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Abstract

In this paper, we study Pontryagin's maximum principle for some optimal control problems
governed by a non-well-posed parabolic differential equation. A new penalty functional
is applied to derive Pontryagin's maximum principle and an application for this system is
given.

1. Introduction

In this paper, we shall study Pontryagin's maximum principle for optimal control of a
non-well-posed parabolic differential equation of the form

-^- + Ay+f(x,t,y) = u in Q = fi x (0, T),
at
y = 0 on S = dQ x (0, T) y(0) = y0,

with the state constraint F(y) C S, where £1 is a bounded open subset with smooth
boundary dQ,f is a continuous function, F : L2(Q) -> X and X is a Banach space.
The cost functional is given by

Jo

Solving the control problem for infinite-dimensional systems and observations has
been a big issue in the area of mathematical systems theory for more than thirty
years. In the memorial work of Lions [5], linear optimal control theory for distributed
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parameter systems was developed to a considerable extent by using fundamental results
on the existence and regularity of solutions to linear partial differential equations.
Barbu [1, 2] contributed greatly to optimal control theory for nonlinear systems.
The theory of nonlinear accretive operators and of nonlinear differential equations of
accretive type has occupied an important place among functional methods in the theory
of nonlinear partial differential equations since its inception in the 1960s. Its areas
of application include existence theory for nonlinear elliptic and parabolic boundary
value problems and problems with a free boundary.

For another approach to the optimal control problem using the maximal principle for
optimal control for some nonlinear equations, we refer to Li and Yong [4] for example.
Casas et al. [3] studied Pontryagin's maximum principle for some parabolic equation
with gradient state constraints. Raymond and Zidani [7] considered time-optimal
control problems governed by semilinear parabolic equations with pointwise state
constraints and unbounded controls and derived a Pontryagin's principle for boundary
controls. In particular, in recent years, there has been growing interest in Pontryagin's
principles for control problems governed by non-well-posed differential equations.
Some systems may have no global solution (global in time), or have more than one
solution for each control. The optimal control problems governed by such systems
are called non-well-posed optimal control problems. Wang [8, 10] dealt with optimal
control problems for a non-well-posed elliptic differential equation. Moreover, Wang
[9] obtained Pontryagin's maximum principle for parabolic differential equations with
two-point boundary state constraints.

The purpose of this paper is to derive Pontryagin's maximum principle for optimal
control of a non-well-posed parabolic differential equation involving state control. In
particular, this paper deals with the cost functional which may be non-smooth and a
convex set of controls while Wang [9] dealt with a non-convex control set. To derive
Pontryagin's maximal principle, we shall introduce a new penalty functional which
can transform the original optimal control problem into an optimisation problem with
a parameter and use the method in Barbu [1, 2] to obtain the necessary conditions for
the optimal solution of the optimisation problem.

The paper is organised as follows. In Section 2, we present the preliminaries and
hypotheses of the paper. In Section 3, we derive Pontryagin's maximum principle
for optimal control of a non-well-posed parabolic differential equation. Finally, in
Section 4, we give an application.

2. Preliminaries

Throughout this paper, we denote by Si c R", n > 3, a bounded open subset with
smooth boundary 9£2. Let Q = fix(0, T) for some fixed T > OandE = 3S2x(O, T).
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[3] Pontryagin's maximum principle for some optimal control problems 173

We denote by ( , ) n the inner product in L2(S2) and by ( , ) Q the inner product in L2{ Q).

Let Y = / / 2 I ( t t ) D L2(0, T : Ho
l{Q)) where

i,j = I , . . . , n

and

{ dw
' dxt

w = 0 on 3fiL

Let (AT, d) be a separable metric space and define U = [u : Q -> ^ is measurable)
and <i(«, v) = r({(x, r) e Q : M(JC, r) ^ v(x, t)}), where r denotes the Lebesgue
measure in R". Then ({/, d) is a complete metric space.

