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1. Introduction. Over a field of prime characteristic p the group algebra of a finite group
has a non-trivial radical if and only if the order of the group is divisible by the prime p. In two
earlier papers [7,8] we have imposed certain restrictions on the radical, namely that the radical
be contained in the centre of the group algebra and that the radical be of square zero, and we
have considered what influence these conditions have on the structure of the group itself.
These conditions are, at first sight, of different types and our present paper is an attempt to
generalise them by merely assuming that the radical is commutative.

Before making the above remarks more precise we require to introduce our notations and
conventions which will follow those employed in the earlier papers. Thus if G is a group and
if H is a subgroup of G, we denote the order of H and index of H in G by | H | and \G : H\
respectively. G' is the derived group of G and e is the identity of G. We consider all group
algebras to be over a fixed algebraically closed field K of prime characteristic/?, A(G) being the
group algebra of G over K and N{G) being the corresponding radical. If / is a linear subspace
of A (G), its dimension is written as dim /. The centre of A {G), that is, the subspace of A (G)
spanned by the class-sums of G, is denoted by Z[A{G)~\.

We shall frequently refer to the papers mentioned above, but, for convenience, we here
restate our earlier theorems.

THEOREM A. Let G be a group. Then N{G) s Z[A (G)] / / and only if G is of one of the
following three types:

(i) G has order prime to p.
(ii) G is abelian.

(iii) If P is a p-Sylow subgroup of G, then G'P is a Frobenius group with G' as the regular
subgroup of G'P under the inner automorphisms induced by elements of P.

THEOREM B. Let G be a group of order p"m ((/>, mi) = 1, a ^ 1). Then [N(G)Y = {0} if
and only if p" — 2.

Using both of these theorems we shall prove here the following result.

THEOREM 1. Let Gbea non-abelian group and let p be an odd prime dividing the order ofG.
Then the following conditions are equivalent.

(i) N{G) is commutative.
(n)N(G)<=Z[A(G)l

(iii) If P is a p-Sylow subgroup of G, then G'P is a Frobenius group with G' as the regular
subgroup of G'P under the inner automorphisms induced by elements of P.

If we do not restrict the prime p to be odd we are nevertheless able to prove the next
theorem which is itself a necessary step in our argument leading to Theorem 1.
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2 D. A. R. WALLACE

THEOREM 2. Let G be a group such that N(G) is commutative. Then there exists a normal
subgroup M of G of order prime to p and, ifP is a p-Sylow subgroup of G, then P is abelian and
G=PM.

Theorem 2 implies that G' £ M and so, if/> divides \G\, thenp divides \G : G' \. We may
then deduce the following from Theorem 1.

THEOREM 3. Let G be a group such that N{G) is commutative and such that | G : G' \ is odd.
Then N(G) £ Z[A(G)].

We conclude our introduction by remarking that, if a group G is such that G'P is a Fro-
benius group, where P is a /7-Sylow subgroup of G as above, then P is cyclic and G' is nilpotent
[cf. Comments in 7, p. 108].

The last theorem in our introduction is then an immediate consequence.

THEOREM 4. Let G be a simple group such that N(G) is non-trivial. Then N(G) is not
commutative.

2. Elementary lemmas. The remaining part of the present paper is devoted to proving
Theorem 2 and to deducing from this condition (iii) of Theorem 1; by Theorem A this is
sufficient to establish Theorem 1 completely. We therefore assume in this and in succeeding
sections that G is a group for which N(G) is commutative and non-trivial.

LEMMA 1. Let H be a normal subgroup of G, where H = PR, P being a p-Sylow subgroup
ofG and R being a normal subgroup ofG of order prime top. Then P is abelian and there exists a
normal subgroup MofG of order prime to p such that G = PM. Further G' has order prime to p.

Proof. Since H is normal in G, we have N(H) £ N(G) [7, Lemma 2, Corollary (i)].
From the group structure of H we have [7, Lemma 4] that

x^ N(P) £ N(H)

and thus we conclude that

' N(P) £ N(G).

Let usG and let s e P, s # e. Since N(G) is assumed to be commutative and since e-se N(P),
it follows that

_x)(e-s)u( £x)(e-s) = ( £x)(e-s)( £x)(e-s)u.
xeR I \xeR I \xeR I \xeR

Utilising the normality of R in G, we deduce from the above that

( E x\e-s)(e-usu~l) = ( £ z
\xeR J \xeR

We now further suppose that u belongs to the normalizer of P in G. Thus let usu~l = s' eP.
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Since the elements of P can be taken to be coset representatives of R in H, the above implies
that

(e—s)(e—s') = (e—s)(e—s)
and hence

—s'+ss' = — s+ss.

