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On Fiber Cones of m-Primary Ideals

A. V. Jayanthan, Tony J. Puthenpurakal, and J. K. Verma

Abstract. Two formulas for the multiplicity of the fiber cone F(I) =

⊕

∞

n=0
In/mIn of an m-primary

ideal of a d-dimensional Cohen–Macaulay local ring (R, m) are derived in terms of the mixed mul-

tiplicity ed−1(m|I), the multiplicity e(I), and superficial elements. As a consequence, the Cohen–

Macaulay property of F(I) when I has minimal mixed multiplicity or almost minimal mixed multi-

plicity is characterized in terms of the reduction number of I and lengths of certain ideals. We also

characterize the Cohen–Macaulay and Gorenstein properties of fiber cones of m-primary ideals with a

d-generated minimal reduction J satisfying ℓ(I2/ JI) = 1 or ℓ(Im/ Jm) = 1.

1 Introduction

The objective of this paper is to study Cohen–Macaulay and Gorenstein properties

of the fiber cone F(I) =

⊕∞
n=0 In/mIn of an m-primary ideal I of a d-dimensional

Cohen–Macaulay local ring (R, m) in terms of invariants such as the multiplicity e(I),
the mixed multiplicity ed−1(m|I) and reduction number of I.

In order to state the main results, we recall necessary definitions first. Let I be

an m-primary ideal of a d-dimensional local ring (R, m). The Hilbert function
HF (F(I), n) of the fiber cone F(I) is defined as HF (F(I), n) = ℓ(In/mIn), where ℓ
denotes the length function. The function HF (F(I), n) is a polynomial HP(F(I), n)
in n of degree d − 1 for all large n. We write this polynomial as

HP(F(I), n) = f0(I)

(

n + d − 1

d − 1

)

− f1(I)

(

n + d − 2

d − 2

)

+ · · · + (−1)d−1 fd−1(I),

for certain integers f0(I), f1(I), . . . , fd−1(I). The number f0(I) is called the multiplic-
ity of F(I).

Multiplicities and Reductions

For an m-primary ideal I in a Noetherian local ring R of dimension d, let HF (I, n) :=
ℓ(R/In) denote the Hilbert–Samuel function of I. It is well known that this function
coincides with a polynomial HP(I, n) of degree d. Write the polynomial as:

HP(I, n) = e0(I)

(

n + d − 1

d

)

− e1(I)

(

n + d − 2

d − 1

)

+ · · · + (−1)ded(I).

The coefficient e0(I), also denoted as e(I), is called the multiplicity of I.
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Now we recall some basic facts about reductions from [16]. An ideal K ⊆ I is
called a reduction of I if there exists a nonnegative integer n such that KIn

= In+1.

If K is minimal with respect to inclusion among reductions of I, then it is called a
minimal reduction of I. The reduction number r(I) of I is the least integer n such that
JIn

= In+1, where J varies over all minimal reductions of I. If R/m is infinite, then
all minimal reductions of I are generated by the same number of elements called the

analytic spread of I. The analytic spread of I, is the Krull dimension of the fiber cone
F(I). It is easy to see that if J is a reduction of I, then e(I) = e( J).

Mixed Multiplicities and Joint Reductions

Mixed multiplicities and joint reductions of ideals are analogues of reductions and
multiplicities of ideals. Let I1, I2, . . . , Ir be m-primary ideals. The Bhattacharya func-
tion of I1, I2, . . . , Ir is the numerical function BF (n1, n2, . . . , nr) : N

r → N, defined

by BF (n1, n2, . . . , nr) = ℓ(R/In1

1 In2

2 · · · Inr

r ). By [28], for all n1, n2, . . . , nr, large, the
Bhattacharya function is given by a polynomial BP(n1, n2, . . . , nr) of total degree d
in n1, n2, . . . , nr. For α = (α1, α2, . . . , αr) ∈ N

r we put |α| = α1 + α2 + · · ·+ αr . We
write the Bhattacharya polynomial in the form

BP(n1, n2, . . . , nr) =

∑

|α|≤d

eα

(

n1 + α1

α1

)(

n2 + α2

α2

)

. . .

(

nr + αr

αr

)

,

where eα are certain integers. Let α = (α1, α2, . . . , αr) ∈ N
r and |α| = d. A multiset

consisting of α1 copies of I1, α2 copies of I2, . . . , αr copies of Ir, will be denoted by
(I[α1]

1 |I[α2]
2 | · · · |I[αr]

r ). In case |α| = d, we write eα = eα(I[α1]
1 |I[α2]

2 | · · · |I[αr]
r ). These

integers are positive and are called mixed multiplicities of the ideals I1, I2, . . . , Ir .
When r = 2, and i + j = d, we adopt the simpler notation e(i, j)(I[i]| J[ j]) = e j(I| J).

D. Rees proved that e0(I| J) = e(I) and ed(I| J) = e( J) [18].
Rees introduced joint reductions for calculating mixed multiplicities [19]. Let

(R, m) be a d-dimensional local ring. Let I1, I2, . . . , Id be m-primary ideals. We say
that a1 ∈ I1, a2 ∈ I2, . . . , ad ∈ Id is a joint reduction of I1, I2, . . . , Id if a1I2I3 · · · Id +

a2I1I3 · · · Id + · · · + adI1I2 · · · Id−1 is a reduction of I1I2 · · · Id. D. Rees showed [19,
Theorem 2.4] that if (a1, a2, . . . , ad) is a joint reduction of the multiset

(I[α1]
1 |I[α2]

2 | · · · |I[αr]
r ),

where |α| = d, then e((a1, a2, . . . , ad)) = eα(I[α1]
1 |I[α2]

2 | · · · |I[αr]
r ).