The problem (P) studied in this paper is as follows:

determine inf J(y, u) = inf / [g(t, y(t)) + h(u(t))]dt (P)
Jo

such that

^ ^ )) = u(x,t) in Q,
at

y(x,t)=0 on E, y(x,O) = yo,

with the state constraint F(y) C 5.
We assume the following hypotheses.

{Hi) Let A be the second-order elliptic differential operator

where a,,7 6 C1 (S2), a,-j {x) = ajj{x) in Q for all i, j = 1 , . . . , n and for some CQ > 0,

' .7=1

for all x e Q. and (5 , 6n) in /?".
(#2) g '• [0, T] x L2{Q) -*• R+ is measurable in t and for every r > 0 there exists

Lr > 0 independent of r such that g{t, 0) e L°°{0, T) and

foral l /€[0, 7], ||y||« + ||z||n < r.
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(//3) The functional h : U -*• R is convex and lower semicontinuous (l.s.c).
Moreover, there exist c\ > 0 and c2 £ R such that h(u) > ^ ||«||2U + c2 for all u e U.
(//4) / : £2 x [0, T] x 7? x K -> fl is continuous and/^,' : fi x [0, T] x /? x K ->• /?

is continuous, where/ ' denotes the derivative of/ to the third variable. Moreover,

\f(x,t,y)\<Al[al(x,t) + \yn (2.1)

for all (x, t) e Q, y e R and u e K, where A, > 0, ax e L2(g), a^(x, t) > 0 a.e.
in 6, 1 < n < n/(n - 2). Also

\f'y(x, t, y)\ < A 2 [a 2 (^ , 0 + \y\r'-1] (2.2)

for all (x,t) € Q, y e R and u e K, where A2 > 0,a2 € Ln(Q), a2(x, t) > 0 a.e.
in Q.
(H5) Let X be a Banach space with the dual X* strictly convex. Let S C X be

a closed convex subset with finite codimensionality. Then F : L2(Q) —> X is of
class C1.

Let (>*, M*) be optimal for problem (P). In order to get the maximum principle for
(y*, «*), we need the following additional assumption.

(H6) F'(y*)Dr — 5 has finite codimensionality in X for some r > 0, where Dr =
M Y : \\z\\r < r}.

3. Pontryagin's maximum principle for (P)

In order to introduce the approximating control process, we give approximations
gc of g and he of h as follows. The approximation ge : [0, T] x L2(£2) - • R is
defined by

=
JR"R"

where pw is a mollifier in RN,N = [e"1],/^ : L2(fi) ->• Xw is the projection L2(S2)
on XN which is the finite-dimensional space generated by {«,-}"=1, where {e,}~, is
an orthonormal basis in L2(Q). Here AN : R —> X^ is the operator defined by
A/v(T) — IZili v'eh f = (T, r 2 , . . . , rw). The approximation /i£ : L2(fi) -*• R is
defined by

h£(u) = inf{||« - w||^(0)/(2«) + A(«) : u €

Now we introduce the following approximation problem (Pe):

determine mf Je(y,u) over all (y, u) € Y x L2(Q), (Pe)
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where
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JAy,u)=[ ge

Jo
(y)dt+

2?

1
— / \y-yTdxdt + —[e + ds(F(y))]

2E

dy
-f+Ay+f(x,t,y)
at

(3.1)

Here r = n/(n - 2). Note that by Sobolev's imbedding theorem, Y c L2f(Sl). Thus
for each e > 0, Je is well defined on Y x L2(Q).

LEMMA 3.1. Problem (Pe) has at least one solution.

PROOF. Let d = mf^^^y^^iQ) ^(y. ")• By the hypotheses (H2) and (//3) it is
obvious that d > —oo. Let (ym, um) e Y x L2(Q) be such that

d< J£(ym,um) < l/m + d. (3.2)

By virtue of (3.1), {(ym, um)} is bounded in L2f(Q) x L2(Q) and {(dy/dt) + Ay +
f(x,t, y)) is bounded in L2(Q). By (#4), {/ (x, t, y)) is bounded in L2(Q). Thus
{ym} is bounded in Y. Therefore we can extract a subsequence, still denoted by
[ym, um}, such that

um -> ii weakly in L2(Q) as m -^ oo,

ym -*• y weakly in Y as m —*• oo,

ym{x) -*• y(x) a.e. in Q as m -> oo.

