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Direct numerical simulations of a turbulent spiral Poiseuille flow (SPF) in a narrow-gap
geometry at low Taylor number have been performed to analyse the reverse transition
dynamics. The presently investigated SPF results from a Taylor–Couette arrangement
with a rotating inner cylinder and a stationary outer one, subject to a time-constant axial
pressure gradient. Keeping fixed the Taylor number and reducing the axial Reynolds
number, several flow regimes have been obtained until a complete laminarization occurred.
In agreement with previous experimental evidence, it has been found that the laminar state
is achieved at a Reynolds number significantly smaller than the corresponding non-rotating
value. Moreover, the route to turbulence suppression has been shown to differ in the two
cases, as confirmed by the increased Reynolds number friction coefficient envelope. The
differences occurring in the reverse transition process between SPF and plain Poiseuille
flow are attributed to a modification of the isotropy of the Reynolds stress tensor, caused
by an alteration of the velocity pressure-strain redistribution mechanisms.

Key words: Taylor–Couette flow

1. Introduction

Spiral Poiseuille flow (SPF) refers to a system in which a fluid, confined in the gap
between two concentric cylinders rotating at different angular velocities, is forced also
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by an axial pressure gradient. This set-up has received considerable attention owing
to its relevance as building block flow to deepen the understanding of centrifugal
and shear transition mechanisms in simple and controllable conditions. Most of the
available studies refer to the application and development of stability theories that could
be calibrated against flows characterized by Taylor-type supercritical instabilities and
subcritical Tollmien–Schlichting (TS)-type instabilities.

The stability of SPF to axisymmetric perturbations in the narrow-gap limit has been
investigated by Chandrasekhar (1960, 1962), di Prima (1960) and Hughes & Reid (1968),
who showed the stabilizing effect of the axial pressure gradient.

Chung & Astill (1977) were the first who removed the assumptions of axisymmetric
perturbations and narrow gap (Ro − Ri � (Ro + Ri)/2, Ri and Ro being the inner and
outer cylinder radii, respectively) still confirming an appreciable delay of the first Hopf
bifurcation caused by the axial pressure gradient.

Takeuchi & Jankowski (1981) further extended the previous results in the case of
radius ratio η = Ri/Ro = 0.5, removing the assumption that the critical Taylor number
monotonically increases with the Reynolds number, for all azimuthal wavenumbers. They
further verified the applicability of the linear stability theory in determining the onset of
a non-axisymmetric secondary flow using a few experimental tests, in a limited range of
Reynolds numbers.

Ng & Turner (1982) significantly extended the Reynolds number range (based on the
annular gap width D = Ro − Ri and the bulk velocity in the axial direction Ub) from Re =
100 (Takeuchi & Jankowski 1981) up to 6000 for η = 0.77 and 0.95. The study confirmed
the major role played by non-axisymmetric disturbances for Re > 20 in the shape of the
stability boundaries in the Reynolds–Taylor phase space.

Cotrell & Pearlstein (2004) and Cotrell, Rani & Pearlstein (2004) extended the analysis
of Ng & Turner (1982) at higher Reynolds numbers, for η = 0.50, 0.77 and 0.95, up to the
SPF instability to TS disturbances.

In more detail, for the narrow-gap case (η = 0.95) Cotrell et al. (2004) demonstrated that
on increasing the Reynolds number up to Re∗ = 7716 the critical azimuthal wavenumber
increases up to mcrit = 149; beyond Re∗, however, mcrit abruptly drops to 2. For Re∗ <

Re < ReAP, ReAP being the value corresponding to the onset of TS-like instability in
non-rotating annular Poiseuille flow (ReAP = 7739.5), the critical azimuthal wavenumber
gradually reduces to 0. Similar conclusions have been drawn also for η = 0.77 and
η = 0.50 for which the (Re∗, ReAP) pair becomes (8677, 8883.3) and (9916, 10359),
respectively. However, in these last two cases, TS-like instability for Re = ReAP occurs
in a non-axisymmetric fashion, namely mcrit = 1 for η = 0.77 and mcrit = 2 for η = 0.50.
This result was anticipated for the η = 0.5 case by Meseguer & Marques (2002) who
investigated the effects of shear and centrifugal instability mechanisms on the topological
features of the neutral stability curves.

Kaye & Elgar (1958) experimentally investigated the stability of SPF individuating
the transitional Taylor number range for 0 ≤ Re ≤ 1000 (respectively 0 ≤ Re ≤ 900) at
η = 0.734 (respectively η = 0.820). Regardless of the η value, Tatr has been found to
initially increase with Re, to attain a maximum and then to rapidly drop to zero for the
largest Reynolds number (Remax

tr = 1000 for η = 0.734 and Remax
tr = 900 for η = 0.820).

