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The purpose of this paper is to describe a technical procedure,
which enables one to compute values of the generalised Poisson
distribution function, with an accuracy considered sufficient for
insurance companies and with satisfactory speed. The procedure
requires a fast medium sized computer.

The computation of values of the generalised Poisson distri-
bution function has become a timely problem in Finland, because
of the introduction by the Supervisory Service of more stringent
requirements in determining limits of the so called equalisation
reserves, which have their theoretical basis in the random fluctua-
tions of claims amounts. The question has also been discussed in
papers submitted by Dr. Pentikainen [3] and Dr. Pesonen [4] to
this Colloquium. Because the practical computation is a further
problem, the Federation of Finnish Insurance Companies set up a
committee in 1962 to gather and work up the necessary statistics
from various branches of insurance and to develop the computa-
tional methods ready for use in practice. The committee has almost
completed its work, and one of the results, a procedure to compute
values of the generalised Poisson function with a mixed method,
is described below. The method is referred to briefly in [4]. The
programming and further planning work has been done by Dr.
Loimaranta and M. Sc. Porn.

On the principles

The computation is based to a partitioning of the distribution
function of one claim,

S (x) = pxSi (x) + P2S2 (x) + psS3 (x) (1)

*) Those interested in the program written in ALGOL for an Elliott
503 computer should write to "Vahinkovakuutusyhtioiden Tilastokeskus",
Bulevardi 28, Helsinki, Finland.
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where

pi = S{xi)
— S(xi) and (2)

The functions S

Sx{x) =

S i W =

S3{x) =

v[%) are

— S(x) when x ^ xi,

i elsewhere

o when x ^ xi

i
— (S(^) — S(xi)) when xi <
£ 2

V

i elsewhere

o when x ^ ^2

— (5(^) •— SIX2)) elsewhere
pa

X2 (3)

According to a lemma in \\\, the generalised Poisson distribution
F{x), which under certain assumptions is the distribution of total
claims, can be represented as a convolution of three generalised
Poisson distributions:

F(x) =
g-nnt

k\

= Fi{x) * Fz{x) * F3{x),

where

(4)

(5)

(6)

are separately generalised Poisson functions. The function Fi(x)
is computed by normal approximation and the functions Fz and
F3 by Monte-Carlo method. The final convolutions (5) are per-
formed in the same simulations.
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The point xi is so selected, that Fi(x) is approximated by a
normal approximation with sufficient accuracy. This is done by a
subsidiary program which prepares the input data for the main
program. The theory for the computation of xi is presented in
/4/. At the same time, the mean value and standard deviation of
Fi(x) are computed. The point #2 is determined so, that only a few
most dangerous points remain in S3, e.g. by setting fis = 1/100 p%.

The function F2 is computed by a Monte-Carlo method. For this
purpose the distribution

and the functions

Sf*(x)(= S2(x)); S?*(x); S**(x); . . .; S**(x) (8)

up to a sufficiently large k are needed. The convolutions (8) and
the distribution (7) are determined by the main program. When a
random number N% is generated by the help of (7), it is written as
a binary number

N2 = 2 ak2
k {ak = 0,1).

Then, 2 ak random numbers •/)# {ak = 1) between 0,1 are generated
and a sample value of x from F2(x) is reached as the sum

l, = T,x (Sf* (x) = 7]*). (9)

The function ^3^) is treated more directly. First, a random
number ^3 is determined like N2. Then, generating N3 random
values 8jt between 0,1 a sample value of F3 is reached as

lz = s x (S3(x) = efc). (10)

When a random \\ is taken from the distribution <&(piti ai,
]/̂ >iw 0C2), where

av = J xvdSi(x), (11)
0

the value

I = 5i + & + 5s (12)
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is a sample value of x with distribution function F(x). Sufficiently
many values \ determine F(x), points of which can be determined
e.g. by computing the number of \: s exceeding given #-values.
The £: s themselves are an additional output of the program.

The method of computing the convolutions (8) is the following,
which the author presented to the meeting in Edinburgh in 1964
\z\. Let the distribution function Qj{x) be given at the points

The convolution is then, approximately,

Q(x) = Qz(x) * Qt(x) (14)

xi(<x
where XZJ < x — xit < X2, j+i. In the computation of convolutions,
the prescribed form (13) is required as input and output; first an
input is made from S%(x) by the subsidiary program mentioned
above, then an output for the repetitive computation of the next
convolution Sa**(#) is prepared by the convolution program
itself. This is done by an automatic interpolation system from
certain guessed values of x, which system also accepts disconti-
nuities. Moreover, a correction for the mean of Q(x) and its tails is
performed. For the accuracy of the method see J2J.