On the other hand, since/ is continuous, we have that

/ (x, t, ym(x)) -+ f (x, t, y(x)) a.e. in Q as m -+ oo.

Since [f {x,t, ym)} is bounded in L2( Q), by (3.4), we get that

f(x,t, ym) -*• f{x,t,y) weakly in L2(Q) as m ^ oo.

Hence

?lr + Aym+f(.x,t,ym)-> Q + Ay+f(x,t,y) weakly in L2(Q).
at at

(3.3)

(3.4)

By (3.5), it follows that

liminf
"LHQ)

-£ + Ay+f(x,t,y)\

(3.5)

(3.6)

https://doi.org/10.1017/S1446181100013778 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013778


176 Mi Jin Lee and Jong Yeoul Park [6]

By (3.3) and by Sobolev's imbedding theorem,

ym -*• y strongly in L2(Q) as m -> oo. (3.7)

By (3.7) and by hypothesis (H6), we have that

^-[s + ds(F(ym))]2 -* ^-[e + ds(F(y))]2 as m -* oo. (3.8)
2e 2e

On the other hand, by (3.3) and by the hypotheses (Hi) and (#3), we deduce that

liminf ( f (ge(yn) + he(um))dt+\ f\um-u*)2dxdt+^ t\ym - y*\Tr dxdt\
"->°° [Jo 2JQ 2r J.Q )

ge(y) + K{u))dt+\ f(u-u*)2dxdt+^ f(y-y*)vdxdt. (3.9)

Combining (3.2), (3.6), (3.8) and (3.9), we infer that Je(y, u) = d. Thus (y, u) is
a solution of problem (P£). This completes the proof.

LEMMA 3.2. Let (ye, ue) be optimal for problem (Pc). Then, on a subsequence
ofe, denoted in the same way, ye —> y* strongly in Y and ue —> u* strongly in L2(Q).

PROOF. It is clear that

J.be, ut) < JE(y\ «*). (3.10)

By (3.10) and by a standard argument in [2] (see Theorem 2.2, Proposition 2.15 of
Chapter 2), we get that

limsup/,(y., «,) < g(y*) + h(u*) = J(y*, «•). (3.11)
«->-0

By virtue of (3.1), (3.11) and hypotheses (H2) and (H3), [ys} is bounded in L2~r(Q),
[ue] is bounded in L2(Q) and

f [jf
for some positive constant C independent ofe.

By the subsequence argument as in the proof of Lemma 3.1, we may assume that

ye -* y weakly in Y and strongly in L2(Q),

ue-+u weakly in L2(Q) (3.13)
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and

?p- + Aye+f(x,t,ye)-+ ^- + Ay+f(x,t,y) weakly in L2(Q) (3.14)
at at

for some y € Y and it e L2(Q).
It follows from (3.12) and (3.14) that

^ x,t,y) = 0 i n G . ( 3 1 5 )

y = 0 on E.

By (3.1) and (3.11), we also have that [e + ds(F(ye))]
2/2e < C. This implies

that ds(F(ye)) - • 0 as e - • 0. By (3.13) and by hypothesis (H6), we have that
F(ye) -> F(y). Hence

F(y) e 5. (3.16)

Thus it follows from (3.15) and (3.16) that

J(y*,u*)<J(y,u)- (3-17)

Since h is weakly lower semicontinuous and g is continuous, we have that

liminf[g'(yt) + ht(ut)] > g(y) + h(u). (3.18)
e-*0

By (3.1), (3.17) and (3.18), we obtain that

liminf y£(y£) ue) > J(y*, u*). (3.19)

By (3.1), (3.11), (3.13) and (3.19), we infer that

ye ->• y* strongly in L2r(Q) weakly in Y as e -> 0 (3.20)

and

ue -+ u* strongly in L2(Q) as e -> 0. (3.21)