Rings and Ideals of Minimal and Almost Minimal Multiplicity

Let µ(I) denote the minimum number of elements required to generate an ideal I.
For a Cohen–Macaulay local ring (R, m) of dimension d, e(m) ≥ µ(m) − d + 1. A

Cohen–Macaulay local ring is said to have minimal multiplicity (resp., almost minimal
multiplicity) if e(m) = µ(m) − d + 1 (resp., e(m) = µ(m) − d + 2). J. D. Sally stud-
ied Cohen–Macaulay local rings of minimal and almost minimal multiplicity. She
proved that the associated graded ring G(m) :=

⊕

n≥0 m
n/m

n+1 is Cohen–Macaulay
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when R is Cohen–Macaulay with minimal multiplicity [22]. She conjectured that if
the ring has almost minimal multiplicity, then G(m) has depth at least d − 1 [24].

This conjecture was proved independently by Wang [29] and by M. E. Rossi and G.
Valla [21]. Later on M. E. Rossi generalized the conjecture of J. D. Sally to the case
of m-primary ideals. She proved that if e(I) = ℓ(I/I2) + (1 − d)ℓ(R/I) + 1, then
depth G(I) ≥ d − 1 [20]. It is easy to see that e(I) = ℓ(I/I2) + (1 − d)ℓ(R/I) + 1 if

and only if for any minimal reduction J of I, ℓ(I2/ JI) = 1.

Definition 1.1 An m-primary ideal I of a Cohen–Macaulay local ring satisfying the

condition ℓ(I2/ JI) = 1 for any minimal reduction J is called a Sally ideal.

The notions of minimal multiplicity and almost minimal multiplicity have been

generalized in many directions. It was proved in [6] that for an m-primary ideal I
of a Cohen–Macaulay local ring (R, m), ed−1(m|I) ≥ µ(I) − d + 1. We say that I
has minimal mixed multiplicity if ed−1(m|I) = µ(I) − d + 1 and I has almost minimal
mixed multiplicity if ed−1(m|I) = µ(I)−d+2. The Cohen–Macaulay property of fiber

cones of ideals with minimal and almost minimal mixed multiplicities was studied in
[6, 7]. J. Chuai [3] proved that for an m-primary ideal I in a Cohen–Macaulay local
ring (R, m), e(I) ≥ µ(I)−d +ℓ(R/I). In [9], S. Goto termed an ideal to have minimal
multiplicity if e(I) = µ(I)−d + ℓ(R/I). He studied many properties of the associated

graded ring, the fiber cone and the Rees algebra of ideals with minimal multiplicity.
In [14], fiber cones of ideals having almost minimal multiplicity are studied, i.e.,
ideals with the property e(I) = µ(I) − d + ℓ(R/I) + 1.

Main results

In this paper, we consider the Cohen–Macaulay and Gorenstein properties of fiber
cones of Sally ideals, ideals with minimal and almost minimal (mixed) multiplicity.

We assume, in the rest of this section, that (R, m) is a d-dimensional Cohen–Macaulay
local ring with infinite residue field.

In Section 2, we obtain two formulas for f0(I) in terms of ed−1(m|I), e(I) and
superficial elements for m and I in the sense of Rees.

In Section 3, as a consequence of these formulas we recover one of the main results
of [6] to the effect that for an ideal I of minimal mixed multiplicity, F(I) is Cohen–
Macaulay if and only if r(I) ≤ 1. For an ideal I of almost minimal mixed multiplicity,
we show that either f0(I) = ed−1(m|I) − 1 or f0(I) = ed−1(m|I). In the former case,

F(I) is Cohen–Macaulay if and only if r(I) ≤ 1, and in the latter case, F(I) is Cohen–
Macaulay if and only if r(I) = 2 and ℓ(I2/ JI +mI2) = 1. This result was proved in [7]
under depth assumptions on G(I). We improve it by carefully using the multiplicity
formula for the fiber cone. If I is a Sally ideal with a minimal reduction J, then we

show that F(I) is Cohen–Macaulay if and only if mI2
= m JI if and only if the Hilbert

series of F(I) is

HS (F(I), t) =

1 + (µ(I) − d)t + t2 + · · · + t r

(1 − t)d
.

In Section 4, we study the Gorenstein property of the Cohen–Macaulay fiber cones.
For this purpose we use Macaulay’s theorem about symmetry of the h-vector in the
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Hilbert series of F(I) and certain bilinear forms. It is fairly easy to show that for ideals
of reduction number 1, F(I) is Gorenstein if and only if µ(I) = d + 1. We show that

if r(I) = 2, then F(I) is Gorenstein if and only if

(I2
m + JI : I) ∩ I = mI + J and ℓ(I2/ JI + mI2) = 1.

For Sally ideals of reduction number at least 3, we show that F(I) is Gorenstein if and
only if µ(I) = d + 1.

In Section 5, we characterize the Gorenstein property of fiber cones of ideals of

almost minimal multiplicity when G(I) is Cohen–Macaulay. We show that for such
ideals F(I) is Gorenstein if and only if I ∩ (m J : I) = mI + J and when this is the case,
µ(I) ≤ µ(m) + d.

In Section 6, we illustrate our results with a few examples.

2 Multiplicity Formulas for Fiber Cones

Throughout this section (R, m) will denote a local ring. In this section we derive

two formulas for the multiplicity of the fiber cone of an m-primary ideal I in R in
terms of the mixed multiplicity ed−1(m|I) and the multiplicity e(I). These formulas
are in terms of superficial sequences for a set of ideals in the sense of Rees. We begin

with a discussion of superficial sequences and their relevance to joint reductions and
hence mixed multiplicities. As we need these for m-primary ideals, we restrict our
discussion to only such ideals. We begin by recalling for the reader’s convenience the
following definitions and results from I. Swanson’s thesis [27].

Definition 2.1 ([27, Definition 1.14]) Let (R, m) be a local ring. Let I1, I2, . . . , Ir be
m-primary R-ideals. An element a ∈ I1 is called superficial for the ideals I1, I2, . . . , Ir

if dim(R/(a)) = dim(R) − 1 and for some nonnegative integer c and for all n1 >
c, n2, . . . , nr ≥ 0,

(In1

1 In2

2 · · · Inr

r : a) ∩ Ic
1In2

2 · · · Inr

r = In1−1
1 In2

2 · · · Inr

r .