The computing program

The program to compute F(x) is written in Algol for an Elliott
503 computer. A subsidiary program prepares the data needed
as an input for the main program, which computes sample values
of F(x). In this subsidiary program, the original input S(x) is
assumed to be given at the points x% = a. ¥. How to get the function
S(x) for a given company or situation is another problem which
falls outside the scope of this paper. The main program is divided
in six parts, which have their own function in computation.

In part 1 the numbers n, pi and pi + p2 are read in, universal
integers and reals are defined and the necessary storage space for
P(Nz) and P(Ns) is determined by the procedure "store".
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In part 2, besides the necessary definitions, procedures "sum",
"poisson", "norm" and "teta" are defined. With the aid of "pois-
son", the distributions P(Nz) (see (7)) and P(Ns) are determined
and stored. If p2tt> 100, P(N2) is computed from the approxi-
mation

The necessary storage space for the convolution functions (8) is
determined and ai, 0C2, S2(x) etc. are read in. The procedure "sum"

n

computes 2 f\ and the procedure "poisson" computes values of
t-m

the Poisson distribution. Random numbers with a normal distri-
bution are computed by "norm", the method being developed by
Dr. Loimaranta in AB Atomenergi in Sweden. Random numbers
rectangularly distributed over (0,1) are generated by the multi-
plicative congruential method in procedure "teta".

The convolutions (8) are computed and stored in part 3. The
main part of convolution program serves for the organisational
interpolation work.

The function S(x), x > xz is read in and the mean values in
convolutions of Sz(x) are corrected in part 4.

Part 5 comprises the principal work: it computes \ according to
(12).

The output is performed in part 6, either the number of !•' s
exceeding 23 prefixed values of x or, additionally, all values of \.

Some general remarks

In the testing phase of programming the results were compared
with some values obtained by Bohman and Esscher / i / with S(x)
from non-industrial business in /i/ . The results, for a sample of
10.000 from F(x), were found to agree with the Swedish results.
The computation took c. 8 minutes for a given distribution F(x)
(sample of 10.000) with the Elliott 503 computer.

The procedure to compute F(x) seems to meet sufficiently well
the necessary requirements of accuracy and computational speed.
As a computer program it is easy to use and quite general, in practice
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no information is required concerning the shape and location of the
function S(x) and the value of n. Moreover, the program can be
modified in many directions to meet different needs. One such need
is to compute the upper limit of the equalisation reserve presented
in /5/. For that purpose, a sample value \\ is computed for the first
year, conclusions concerning the situation can then be made by a
further program, then a second year in the life of the company
can be simulated perhaps taking into account the result of the
preceding year and so on. The situation £ after n years can thus
be reached by simulating the n years in sequence (a single \v is
determined for the v' th year). When this simulation series of n
years is repeatedly performed sufficiently many times, the distri-
bution of \ is obtained. The process is fast in practice if S(kvx)
can be assumed to be the same in all years (kv = constant for each
year, kvx the amount of one claim in v' th year) and n can be fixed.
As additional arguments e.g. a stop loss treaty, an assumed dividend,
funding, rating and reinsurance policy can be attached to the
computations. The possibility of examination and comparison of
quite complex situations is offered. However, such investigations
(management games) are probably sufficiently realistic with a simple
normal approximation.

Another generalisation of the program is reached if we can set
fi2 = i, by using another functions in (4) instead of

g-nnk
P(N) = - ^

Many ways to improve the procedure can also be seen. One such
way, if the possibility for further simulation can be removed, would
be the following. Let the point

t\v = £2 + h.

be computed by a Monte Carlo method as in the procedure described
(cf. 12). We can write

F(x) = Fx{x) * F'(x)

= / Oix—tidF'h). (16)
0

With sufficient accuracy, if the simulation is repeated N times,
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the increments dF'fa) can be regarded to lie at points •/]„, with the
1

amounts —. Thus

by which F(x) is directly computed at the points x. The variance of
the computed value of F(x) arising from the nature of the Monte
Carlo method is less by this method than by the described program,
and the accuracy of the result can be controlled by sequential
checking during computation. The variance

(18)

where the latter expression stands for the variance for non-improved
Monte Carlo procedure.

Similarly

a* (i-F (x)) = j ^ (^ £ (1 - 0 (* - „))« - (1 - F(*)

<^riF(x)(i-F{x)). (19)

The inequalities (18) and (19) reveal the improvement particularly
for the tails of F(x).
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