phi}_{n} \hat{\lambda}(A)-\hat{f} \hat{\lambda}(A)\right] \rightarrow 0$ and

$$
P_{\nu}\left[\phi_{n} \lambda(A-\mu)(A)\right] \underset{n}{\rightarrow} 0, \quad \text { for all } A \in Q \text { and } v \in \mathscr{U}
$$

Acknowledgement

The author is indebted to the referee for his suggestions.

References

[1] R. Alo and A. Korvin, 'Some approximation theorems for vector measures', Rev. Roumaine Math. Pures Appl. 23 (1979), 1289-1295.
[2] C. Bessaga and A. Pelczyński, 'On bases and unconditional convergence of series in Banach spaces', Studia Math. 18 (1958), 151-164.
[3] H. Chi, 'A geometric characterization of Frechet spaces with the Radon-Nikodym property', Proc. Amer. Math. Soc. 48 (1975), 371-380.
[4] J. Diestel and J. J. Uhl, Vector measures (Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977).
[5] N. Dinculeanu, Vector measures (Veb. Deutsher Verlag der wissenschaften, Berlin, 1966).
[6] N. Dunford and J. Schwartz, Linear operators, Part I (Interscience, New York, 1958).
[7] B. Faires, Grothendieck spaces and vector measures (Ph. D. Thesis, Kent State University, 1974).
[8] E. Giannakoulias, 'The Bessaga-Pelczynski property and strongly bounded measures', Bull. Soc. Math. Gréce 24 (1983).
[9] E. Giannakoulias, 'Absolute continuity and decomposability of vector measures taking values in a locally convex space with basis', to appear.
[10] P. Halmos, Measure theory (Van Nostrand, 1950).
[11] J. Hofman-Jørgensen, 'Vector measures', Math. Scand. 28 (1971), 5-32.
[12] J. Kluvanek and G. Knowles, Vector measures and control systems (Notas Mat. 58 (1976), North-Holland).
[13] Z. Lipecki and K. Musial, 'On the Radon-Nikodym derivative of a measure taking value in a Banach space with basis', Rev. Roumaine Math. Pures Appl. 23 (1978), 911-915.
[14] D. Tumarkin, 'On locally convex spaces with basis', Dokl. Akad. Nauk SSSR 11 (1970), 1672-1675.

Department of Mathmatics

Section of Mathematical Analysis and its Applications
Athens University
Panepistemiopolis, 15781 Athens
Greece

[^0]: (c) 1987 Australian Mathematical Society 0263-6115/87\$A2.00 +0.00