Definition 2.2 ([27, p. 20]) A sequence a1, a2, . . . , ar of elements in R is called a
superficial sequence for the ideals I1, I2, . . . , Ir if ai ∈ Ii and the image of ai in Ri−1 =

R/(a1, a2, . . . , ai−1) is superficial for the images of the ideals Ii , Ii+1, . . . , Ir in Ri−1

for i = 1, 2, . . . , r.

Theorem 2.3 ([27, Theorem 1.16]) Let (R, m) be of positive dimension d with R/m

infinite. Then superficial elements exist. Moroever, if a = a1, a2, . . . , ad is a superficial
sequence for the m-primary ideals I = I1, I2, . . . , Id, then a is a joint reduction of I.

Inspired by Rees’ construction of joint reductions in his fundamental paper [19]
on joint reductions and mixed multiplicities, we introduce the following:

Definition 2.4 An element a ∈ I1 is called Rees-superficial for the m-primary ideals
I1, I2, . . . , Ir if for all large n1 and all nonnegative integers n2, n3, . . . , nr,

(a) ∩ In1

1 In2

2 · · · Inr

r = (a)In1−1
1 In2

2 · · · Inr

r .
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Definition 2.5 A sequence a1, a2, . . . , ar is called Rees-superficial for the ideals
I1, I2, . . . , Id, if the image of ai in Ri−1 = R/(a1, a2, . . . , ai−1) is Rees-superficial for

the images of Ii , . . . , Ir in Ri−1 for i = 1, . . . , r.

Lemma 2.6 (Rees’ Basic Lemma [19, Lemma 1.2]) Let I1, I2, . . . , Ir be ideals of R
where R/m is infinite. Let P be a finite set of prime ideals of R so that no prime ideal in

P contains the product I1I2 · · · Ir. Then there exists a Rees-superficial element a ∈ I1 for
the ideals I1, I2, . . . , Ir so that a is not in any of the prime ideals in P.

Remark 2.7 It is clear that a nonzerodivisor in I1\I2
1 that is Rees-superficial for a set

of ideals (I1, I2, . . . , Ir) is also superficial. Moreover in a Cohen–Macaulay local ring
with infinite residue field, maximal Rees-superficial sequences that are also regular
sequences exist for a set of m-primary ideals, by Rees’s basic lemma.

For a function f : Z → N, put △ f (n) = f (n) − f (n − 1).

Proposition 2.8 Let (R, m) be a local ring and I an m-primary ideal. Let a be a
nonzerodivisor in R which is Rees-superficial for I and m. Let “−” denote residue classes
in R = R/aR. Then for large n, HF (F(I), n) = △HF (F(I), n).

Proof We have the exact sequence

O −→ Kn −→ In/mIn µa

−−→ In+1/mIn+1 −→ Cn −→ 0,

where µa(x + mIn) = ax + mIn+1, Kn = (mIn+1 : a) ∩ In/mIn and Cn = In+1/(aIn +
mIn+1). Since a is Rees-superficial for m and I, Kn = 0 for all large n. Hence for large
n, △HF (F(I), n + 1) = µ(In+1) − µ(In) = ℓ(Cn). For all large n,

HF (F(Ī), n + 1) = ℓ(In+1 + aR/(mIn+1 + aR))

= ℓ(In+1/(mIn+1 + aR ∩ In+1))

= ℓ(In+1/(mIn+1 + aIn))

= µ(In+1) − µ(In)

= △HF (F(I), n + 1).

Theorem 2.9 Let (R, m) be a Cohen–Macaulay local ring of positive dimension d. Let

I be an m-primary ideal.

(i) Let a1, a2, . . . , ad−1 ∈ I, x ∈ m be a regular sequence in R which is a Rees-super-
ficial sequence for the multiset (I[d−1]|m[1]). Then

f0(I) = ed−1(m|I) − lim
n→∞

ℓ
(

mIn

xIn + (a1, a2, . . . , ad−1)mIn−1

)

.
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(ii) If a1, a2, . . . , ad ∈ I is a regular sequence in R which is a Rees-superficial sequence
for the multiset (I[d−1]|m[1]). Then

f0(I) = e(I) − lim
n→∞

ℓ
( mIn

adIn + (a1, a2, . . . , ad−1)mIn−1

)

.

Proof (i) We induct on d. Let d = 1. We need to prove that

f0(I) = e(m) − lim
n→∞

ℓ
(

mIn

xIn

)

.

For all n ∈ N, ℓ(R/xR) + ℓ(xR/xIn) = ℓ(R/mIn) + ℓ(mIn/xIn). Since x ∈ m is
superficial for m, xR is a minimal reduction of m. Therefore we get µ(In) = e(m) −
ℓ(mIn/xIn). Hence by taking limits we get the desired formula.

Now suppose d = 2. Let (a, x) be a regular sequence which is a Rees-superficial

sequence for I, m. Then (a, x) is a joint reduction of the set (I, m), by Theorem 2.3.
And e1(m|I) = ℓ(R/(a, x)) by [19, Theorem 2.4(ii)]. By the proof of [7, Lemma 4.2],
we have for all n ≥ 1,

△HF (F(I), n) = e1(m|I) − ℓ
(

mIn

xIn + amIn−1

)

+ ℓ
( (mIn−1 : x) ∩ (In : a)

In−1

)

.

Since (a, x) is superficial for (I, m), a is superficial for I and is regular in R, we
have, for large n, In : a = In−1. Since HP(F(I), n) is a degree one polynomial,
△HF (F(I), n) = f0(I) for large n. This establishes the formula for d = 2.