It is clear that

\\f(x,t,ye)-f(x,t,y*)\\LHQ)

dx dt. (3.22)< [ \Ve- y*\ f / > . r, y* + 5(y£ - y*) ds
Jo Jo
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By (H4) and by Sobolev's imbedding theorem

f f;(x,t,y* + s(ye-y*)
Jo

(3.23)

where C > 0 is independent of e. Thus from (3.20), (3.23) and by applying Sobolev's
imbedding theorem and Holder's inequality to (3.22), we obtain that

f(x,t, ye) -*f(x,t,y*) strongly in L2(Q) as e -»• 0. (3.24)

By (3.12), we have that

e ~ V*)
dt

A(ye- y*) + [f (x, t, yt) -f(x,t, y*)] + ue - u* -> 0

strongly in L2(Q) as £ -> 0, which together with (3.21) and (3.24) yields that ye ->• y*
strongly in Y as £ -> 0. This completes the proof.

THEOREM 3.3. Let (>>*, w*) be optimal for problem (P). Suppose that (//,)-(//6)
hold. Then there exist p e L2(Q) n L2n'n+2(0, T : W0

12n/n+2(f2)) with (Ao, f0) ^ 0
and a e dg{y*) such that

j;~AP ~fy(x' '< y*)P ~ IFWYSo = ^o<* in Q, (3.25)

p 6 A03/I(M*), (3.26)

Go, ^ - F(y*))x.,x < 0 V ^ 6 5. (3.27)

PROOF. Let (z, v) e Y x L2(Q) be arbitrary but fixed. Set yp = ye + pz,
uP — ue + pv, p > 0. Then

JAyp
e, K) - Je(yc "«) ^ 0 f o r a l l p > 0 . (3.28)

By the hypotheses (#2) and (#3), we obtain that

Tr ee(y") - se(y,) fT

j^ gKy'} 8Ky'}dt^> J (Vge(ye),z)dt asp-^0,

f r W i W , J r
M , ) , asp_0.

Jo P Jo

Here V^£ and Vhe are the Frechet derivatives of ge and /i£, respectively.
It is easy to check the following:

— l[(up-u*)2-(uE-u*)2]dxdt^ f(uc-u*)vdxdt as p -* 0
2p Je ye

(3.29)

(3.30)
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and

[y?-y*)2r-(ye-y*)2r]dxdt^- (y£-y*)2?-lzdxdt asp-»O. (3.31)
2rp JQ JQ

By (2.1) and (2.2), one can easily show that as p —> 0
r i

1

" [ f r + A y ' +f(x~ '•n) ~"']

Using the hypothesis (Hs), we obtain that as p —> 0

[s + ds(F(y?))]2 -[e + ds(F(ye))]
2 [s + ds(F(ye))]

[0 if F(ye) € 5
and

fl if F ( y , ) * S ,

Let

and

(3.32)

(3.33)

where

Then by the definition of Je and (3.29H3-34), it follows from (3.28) (as p -> 0) that

Q

£ / (ue — u*)vdxdt + ke I {yt—y*)2r~xzdxdt
JQ JQIQ JQ

' (x, t,ye) — ue) ( — +Az+f'(x, t, ye)z — v \dxdt
J \°t /

+ I F'{ye)%zdxdt>0 (3.35)
JQ

https://doi.org/10.1017/S1446181100013778 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013778


180 Mi Jin Lee and Jong Yeoul Park [ 10]

for all (z, v) € Y x L2(Q).
hetpe = fi£[dye/dt + Aye+f(x, t,ye)-ue]. It is clear that pe e L2(Q). Letting

z = 0 in (3.35), we obtain that for all v e L2( Q)

*£ / Vhe(uc)vdxdt+ I (uc- u*)vdxdt\ - / pevdxdt > 0,

which implies that

Pe = K[Vhe(ue) + (ue-u*)]eL2(Q) a.e.in(2. (3.36)