From considerations of linear independence over the field K it follows that, if/? # 2, then s' = s,
and, if p = 2, then either s' = s or s' = stf. This last relation implies that usu'1 = s2 and this is
impossible if J has order which is a power of 2. Thus we have MJM~ L = S and consequently P
is a subgroup of the centre of its normalizer. By Burnside's Theorem [4, Theorem 14. 3. 1],
P has a normal /̂ -complement M in G. This normal /7-complement necessarily contains G'.

LEMMA 2. Lef * e G'. Then (e-*)|>(<J)]2 = {0}.

Proof. Any element of [A^(G)]2 is a linear combination of elements of the form ww',
where w, w' e N(G). The lemma is proved if we show that, for x e G', (e-x)wwf = 0.

Let a, b e G; then

(ab)(ww') = a(bw)w' = a(w'(bw)) = (aw')(bw)

= (bw)(aw') = b(w{aw')) = b(aw')w = (ba)(w'w)
= (ba)(ww').

Hence
(e-b~la'1ba)ww> = 0.

Let xeG'; then there exist commutators cu c2>..., cse G' such that x = c^c2 ... cs and
then

(e—x)ww' = (e—cs)ww' + (e—cic2 ... cs_1)csww'.

An obvious induction argument completes the proof.

Let G' have index r in G and let

G = G'a1KjG'a2u ••• yjG'aT ( a t = e)

be a coset decomposition of G' in G. We now argue from Lemma 2 as we did in our earlier
paper [7, pp. 106-107] except that, for the present, we replace N(G) of the earlier discussion by
[JV(G)]2. Thus we let / be the ideal of A (G') spanned by £ y and let / be the ideal of A (G)
generated by/. yeG'

We deduce

LEMMA 3. [N(G)]2 £ / .

From this lemma we obtain the following lemma.

LEMMA 4. Either [iV(G')]2 = {0} or [JV~(G')]2 = /.

Proo/. Since G' is normal in G, we have [7, Lemma 2, Corollary (i)] N(G')cN(G) and
therefore [W(G')]2 S [AT(G)]2 s / .
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Hence [7, Lemma 2]

[iV(G')]2£ JnA(G') = I.

The lemma is then established by remarking that / is a one-dimensional subspace of A(G).
Our investigation of the structure of G is facilitated by observing that Lemma 4 enables us

to consider three mutually exclusive cases, the first two of which we shall show do not arise.

Case (I). [N(G')Y = {0}, N(G')*{0}.
Case (2). [tf(G')]2 = /.

Case (3). N(G') = {0}.

We proceed to the consideration of these cases.

3. Discussion of Case (1). We obtain the following lemma by applying Theorem B to the
present situation.

LEMMA 5. The prime p = 2 and the derived group G' has order lq, where q is odd.
This lemma imposes conditions on G, and by purely group-theoretical arguments we shall

prove Lemma 6 which, together with Lemma 1, will imply that Case (1) does not arise.

LEMMA 6. Let Gbea group such that the derived group G' has order 2q, where q is odd. Let
Pbea 2-Sylow subgroup ofG. Then G has a normal subgroup M of odd order such that G =PM.

Proof. Let | P | = 2" (a ^ 1). Since G/G' is abelian, there exists a subgroup Go of G
containing G' such that | GIG': GojG' | = 2 0 " 1 and thus | G : Go \ = 2""1. Since a 2-Sylow
subgroup of Go has order 2, such a subgroup is clearly in the centre of its normalizer and so, by
Burnside's Theorem [4, Theorem 14.3.1], Go has a normal subgroup M of index 2 and of odd
order. Such a subgroup M of Go is necessarily unique and consequently, from the normality
of Go in G, M is normal in G. Hence

\G:M\ = | G:G0 || Go : M\ = 2 f l - 1 . 2 = 2°

and from this we deduce that G = PM.

Lemmas 5 and 6 show that p = 2 and that G = PM, where P i s a 2-Sylow subgroup of G
and where M is a normal subgroup of G of odd order. This implies, by Lemma 1, that G' has
order prime to 2 and this is impossible under the assumption that N(G') -t {0}.

4. Representation theory. The discussion of Cases (2) and (3) depends on results drawn
from the modular representation theory of finite groups. As a general reference we would cite
the text of Curtis and Reiner [3].