Now suppose d ≥ 3. Put R̄ = R/(a1) and L = (a2, a3, . . . , ad−1). By induction
hypothesis and Proposition 2.8,

f0(I) = f0(Ī)

= ed−2(m̄|Ī) − lim
n→∞

ℓ
(

mIn + a1R

xIn + LmIn−1 + a1R

)

= ed−1(m|I) − lim
n→∞

ℓ
(

mIn + a1R

xIn + LmIn−1 + a1R

)

= ed−1(m|I) − lim
n→∞

ℓ
(

mIn

xIn + LmIn−1 + mIn ∩ a1R

)

= ed−1(m|I) − lim
n→∞

ℓ
(

mIn

xIn + (a1, . . . , ad−1)mIn−1

)

.

In the above equations we have used the fact that if a1 is superficial for m and I, then
ed−2(m̄|Ī) = ed−1(m|I) by [15, p. 118, line 3]. This establishes the formula.

(ii) Replace x by ad in the above argument.

We now obtain a sufficient condition for f0(I) = ed−1(m|I).
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Theorem 2.10 Let (R, m) be a Cohen–Macaulay local ring of dimension d and I an
m-primary ideal. If BF (r, s) = ℓ(R/m

rIs) = BP(r, s) for all r, s ≥ 0, then

HS (F(I), t) =

∑d−1

j=0 (1 − t)d− j−1g( j)

(1 − t)d
,

where g( j) =

∑d− j
i=1 ie(i, j). In particular f0(I) = ed−1(m|I).

Proof For convenience, write e(i, j) = e(i, j). Then

µ(Is) = ℓ(R/mIs) − ℓ(R/Is)

=

∑

i+ j≤d

e(i, j)

(

1 + i

i

)(

s + j

j

)

−
∑

i+ j≤d

e(i, j)

(

i

i

)(

s + j

j

)

=

∑

i+ j≤d

ie(i, j)

(

s + j

j

)

=

d−1
∑

j=0

[

d− j
∑

i=1

ie(i, j)
]

(

s + j

j

)

=

d−1
∑

j=0

g( j)

(

s + j

j

)

.

Hence we have

HS (F(I), t) =

∑

s≥0

µ(Is)t s
=

∑

s≥0

[

d−1
∑

j=0

g( j)

(

s + j

j

)

]

t s

=

d−1
∑

j=0

g( j)
[

∑

s≥0

(

s + j

j

)

t s
]

=

d−1
∑

j=0

g( j)

(1 − t) j+1

=

∑d−1

j=0 (1 − t)d− j−1g( j)

(1 − t)d
.

Now put t = 1 in the numerator of HS (F(I), t) to get f0(I) = ed−1(m|I).

The next result was communicated to us by E. Hyry.

Corollary 2.11 Let (R, m) be a Cohen–Macaulay local ring. Let the multi-Rees alge-
bra R := R[mt1, It2] be Cohen–Macaulay. Then f0(I) = ed−1(m|I). If d = 2, then R
and F(I) are Cohen–Macaulay with minimal multiplicity.
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Proof If R is Cohen–Macaulay, then by [12, proof of Theorem 6.1], ℓ(R/m
rIs) =

BP(r, s) for all r, s ≥ 0. Therefore f0(I) = ed−1(m|I), by Theorem 2.10. When

d = 2 and R is Cohen–Macaulay, then, by [11, Corollary 3.5], R[mt1] and R[It2] are
Cohen–Macaulay and hence r(I) ≤ 1 and r(m) ≤ 1 by [10, Remark 3.10]. Thus R
is Cohen–Macaulay with minimal multiplicity. Since r(I) ≤ 1, by [25, Theorems 1
and 7] F(I) is Cohen–Macaulay and f0(I) = µ(I) − 1. Hence F(I) has minimal

multiplicity.

3 Cohen–Macaulay Fiber Cones

In this section we use the multiplicity formula for fiber cones to detect their Cohen–
Macaulay property. We begin by recovering Corollary 2.5 of [6] in a simpler way.

Proposition 3.1 Let (R, m) be a d-dimensional Cohen–Macaulay local ring and I an
m-primary ideal of minimal mixed multiplicity. Then F(I) is Cohen–Macaulay if and
only if r(I) ≤ 1.

Proof Let J be any minimal reduction of I. Then F(I) is Cohen–Macaulay if and
only if f0(I) = ℓ(F(I)/ JF(I)). Since

F(I)

JF(I)
=

R

m

⊕
I

J + mI
⊕

(

∞
⊕

n=2

In

JIn−1 + mIn

)

,

and ℓ(I/( J + mI)) = µ(I) − d, we have

ℓ(F(I)/ JF(I))) = 1 + µ(I) − d +

∞
∑

n=2

ℓ
( In

mIn + JIn−1

)

.

Thus F(I) is Cohen–Macaulay if and only if for any Rees-superficial sequence
a1, a2, . . . , ad−1, x, where a1, a2, . . . , ad−1 ∈ I, x ∈ m

f0(I) = ed−1(m|I) − lim
n→∞

ℓ
(

mIn

xIn + (a1, a2, . . . , ad−1)mIn−1

)

= µ(I) − d + 1 +

∞
∑

n=2

ℓ
( In

mIn + JIn−1

)

.

By the proof of [6, Proposition 2.4], I has minimal mixed multiplicity if and only if
In

m = xIn + (a1, a2, . . . , ad−1)mIn−1 for all n ≥ 1. Thus F(I) is Cohen–Macaulay if

and only if I2
= JI.

In the next result we improve Corollary 1.4 of [7] by removing the hypothesis of
almost maximal depth for the associated graded ring of I.

Proposition 3.2 Let (R, m) be a Cohen–Macaulay local ring with infinite residue field.
Let I be an m-primary ideal with almost minimal mixed multiplicity. Then
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(i) Either f0(I) = ed−1(m|I) or f0(I) = ed−1(m|I) − 1.
(ii) Let f0(I) = ed−1(m|I). Then F(I) is Cohen–Macaulay if and only if r(I) = 2 and

ℓ(I2/( JI + mI2)) = 1.
(iii) Let f0(I) = ed−1(m|I)− 1. Then F(I) is Cohen–Macaulay if and only if r(I) ≤ 1.