The shape of the transitional boundary proposed by Kaye & Elgar (1958) was confirmed
by Williamson (1964) (η = 0.90) and Sorour & Coney (1979) (η = 0.80 and η = 0.955).

Figure 1 collects all the available experimental and numerical data for η > 0.70
reporting in the Re–T̂a plane the critical (Cotrell et al. 2004) and transitional (Kaye &
Elgar 1958; Williamson 1964; Sorour & Coney 1979) conditions. In figure 1 the modified
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Figure 1. Critical and transitional conditions. Lines (Cotrell et al. 2004): solid, η = 0.950; dashed, η = 0.770.
Circle (Sorour & Coney 1979): black, η = 0.80; red, η = 0.955. Right triangle (Williamson 1964): black,
η = 0.90. Left triangle (Kaye & Elgar 1958): black, η = 0.734; red, η = 0.802.

Taylor number T̂a is defined as T̂a = Ta
√

(1 − η)/η, where Ta = ΩRi D/ν, ν being the
fluid kinematic viscosity. The use of T̂a is preferred to Ta in the narrow-gap geometry,
because it allows one to avoid the divergence of Tacr occurring when η −→ 1, i.e. plane
Couette (Orzag & Kells 1980). Indeed, while a good agreement between the experimental
and theoretical results is generally observed for small Reynolds numbers, i.e T̂acr ∼ T̂atr,
the prediction of the stability theory (Remax

cr = ReAP ∼ 104) for the Reynolds numbers at
which T̂a vanishes is one order of magnitude off with respect to the experimental findings
(Remax

tr ∼ 103).
A possible explanation for these discrepancies has been offered by Heaton (2008) who

investigated the SPF problem for a large-gap geometry (η = 0.5) in both the co-rotating
and counter-rotating cases solving the linearized three-dimensional Navier–Stokes
equations and analysing the transient growth of the optimal disturbance. He has shown
that at high Reynolds number, small disturbances superposed on the laminar SPF undergo
a strong transient growth leading to the formation of elongated spanwise modulations
of the axial velocity (streaks). Therefore, the laminar to turbulent transition occurs via
streamwise streak generation and growth (lift-up effect) in a by-pass transition scenario,
rather than through a classical centrifugal instability modes mechanism.

All the studies mentioned above aimed at identifying the stability boundaries in the
Re–Ta plane for SPF: this is definitely useful information for fundamental questions
although their validity for the determination of the actual transitional conditions is rather
limited. Yamada (1962a,b) carried out a set of experiments to analyse torque and friction
coefficients of SPF in several narrow-gap geometries, covering both laminar and turbulent
conditions. Using these measurements, Yamada (1962a,b) identified, for radius ratios
η = 0.97, 0.98 and 0.99, the transitional boundary in the Re–Ta plane, confirming the
order of magnitude of Remax

tr found by Kaye & Elgar (1958), Williamson (1964) and Sorour
& Coney (1979). Moreover, for moderate values of the Taylor number (Ta < 5000) and
provided the Reynolds number is sufficiently high (Re ∼ 104), it has been shown that the
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friction coefficient obeys the Blasius turbulent correlation λB = 0.26Re−0.24. Keeping Ta
fixed and reducing Re, the mechanism inducing the reverse transition from turbulent to
laminar flow strongly depends on the Taylor number. Indeed, the rotation of the inner
cylinder substantially reduces the Reynolds number at which the reverse transition sets in.

Despite the wealth of theoretical, experimental and numerical studies available in the
literature, the discrepancies concerning the shape of critical and transitional boundaries
in the Re–Ta plane at high Reynolds numbers in a SPF, and in particular the possibility
of having sustained turbulence in subcritical flow conditions, still remain unexplained.
Important contributions to clarify these issues and to unravel the mechanisms promoting
the occurrence of the reverse transition may come from direct numerical simulations
(DNS), and the present study is motivated by this statement. We present the results of
DNS carried out in a narrow-gap geometry for the flow parameters of Yamada (1962a,b).
The data, coming from a spectrally accurate DNS, may contribute to clarifying the
discrepancies between the theoretical critical values and the experimental transitional
ones. In particular, the role played by the finite size fluctuating velocity components
in determining the suppression of the turbulence activity is evidenced through a
three-dimensional dumping mechanism. To this aim, the key is the characterization of the
turbulent inner layer statistics, which is performed by identifying the turbulence structure
using the Reynolds stress tensor and the corresponding budgets.