In this section we write, for simplicity, A = A(G) and N = N(G). We can choose mutually
orthogonal idempotents eu e2, •••,en such that

e = ex+e2+ ... +en

and
A = Ael+Ae2+ ... +Aen,
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where Ae,(i=\,2,..., ri) is a principal indecomposable module (indecomposable left ideal)
and the sum is a direct sum of principal indecomposable modules. We adopt the convention
of omitting the word " principal " when referring to principal indecomposable modules. We
let {Uu U2, ..., Uk] and {Fu Fu ..., Fk} be complete sets of indecomposable and irreducible
modules respectively, where, as usual, FK is isomorphic to UJNUK and where UK and FK have,
as finite dimensional vector spaces over K, the respective dimensions uK and/K (K = 1, 2, ..., k).
We suppose that Fx is the trivial irreducible module such thatgv =v(g eG,ve Ft). For each
/ (1 ^ / ^ ri) there exists a unique K (1 ^ K ^ k) such that Ae{ is module isomorphic to UK and,
conversely, for each K (1 <L K ̂  k), there exists at least one i (1 ^ / ^ ri) such that UK is module
isomorphic to Ae{. We make considerable use of the facts that UK has a unique minimal
submodule and a unique maximal submodule, the latter being NUK, and that the unique
minimal submodule is isomorphic to FK [3, p. 598].

Under the additional assumption that N is commutative, it is convenient to classify the
indecomposable modules into three mutually exclusive types and to determine the irreducible
modules which can appear as composition factors of the indecomposable modules.

If we consider UK, it is clear that one of the three following situations must arise:

(a)

(b)

(c) N2UK * {0}.

If UK is of type (a), then UK is irreducible and UK = FK. If UK is of type (b), then N2 UK = {0}
implies that NUK is completely reducible [1, Theorem 9.4A, p. 103] and, since UK has a unique
minimal submodule isomorphic to FK, we see that NUK is isomorphic to FK. Thus only two
irreducible modules appear as composition factors of a composition series for UK and they are
both isomorphic to FK. For this to happen the Cartan matrix C = (CKX) [3, p. 593], which gives
the multiplicities with which the irreducible modules appear as composition factors of the
indecomposable modules, must be such that cKK = 2, CKX = cXlc = 0 (A ̂  K). This implies that
det C is divisible by 2. But we know that det C is a power of p [3, (84.17), p. 602] and hence,
if there exists a UK of type (b), we must have p = 2.

We now suppose that UK is of type (c) and we shall show that the only irreducible modules
appearing in UK are one-dimensional. The elements of N2UK are linear combinations over the
field K of elements of the form wv, where w e N2 and ve UK.

Let x, y e G; then, from the proof of Lemma 2,

(xy)(wv) = ((xy)w)v = ((yx)w)v = (yx)(wv),

and consequently the linear transformations t-> (xy)t and t^{yx)t (t e N2UK) induced by xy
and yx in the submodule N2UK of UK are identical. That is, the linear transformations induced
by x and y in N2 UK commute. Hence we infer that the only irreducible modules appearing in
./V"2 UK are one-dimensional. We can argue further however. We remark first that, as UK has a
unique minimal submodule isomorphic to FK) this submodule must appear in N2UK and hence
FK is one-dimensional. Suppose, for the sake of argument, that Fx appears as an irreducible
constituent of UK, where X y* tc. Then CKX ^ 1 and, since C is a symmetric matrix, FK appears
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CKX times in Ux. Let us consider to which type this Ux belongs. Since Uk has FK as an irre-
ducible constituent where K: / A, it follows that Ux must itself be of type (c). By our remarks
above this implies that Fx is one-dimensional.

We summarise our results in the following lemma.

LEMMA 7. Let G be a group such that N = N(G) is commutative. Let {Uu U2, •••, Uk} and
{Ft ,F2,..., Fk} be complete sets of indecomposable and irreducible modules of A = A (G) as above.
Then UK (1 ^ K ̂ k) belongs to one of the following three types:

(a) UK is irreducible.

(b) UK has two irreducible constituents both isomorphic to FK.

(c) UK is not of type (a) or (b) and the only irreducible constituents appearing in UK are one-
dimensional.

If there exists a K (1 ^ K ^ k) such that UK is of type (Jo), then p = 2.

It is of some importance to determine the dimensions of the indecomposable modules and
we prove therefore the following lemma.

LEMMA 8. Let G be a group of order p"m ((p, m) = 1, a ^ 1) such that N = N(G) is com-
mutative. Let A — Ael+Ae2+ ... +Aen be as above and suppose that Ut has dimension p".
Then, for each i, Aet is an indecomposable module, and, if Aet is of type (a) above, then
dim Net = 0, and, if Ae{ is of type (c), then dim Net = p"—\.

Proof. If Aet is of type (a), then Aet is irreducible and so Net = {0}.
If Aex is of type (c), then we suppose that Aet is isomorphic to UK of type (c) and this implies

that Aej/Ne, is isomorphic to the one-dimensional irreducible module FK. Hence

dim Net = dim Aet—dim AeJNei =«k — 1.