Proof (i) Let a1, a2, . . . , ad−1 ∈ I, x ∈ m be a Rees-superficial sequence for I and
m. Put L = (a1, a2, . . . , ad−1) and α = limn→∞ ℓ(mIn/(xIn + LmIn−1)). Since I
has almost minimal mixed multiplicity, ℓ(mIn/(xIn + LmIn−1)) ≤ 1 for all n by [7,
Lemma 2.2]. Hence α = 0 or 1. This proves (i).

(ii) By the computations in the above result, F(I) is Cohen–Macaulay if and only if

ed−1(m|I) − α = µ(I) − d + 1 +

∞
∑

n=2

ℓ
( In

mIn + JIn−1

)

,

if and only if

1 − α =

∞
∑

n=2

ℓ
( In

mIn + JIn−1

)

.

Let f0(I) = ed−1(m|I). Then α = 0. Thus F(I) is Cohen–Macaulay if and only if

∞
∑

n=2

ℓ(In/(mIn + JIn−1)) = 1,

if and only if r(I) = 2 and ℓ(I2/( JI + mI2)) = 1.

(iii) Let f0(I) = ed−1(m|I) − 1. Hence α = 1. Thus F(I) is Cohen–Macaulay if
and only if

∞
∑

n=2

ℓ(In/mIn + JIn−1) = 0.

This holds if and only if I2
= JI.

In a personal communication, G. Valla raised a question regarding the Cohen–
Macaulay property of fiber cones of Sally ideals. In Example 6.1 we show that F(I)
need not be Cohen–Macaulay, even if G(I) is Cohen–Macaulay. First we characterize

Cohen–Macaulay fiber cones of Sally ideals in dimension one.

Theorem 3.3 Let (R, m) be a 1-dimensional Cohen–Macaulay local ring, I a Sally
ideal and J = (x) a minimal reduction of I, with reduction number r. Then the follow-
ing are equivalent:

(i) F(I) is Cohen–Macaulay;
(ii) HS (F(I), t) = (1 + (µ(I) − 1)t + t2 + t3 + · · · + t r)/(1 − t);

(iii) µ(Ik) = µ(I) + k − 1, for 2 ≤ k ≤ r;
(iv) µ(I2) = µ(I) + 1;
(v) mI2

= m JI.
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Proof (i) ⇒ (ii). Let F(I) be Cohen–Macaulay. Then by [6, Theorem 2.1],

HS (F(I), t) =

1 + (µ(I) − 1)t +
∑r

i=2 ℓ(Ii/( JIi−1 + mIi)t i

(1 − t)
.

Since I is a Sally ideal mIn ⊂ JIn−1 for all n ≥ 2 and ℓ(In/ JIn−1) = 1 for all n =

2, 3, . . . , r. Hence (ii) follows.
(ii) ⇒ (iii). From the formula for the Hilbert series of F(I), we obtain the equa-

tion µ(Ik) = µ(I) + k − 1 for k = 1, 2, . . . , r.
(iii) ⇒ (iv). Put k = 2.

(iv) ⇒ (v). For n ≥ 1 we have following exact sequence.

(1) 0 −→
(mIn+1 : x) ∩ In

mIn
−→

In

mIn

φx

−−→
In+1

mIn+1
−→

In+1

xIn
−→ 0,

and the isomorphism:

(2)
(mIn+1 : x) ∩ In

mIn
∼
=

xIn ∩ mIn+1

xmIn
.

Assume µ(I2) = µ(I) + 1. Then, from the exact sequence (1) and the isomorphism

(2) for n = 1, we get mI2
= xmI.

(v) ⇒ (i). Consider the function Hm(I, n) := ℓ(R/mIn) and write the corre-
sponding polynomial as:

Pm(I, n) =

d
∑

i=0

(−1)igi(I)

(

n + d − i − 1

d

)

.

Then by [13, Theorem 5.3],

g1(I) =

∑

n≥1

ℓ(mIn/xmIn−1) − 1.

Since mI2
= xmI we get

(3) g1(I) = ℓ(mI/xm) − 1.

We know F(I) is Cohen–Macaulay if and only if

g1(I) =

∑

n≥1

ℓ(mIn + xIn−1/xIn−1) − 1

by [13, Theorem 4.3]. Since ℓ(I2/xI) = 1, mIn ⊂ xIn−1 for all n ≥ 2. Therefore,
by (3),

∑

n≥1

ℓ(mIn + xIn−1/xIn−1) − 1 = ℓ(mI + xR/xR) − 1 = ℓ(mI/xm) − 1 = g1(I).

Hence F(I) is Cohen–Macaulay.
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Now we characterize the Cohen–Macaulayness of F(I) in higher dimensions.

Theorem 3.4 Let (R, m) be a Cohen–Macaulay local ring of dimension d ≥ 1, I a
Sally ideal with a minimal reduction J. Then the following are equivalent:

(i) F(I) is Cohen–Macaulay.
(ii) mI2

= m JI.
(iii) The Hilbert series of F(I) is given by

HS (F(I), t) =

1 + (µ(I) − d)t + t2 + · · · + t r

(1 − t)d
.

(iv) f0(I) = µ(I) − d + r.

Proof We apply induction on d. We have proved the theorem for d = 1. Now let
d ≥ 2.

(i) ⇒ (ii). Since I is a Sally ideal, by [20, Corollary 1.7], depth G(I) ≥ d − 1.
Hence we can choose an x ∈ J such that x∗ is regular in G(I) and xo is regular in
F(I). Then F(I/(x)) ∼

= F(I)/(xo) is Cohen–Macaulay. By induction, m̄Ī2
= m̄ J̄Ī.