Letting v = 0 in (3.35), we obtain that

O = kt\f Vg°(yE)z dxdt + f(y,- y*)Tr-'z dxdt]
UQ JQ J

+ j F'(yt)%zdxdt + J pJjj+Az+/;<?, t,yt)z} dxdt (3.37)

for all z e Y. By (//4), we obtain that f^x, t, ye)pe € L^^+^iQ) and
(ye~y*)2f~l € L^^+^iQ). On the other hand, it is clear that A£V^£(y£) e L2(0)and
F'iyeYHe e L 2 ( 0 . Thus, by (3.37), we infer that p e L2n/(n+2)(0, T; W^n2\
and satisfies in Q

~^f +f>(x'f> y e ) P e + ^ ^ ^ + x ° ( y ' ~ yt)2r~'+ F'(y^ = °-
Note that conditions (3.36) and (3.38) can be regarded as necessary conditions for

(yE, ue) to be optimal for problems (Pe).
Next we are going to pass to the limit in (3.36) and (3.38) and derive necessary

conditions for (>>', u*).
First we deal with (3.36). It is obvious from (3.34) that 0 < ke < 1. Thus we may

assume that

K -> *o. He -> Ho weakly star in X* as e -> 0. (3.39)

By Lemma 3.2, ue -> u* strongly in L2{Q). Then using a standard argument in [2,
Chapter 3], we yield that there exists fi e dh(u*), such that

V/i£(«£) -* 0 weakly in L( Q) as £ - • 0. (3.40)

Now it follows from Lemma 3.2, (3.36), (3.39) and (3.40) that {pe} is bounded in
L2(Q). So we may assume that there exists a function p e L2(Q), such that

Pe-*- P weakly in L2(Q) as £ -> 0. (3.41)

https://doi.org/10.1017/S1446181100013778 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013778


[11] Pontryagin's maximum principle for some optimal control problems 181

By (3.39M3-41), we may pass to the limit for £ -> 0 in (3.36) and obtain that
p e kodh(u*). This gives (3.26).

Now we consider (3.38). By (2.2), (3.41), Lemma 3.2 and Sobolev's imbedding
theorem, we have that, for some constant C independent of e,

\\f'y{x,t,yE)pe\\L^ma<C. (3.42)

By Lemma 3.2 and (3.39) we infer that there exists a e dg(y*), such that, on a
subsequence of e, denoted in the same way,

KVge(ye) -> A.oa weakly in L2(Q) as £-> 0. (3.43)

By Lemma 3.2 and Sobolev's imbedding theorem, we infer that

K(ye ~ y*)*'1 ->• 0 strongly in L2n/(ll+2)(j2). (3.44)

On the other hand, by (3.30), Lemma 3.2 and by (//5), we obtain that

f(yt)% -> FV)*fo weakly in L2(Q) as e -* 0. (3.45)

Thus by (3.38) and (3.42H3.45), there exists a function

, 7":

such that, on a subsequence of s, denoted in the same way,

p,-*p weakly in L2^"4* (0, T : W^"/("+2)(Q)) as e - • 0 (3.46)

and

Pe(x) ~* p(x) a.e. in Q as £ —*• 0. (3.47)

By Lemma 3.2 and (3.47), we can easily imply that

/ ;(*, *, ye(x))ps(x) -+ f'y{x, t, y\x))p{x) a.e. in Q. (3.48)

It follows from (3.42) and (3.48) that

/ , ' (*. *. y,)p. - • / > , *, y*)P weakly in L2n/(n+2)(Q) as e -»> 0. (3.49)

Now by (3.43H3.46) and (3.49), we may pass to the limit in (3.38) and obtain (3.25).
On the other hand since £e € dds(F(ye)), we have that

&,*-F(y.))x.,x<0 for allies.
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By Lemma 3.2 and by (H5), we yield that F(ye) -> F(y*) strongly in X. Thus for all
rjs e S

fo,1r-F(y*))x.iX<fa,F(y,)-F(y*))x.j^0 as e -* 0. (3.50)