We now show that uK =p". We know that the tensor product module Ui®FK has UK

as a direct summand [2, p. 579; 5, p. 413]. But we have dim ( t / ^ i v ) = dim Ux = p" and
we also have that/)" divides uK [3, (65.17), p. 439]. Hence

Ul®FK = UK and uK=p°.

5. Discussion of Case (2). We now suppose that [iV(G')]2 = /. Since G' is normal in G,
it follows that JV(G') £ N(G) [7, Lemma 2, Corollary (i)] and so N(G') is commutative. We
therefore apply to G' the arguments applied to G in the previous section. In order to emphasise
that we are considering G' rather than G we write A = A(G') and N = N(G'). We let

{Uu U2, ...,&,} and {FUF2,...,/,}

be complete sets of indecomposable and irreducible modules, respectively, of G'. In a similar
manner we have

e ^ + ez-f ... +et

and
A = Aex + A~e2+ ... + Ae,

with the obvious interpretations. From these relations we have

2 + ... +N2it.
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In the present case we have dim # 2 = dim [N(G')]2 = 1 and hence there exists j (1 ^j ^ /)
such that dim #2e,- = 1 and, for i&j (i = 1, 2, ..., t), N2it = {0}. Thus the indecomposable
modules of G' are of types (a) or (b) with the exception of one which is of type (c).

We now consider Ot and we shall show that t^ is the indecomposable module of type (c).
Since C/, is not irreducible, 0x can only be of types (b) or (c). If Ox is of type (b), then t7x

contains two irreducible constituents both isomorphic to Pt. Thus p = 2 and ul=2. Further,
since 2 divides Qt to the first power only, we must have | G' | = 2q, where q is odd [3, (65.17),
p. 439]. By Theorem B, this latter condition implies that [JV(G')]2 = {0} and this contradicts
our supposition that dim [N{G')~\2 = 1. Hence we have shown that U^ is of type (c) and that
Ui is the only indecomposable module of type (c). This implies that the indecomposable
modules all belong to different blocks [2, p. 562; 3, p. 604] and so, in particular, C/j is in a
block by itself. Consequently [2, p. 587; 3, p. 610] G' has a normal subgroup M and ap-Sylow
subgroup Q such that G' = QM, where QnM = {e}. M is necessarily unique in G' and so it
follows that M is normal in G. Let P be a /?-Sylow subgroup of G containing Q and let
H = PM. Then H = PQM = PG' and therefore H is normal in G. This implies, by Lemma
1, that G' has order prime to p and this is impossible if N(G') ^ {0}. We have therefore
established that Case (2) does not arise.

6. Discussion of Case (3). We have now shown that this is the only case which arises;
this proves that p does not divide | G' |. By elementary group theory we are able to deduce
Theorem 2.

We now seek to establish that Theorem 1 is valid and, as we remarked before, we do this
by proving that condition (i) of Theorem 1 implies condition (iii) of the same theorem.

Suppose henceforth that p is an odd prime and that | G \ = p"m ((p, m) = 1, a ̂  1).
Lemma 7 implies that the indecomposable modules of G are of types (a) and (c). Since, by
Theorem 2, there exists a normal subgroup M of G of order prime to p and with index p", it
follows that «j = p" [2, p. 587]. We now apply Lemma 8 to the decompositions

A{G) = A = Ae1 + Ae2+ ... +Aea

and
N(G) = N=Ne! + Ne2+ ... +Nen

and thereby obtain the result that, if Aet is of type (a), then dim Net = 0; and, if Aet is of type
(c), then dim Net = p"—l. We wish ultimately to obtain dim N(G) and hence we require to
count those Net for which Net # {0}. If Ne, ^ {0} then Ae{ is isomorphic to an indecomposable
module UK of type (c). Since the corresponding FK is of dimension 1, an isomorphic copy of
UK appears exactly once in the expression A = Ae1 + Ae2+ ... +Aen for A as a direct sum of
indecomposable modules. Conversely, for each A for which Fx has dimension 1 there exists
exactly one isomorphic copy of Ux in the above decomposition. Hence

dimN(G)=u(p°-l),

where a is the number of Fx of dimension 1. But the number a is equal to | G: G'P \, where P
is a />-Sylow subgroup of G [2, p. 588]. Hence we obtain finally
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As GjG'P is an abelian group of order prime to p, we have [7, Lemma 7] that

dim N(G'P) = | G / G ) p | dim N(G) = f-1.

We now impose the further condition that G is non-abelian and so G' # {e}. The above
equality now implies [6, Theorem 2] that G'P is a Frobenius group such that P acts as a group
of regular automorphisms on G', as in condition (iii) of Theorem 1. This completes our proof.

Part of this work was carried out while I was a visiting lecturer in the Mathematics
Department of the University of Western Australia, to the members of which I would like to
express my thanks.
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