Therefore mI2
= m JI + (x) ∩ mI2. Since x∗ is regular in G(I) and xo regular in F(I),

(x) ∩ mI2
= xmI by [5, Theorem 1.1]. Therefore mI2

= m JI.
(ii) ⇒ (i). For x ∈ J, such that x∗ is regular in G(I) and xo superficial for F(I), let

“−” (overbar) denote “modulo (x)”. Then mĪ2
= m J̄Ī. By induction, F(I) is Cohen–

Macaulay. By “Sally machine” [13, Lemma 2.7], xo is regular in F(I) and hence F(I)

is Cohen–Macaulay.
(i) ⇒ (iii). Since F(I) is Cohen–Macaulay,

HS (F(I), t) =

HS (F(I)/ JF(I), t)

(1 − t)d
.

Since mI2 ⊂ JI, we have ℓ(In/mIn + JIn−1) = ℓ(In/ JIn−1) = 1 for all n = 2, . . . , r.
Therefore the Hilbert series of F(I) is

HS (F(I), t) =

1 + (µ(I) − d)t + t2 + · · · + t r

(1 − t)d
.

(iii) ⇒ (iv). The assertion follows directly from the fact that if HS (F(I), t) =

h(t)/(1 − t)d, then f0(I) = h(1).
(iv) ⇒ (i). Since f0(I) = µ(I) − d + r, we have

1 +

r
∑

n=1

ℓ
( In

JIn−1 + mIn

)

= 1 + ℓ(I/mI + J) +

r
∑

n=2

ℓ(In/ JIn−1)

= 1 + µ(I) − ℓ(mI + J/mI) + r − 1

= µ(I) − ℓ( J/m J) + r

= µ(I) − d + r

= f0(I).

Therefore, by [6, Theorem 2.1], F(I) is Cohen–Macaulay.
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4 Gorenstein Fiber Cones

Throughout this section and the next we will assume, unless otherwise stated, (R, m)

is a Cohen–Macaulay local ring of dimension d with infinite residue field, I is an
m-primary ideal and F(I) is Cohen–Macaulay.

In this section we study the Gorenstein property of F(I) for several classes of ideals.
We do this by keeping reduction numbers in mind. It is clear that if r(I) = 0, then
F(I) is a polynomial ring. Thus we may begin with the case when r(I) = 1. In this
case F(I) is Cohen–Macaulay [25, Theorem 1].

Proposition 4.1 Assume r(I) = 1. If F(I) is Gorenstein, then µ(I) = d + 1.

Proof The Hilbert series of F(I) is (1 + (µ(I) − d)t)/(1 − t)d by [6, Theorem 2.1].

By a theorem of Macaulay [26, Theorem 4.1], the h-vector of a standard Gorenstein
graded k-algebra, where k is a field, is symmetric. Hence µ(I) − d = 1.

Remark 4.2 The symmetry of the h-vector does not imply that the fiber cone is
Gorenstein even when it is Cohen–Macaulay; see Example 6.2.

In general we have the following:

Proposition 4.3 If µ(I) = d + 1, then F(I) is a hypersurface.

Proof Set I = (u1, . . . , ud+1). Consider the map φ : k[X1, . . . , Xd+1] → F(I) given
by φ(Xi) = ui + mI for i = 1, . . . , d + 1. Clearly φ is surjective and ker(φ) is a height
one ideal of S = k[X1, . . . , Xd+1]. Since S/ ker(φ) ∼= F(I) is Cohen–Macaulay, ker(φ)

is a height one unmixed ideal. Since S is a UFD, I is principal. Therefore F(I) is a
hypersurface ring.

Remark 4.4 One of the surprising results in our investigations has been the fol-
lowing. If F(I) is Gorenstein, then µ(I) is forced. When r(I) = 1, this is done in
Proposition 4.1. When r(I) = 2 and I has almost minimal multiplicity, we get an
upper bound on µ(I); see Corollary 5.8.

Let J = (x1, . . . , xd) be a minimal reduction of I. Since F(I) is Cohen–Macaulay,

it easily follows that the reduction number of I with respect to J is the degree of the
h-polynomial of F(I). We will use this fact implicitly in all subsequent discussions.

Proposition 4.5 Set r = r(I), the reduction number of I and let J be a minimal reduc-

tion of I. Then

socle F(I)/ JF(I) ∼=
r−1
⊕

n=1

(In+1
m + JIn : I) ∩ In

(In
m + JIn−1)

⊕
Ir

mIr + JIr−1
.
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Proof Let J = (x1, . . . , xd) be a minimal reduction of I. Since x◦1 , . . . , x◦d is a regular
sequence for F(I), we have

socle F(I)/ JF(I) ∼= socle F(I)/(x◦1 , . . . , x◦d )F(I).

Since S := F(I)/ JF(I) is a standard graded k-algebra with k = S0, a field, we have
socle S = (0 :S S+) = (0 :S S1), where S+ =

⊕

n≥1 Sn. Notice that S1 = I/(mI + J).
An easy computation yields the result.

If r(I) = 2, then we have the following ideal-theoretic condition to check the
Gorenstein property of F(I).

Corollary 4.6 Let r(I) = 2 and let J be a minimal reduction of I. Then F(I) is
Gorenstein if and only if

(I2
m + JI : I) ∩ I = mI + J and ℓ

( I2

mI2 + JI

)

= 1.

By using Proposition 3.2, we get that the fiber cone F(I) of an ideal I, with r(I) = 2
having almost minimal mixed multiplicity and f0(I) = ed−1(m|I), is Gorenstein if
and only if (I2

m + JI : I) ∩ I = mI + J. If r(I) ≥ 3 and F(I) is Gorenstein, then the

symmetry of h-vector yields the following.

Proposition 4.7 Let r = r(I) ≥ 3 and J be a minimal reduction of I. If F(I) is
Gorenstein, then

µ(I) = d + ℓ
( Ir−1

mIr−1 + JIr−2

)

.

Proof Note that S := F(I)/ JF(I) is a standard graded Gorenstein ring of dimension
zero and

Sr−1 =

Ir−1

mIr−1 + JIr−2
and S1 =

I

mI + J
.