By taking the limit for e -»• 0 in (3.50), we get (3.27).
It remains to show that (Ao, £o) i=- 0. First we note that by (3.34),

1 < A* + Ilkllx-< 2 fora l l£>0. (3.51)

Now we suppose k0 = 0. It follows from (3.51) that there exist constants 8 > 0
and £i > 0 such that

Ilk IIx- > S > 0 for all e < e,. (3.52)

Using (3.35), (3.36) and (3.50), we obtain that

\ji + Az+fy(x''' yJ* ~ v] dxdt - ~^(Zl v) (3>53)

for all (z, v) € L2n/ (n+2)(0, T : W^"/(B+2)((2)) x L2(C), where

( « , - «*)w dxdt+ f (yc - y*)2?-'z dx dt \
Q JQ J
, [F\ye) - F'(y*)]z + F(yt) - F(y%,x . (3.54)

For any z 6 Dr and every e > 0, by taking u£(z) = 3z/3/ + Az + f'(x, t, ye)z in
(3.53), we deduce that

(fc, ^"(y*)z - ^ + ^(y*)^.^ > -T)t(z, v£(z)) (3.55)

for all z e Dr and e > 0. By (//4) and by Lemma 3.2, there exists a positive constant,
denoted by £j > 0 again, such that \\fy(x, t, ;y£)||z."(0 < C for all e < e\, where C is a
constant independent of e. Then by Holder's inequality and by Sobolev's imbedding
theorem, we infer that

; o (3.56)

for all z e Dr and s < £\, where C is independent of £ and z-
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Using the definition of ve and Dr and (3.56), we check that

llv«(z)llt»(e> < C for all z e Dr and e < £,. (3.57)

By (H5) and by (3.50), we infer that

(&, [F'(y,) ~ F'Wz)x.,x -" °. uniformly in z € Dr. (3.58)

Now it follows from (3.54), (3.57) and (3.58) that

rje(z, vc(z)) —> 0 as e —• 0, uniformly in z e Dr. (3.59)

By (H6), F'(y*)Dr - S + {F{y*)} has finite codimensionality in X. Thanks to [4]
(see Lemma 3.6 of Chapter 4), we conclude by (3.52), (3.55) and (3.59) that £0 ¥=• 0.
Hence

(Xo, &) * 0. (3.60)

Finally, if F'(y*)* is injective and k0 = 0, then by (3.26), we have p = 0. Thus it
follows from (3.25) that F'(y*)*t-0 = 0 which implies that £0 = 0. This contradicts
(3.60). So k0 £ 0 in the case that F'(y*)* is injective. This completes the proof.

4. Application

In this section we apply Theorem 3.3 to a non-well-posed parabolic system.
Let Q = Q x (0, T), Q c R3 be a bounded domain with smooth boundary dQ.

We consider the following problem (P'):

determine infj(y, u) = inf / [g(t, v(r)) + h(u(t))] dt (/")

such that

r) v ( * , 0 + «(*,') i n 2 .
(4.1)

y ( j : , 0 = 0 on E, y(x,0) = y0

with the state constraint F(y) C 5.
We consider the control set to be U = {u : Q -*• R : m < u(x, t) < M) where

m < M. Let /(x, t, y) = —y3. One can easily check that/ satisfies all the conditions
in {.H^. For each u e L2(Q), system (4.1) has, in general, no global solution (see
for example [6, Chapter 7]). This is a non-well-posed system. Moreover, we assume
that g, h and F satisfy (H2), (H3), (H5) and (H6). Then the following theorem is
immediate from Theorem 3.3.
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THEOREM 4.1. Let (y*, u*) be optimal for problem (P'). Suppose that (H2), (#3),
(H5) and (H6) hold. Then there exists p e L2(Q) D L6'5(0, T : W0''

6/5(fi)) with
(*o, £0) ^ Oanda 6 dg(y*) such that

+ Ap(x, t) - 3y*2(x, t)p(x, t) - [F'(y*(x, /))]*£„ = koa in Q,
at

p 6 k

{$0, * - F{y*))x',x < 0 V rlr e S.
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