If F(I) is Gorenstein, then the h-vector of F(I) is symmetric. Since r ≥ 3 we have

ℓ(S1) = ℓ(Sr−1). Since ℓ(S1) = µ(I) − d we get the result.

As an easy consequence we have:

Corollary 4.8 Let I be a Sally ideal with r(I) ≥ 3. If F(I) is Gorenstein, then µ(I) =

d + 1.

Proof Let J be a reduction of I. Then I2 6= JI. We have ℓ(In+1/ JIn) ≤ 1 for all
n ≥ 1. Notice that mIn+1 ⊆ JIn for all n ≥ 1. Therefore we have

Ir−1

mIr−1 + JIr−2
=

Ir−1

JIr−2
.

Also ℓ(Ir−1/ JIr−2) = 1. The result follows from Proposition 4.7.
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The result above does not hold if r(I) ≤ 2. Consider the following example discussed
in [23]. Let e > 3 be a positive integer. Set R = k[[te, te+1, . . . , t2e−2]], where k is a

field. Since the numerical semigroup generated by {e, e + 1, . . . , 2e−2} is symmetric
with conductor 2e, R is Gorenstein. Let m denote the maximal ideal of R. Then
µ(m) = e(R) + d − 2 = e − 1 > d + 1 = 2, where e(R) denotes the multiplicity of R.
By the proof of [23, Theorem 3.4], m

3
= Jm

2 for any minimal reduction J of m, and

it follows from Theorem 3.4 that G(m) = F(m) is Gorenstein.

5 Gorenstein Fiber Cones of Ideals of Almost Minimal Multiplicity

In this section we consider the Gorenstein property of fiber cones of ideals of almost
minimal multiplicity. Recall that an m-primary ideal I in a Cohen–Macaulay local

ring (R, m) is said to have minimal multiplicity (resp., almost minimal multiplicity)
if for any minimal reduction J of I, mI = m J (resp., ℓ(Im/ Jm) = 1). Such ideals
have been studied in [8, 9, 14].

In addition to the hypotheses stated in the beginning of the previous section we
further assume G(I) is Cohen–Macaulay. Since I3 ⊆ J, we get by the Valabrega–Valla
criterion that I3

= JI2. So r(I) ≤ 2. Since we have already considered the case
r(I) = 1, we assume r(I) = 2.

Let J be a minimal reduction of I. Set J = (x1, . . . , xd). If G(I) is Cohen–
Macaulay, then x∗1 , . . . , x∗d is a G(I)-regular sequence. Since F(I) is Cohen–Macaulay,

we also have that x◦1 , . . . , x◦d is an F(I)-regular sequence.

Notation 5.1 Set (B, n) = (A/ J, m/ J), K = I/ J. We have

F(I)

(x◦1 , . . . , x◦d )F(I)
∼
= F(K).

It follows that F(I) is Gorenstein if and only if F(K) is Gorenstein.

Notice that

(i) nK ∼
= k.

(ii) n
2K = 0 and so K3

= 0 and nK2
= 0.

(iii) 0 6= K2 ⊆ nK. So K2
= nK.

Remark 5.2 If I has almost minimal multiplicity with r(I) ≥ 2 and I2 ∩ J = JI,
then I is a Sally ideal. To see this, note that K2 ∼

= I2/ J ∩ I2
= I2/ JI and from 5.1(i)

and (iii), it follows that ℓ(I2/ JI) = 1. In particular, if G(I) is Cohen–Macaulay, then
I is a Sally ideal.

Remark 5.3 Since r(I) = 2, symmetry of the h-vector of Hilbert series of F(I) does

not help us in estimating µ(I). To find conditions on µ(I), we need the following
different criterion.

Proposition 5.4 Assume that I has almost minimal multiplicity. Set W = I∩(m J : I).
Then F(I) is Gorenstein if and only if W = mI + J.
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Proof Since r(I) = 2 we can use Corollary 4.6. We keep the notation as in 5.1. Note
that K2/nK2

= (I2 + J)/(mI2 + J). Then we have

I2 + J

mI2 + J
∼
=

I2

(mI2 + J) ∩ I2
=

I2

mI2 + JI
.

Thus ℓ(I2/(mI2 + JI)) = 1. Set E = (I2
m + JI : I) ∩ I. Using Corollary 4.6 we have

that F(I) is Gorenstein if and only if E = mI + J.

We now prove that E = W . Since ℓ(mI/m J) = 1, we have that mI2 ⊆ Jm. It
follows that W ⊇ E. Conversely, let t ∈ W . Then tI ∈ m J. In particular tI ⊆
J ∩ I2

= JI. So t ∈ E. Therefore E = W .

Remark 5.5 The hypothesis G(I) Cohen–Macaulay is essential in the Proposition

above. See Example 6.4.

Definition 5.6 We define a bilinear form,

φ :
K

nK
×

n

n
2K : K

−→
nK

n
2K

(a + nK, b + n
2K : K) 7→ ab + n

2K.

Notice that, with our hypothesis, n
2K = 0. It is straightforward to check that φ is

well defined. It is also clear that φ is non-degenerate with respect to n/(n
2K : K).

Lemma 5.7 Assume that I has almost minimal multiplicity. If W = mI + J, then φ
is non-degenerate with respect to K/nK.

Proof Suppose there exists a ∈ I (so a ∈ K) such that

φ
(

a + nK, b + n
2K : K

)

= ab + n
2K = 0 for each b + n

2 ∈ n/n
2K : K.

Thus an ⊆ n
2K = {0}. So am ⊆ J. In particular aI ⊆ J. So aI ⊆ J ∩ I2 ⊆ Jm. Thus

a ∈ (m J : I) ∩ I. Thus a ∈ W = mI + J. So a = 0. Therefore, φ is non-degenerate
with respect to K/nK.

Corollary 5.8 Assume that I has almost minimal multiplicity and let J be a minimal
reduction of I. If F(I) is Gorenstein, then ℓ( J : I/ J) = ℓ(R/I) and µ(I) ≤ µ(m) + d.

Proof Let x1, . . . , xd be a superficial sequence in R with respect to I. Set J =

(x1, . . . , xd) and (B, n) = (R/ J, m/ J) and K = I/ J. Since F(I) is Gorenstein, by

Proposition 5.4, W = mI + J. Therefore, as in the Lemma 5.7, φ is non-degenerate
both on the left and the right. It follows that ℓ(K/nK) = ℓ(n/(0 : K)) (notice that
we used n

2K = 0). This immediately yields

µ(I) − d = µ(K) = ℓ(n/(0 : K)) ≤ µ(n) ≤ µ(m).
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Notice that 0 : K ∼
= ( J : I)/ J. We have

µ(I) − d = µ(K) = ℓ(n/(0 : K)) = ℓ(m/( J : I)),

and
ℓ(m/( J : I)) = ℓ(m/ J) − ℓ( J : I/ J) = e(I) − 1 − ℓ( J : I/ J).

So µ(I) = d + e(I) − 1 − ℓ( J : I/ J). Since I has almost minimal mixed multiplicity
we have µ(I) = d + e(I) − 1 − ℓ(R/I). So we get ℓ( J : I/ J) = ℓ(R/I).

Remark 5.9 The corollary above has an interesting connection with the Koszul ho-
mologies Hi(I, R) of I. Let µ(I) = n and let J = (x1, . . . , xd) be a minimal reduction
of I. Since R is Cohen–Macaulay and I is m-primary we have (see [2, 1.6.16, 1.6.17])

(4)

Hi(I, R) = 0 for i > n − d.

Hn−d(I, R) ∼=
J : I

J
, H0(I, R) =

R

I
.

Thus (with the hypotheses as in Corollary 5.8), we get that the zeroth Koszul homol-
ogy and the last non-vanishing Koszul homology of I have the same length. Note that

this property is true if R is Gorenstein and I is any m-primary ideal. We have not been
able to find an example where R is not Gorenstein, G(I) is Cohen–Macaulay and F(I)
is Gorenstein and (4) is satisfied. However, we do not believe that if for an m-primary
ideal I in a Cohen–Macaulay local ring R such that G(I) is Cohen–Macaulay and F(I)

is Gorenstein, then R is Gorenstein.

6 Examples

We end this article by presenting a few examples to illustrate our results. Let k denote
a field. The computations have been performed in CoCoA [4].

Example 6.1 Let A = k[[t6, t11, t15, t31]], I = (t6, t11, t31) and J = (t6). Then it
can easily be verified that ℓ(I2/ JI) = 1 and I3

= JI2. Since I2 ∩ J = JI, G(I) is

Cohen–Macaulay. It can also be seen that t37 ∈ mI2, but t37 /∈ m JI. Therefore F(I)
is not Cohen–Macaulay. This example shows that the length condition ℓ(I2/ JI) = 1
by itself need not force the fiber cone to be Cohen–Macaulay, even if G(I) is Cohen–
Macaulay.

Example 6.2 Here we give an example of an ideal I such that F(I) and G(I) are

Cohen–Macaulay, the numerator of the Hilbert series is symmetric, but F(I) is not
Gorenstein. Consider A = k[[t7, t15, t17, t33]], I = (t7, t17, t33) and J = (t7). Then
ℓ(I2/ JI) = 1, I3

= JI2, I2 ∩ J = JI and mI2
= m JI. Therefore, in this case G(I) and

F(I) are Cohen–Macaulay. Hence, the Hilbert series of F(I) is

HS (F(I), t) =

1 + (µ(I) − d)t + t2

(1 − t)
=

1 + 2t + t2

(1 − t)
.

It can also be seen that t33 ∈ (mI2 + JI : I) ∩ I, but t33 /∈ J + mI. Therefore, the
numerator of the Hilbert series is symmetric, but F(I) is not Gorenstein.
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Example 6.3 Now we give an example of an ideal with a Gorenstein fiber cone
which is not a hypersurface. Let A = k[[t4, t5, t6, t7]], I = (t4, t5, y6) and J = (t4).

Then ℓ(I2/ JI) = 1, I3
= JI2 and mI = m J. Therefore, F(I) is Cohen–Macaulay.

Since t11 ∈ I2 ∩ J and t11 /∈ JI, G(I) is not Cohen–Macaulay. It can also be easily
checked that (mI2 + JI : I) ∩ I = J + mI. Hence F(I) is Gorenstein.

Example 6.4 Let A = k[[x, y]], I = (x3, x2 y, y3) and J = (x3, y3). Then ℓ(I2/ JI) =

1, I3
= JI, ℓ(mI/m J) = 1 and mI2

= m JI. Since µ(I) = d +1, F(I) is a hypersurface.
It can easily be seen that x4 y2 ∈ I2 ∩ J, but x4 y2 /∈ JI. Hence, G(I) is not Cohen–
Macaulay. It is easily checked that (m J : I) ∩ I 6= J + mI, even if F(I) is Gorenstein.

This shows that the assumption on the Cohen–Macaulayness of G(I) in Theorem 5.4
is necessary.

Example 6.5 Let A = k[[x, y, z]], I = (x3, y3, z3, xy, yz, zx) and J = (x3 + yz, y3 +
z3 + xz, xz + xy). It is been shown in [6] that I has minimal mixed multiplicity. It
can be seen that I2

= JI. Therefore both G(I) and F(I) are Cohen–Macaulay. It
can also be seen that ℓ(mI/m J) = 1. Since z3 ∈ m J : I ∩ I and z3 /∈ mI + J,

F(I) is not Gorenstein by Proposition 5.4. The Hilbert series of the fiber cone is
HS (F(I), t) = 1 + 3t/(1− t)3, which also shows that the fiber cone is not Gorenstein.
But, we have the equalities, ℓ( J : I/ J) = ℓ(A/I) = 7 and µ(I) = 6 = µ(m) + d. This
shows that the converse of Corollary 5.8 is not true.
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