The article is organized as follows. The problem formulation with the governing
equations and run parameters are reported in § 2, while a short description of the numerical
method is given in § 3. The discussion of the results, in terms of both global and local
quantities, is provided in § 4 and closing remarks are given in § 5. Details concerning
the adequacy of the computational domain and spatial resolution can be found in the
Appendix.

2. Problem formulation

We consider an incompressible, viscous flow between two concentric cylinders; the inner
one, of radius Ri, is rotating with angular velocity Ω , while the outer one, of radius Ro,
is at rest. The cylinders have an axial length Lz, and the flow is assumed periodic in this
direction which is forced by a constant pressure gradient (figure 2). The variables are made
dimensionless using the tangential velocity of the inner cylinder Wi = ΩRi and the gap
width D = Ro − Ri. The geometry is completely defined by the pair η = Ri/Ro, �z = Lz/D
and the flow is fully characterized by the Taylor and Reynolds numbers:

Ta = WiD
ν

, Re = UbD
ν

, (2.1a,b)

with Ub the bulk axial velocity.
The governing equations are the incompressible Navier–Stokes equations which in

primitive variables and dimensionless form read

∂u
∂t

= −∇p − Nu + 1
Ta

Lu + F , ∇ · u = 0, (2.2)

with u = (u, v, w) = (u1, u2, u3) the axial (z), radial (r) and azimuthal (θ ) velocity
components, respectively, and p the pressure.

In (2.2) Lu and Nu indicate the diffusive and convective terms, respectively. The
specific volume force F = (Fz, 0, 0) represents the applied (negative) pressure gradient
to induce an axial flow (in the positive z direction). The imposed boundary conditions are
u = (0, 0, 1) and u = (0, 0, 0) at the inner and outer surfaces, respectively.
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Figure 2. Sketch of the problem. Only an azimuthal portion of the domain is numerically simulated and it is
evidenced in red. The actual dimensions of the azimuthal computational domain are given in table 1 and the
appropriateness of the sizing is discussed in the Appendix.

The performance of SPF is usually defined in terms of the following torque Cτ and axial
friction λ coefficients:

Cτ = −TRθ,i

ρW2
i

= − ri

Ta
d
dr

(w
r

)
ri

, (2.3)

λ = 8
ρU2

b

TRZ,i Ri − TRZ,o Ro

Ro + Ri
= 8

1 + η

Ta
Re2

[(
du
dr

)
ri

η −
(

du
dr

)
ro

]
, (2.4)

where TRθ,i is the azimuthal component of the wall shear stress at the inner cylinder and
TRZ,i/o are the analogous axial components of the shear stress at the inner/outer cylinders.

For Taylor and Reynolds numbers within the stability boundaries of figure 1, the
following exact solution holds:

u (r) = 2
Re
Ta

[
1 − r2 (1 − η)2] log η − log [r (1 − η)]

(
1 − η2)(

1 + η2
)

log η + (
1 − η2

) ,

v (r) = 0,

w (r) = η

1 − η2

[
1

r (1 − η)
− r (1 − η)

]
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

The corresponding expressions of torque Cτ and axial friction λ coefficients in terms of
Re, Ta and η read

Cτ,C = 2
Ta

1
η (1 + η)

, (2.6)
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Run Re �+
z �+

θ,i �+
θ,o �z �θ,i �θ,o Line colour

R1 5766 2949 772 787 8.00 2.09 2.14
R2 2858 2951 770 785 14.68 3.83 3.91
R3 1824 3580 1429 1457 25.40 10.13 10.34
R4 1336 3445 1394 1422 31.43 12.72 12.97
R5 740 3174 1269 1295 47.62 19.04 19.42

Table 1. Run matrix of the simulations at Ta = 1500, η = 0.98, dimensions of the computational domains in
inner and outer coordinates and colour code for the lines used to report the results.

λP = 32
Re

(1 − η)2

1 + η2 + 1 − η2

log η

. (2.7)

As shown in figure 1, the boundaries of the region in which the solution (2.5) applies
are neat and well defined at small Taylor and Reynolds numbers whereas they become
blurred when the Reynolds number increases and so does the precise location of the
transitional boundary. Nevertheless, the experimental data of Yamada (1962a,b) give a
clear picture of the reverse transition process occurring when the axial Reynolds number is
progressively decreased. Figure 3, reporting Cτ and λ from Yamada (1962a,b) for η ∼ 0.98
and Ta = 1500, evidences the smoothness of the process, highlighting the differences
between rotating and non-rotating cases. Specifically, in the Ta = 0 case, figure 3(b)
shows that when Re is reduced below � 3400, the friction coefficient drops below the
turbulent Blasius correlation and smoothly approaches the laminar value when Re ≤ 1500.
The latter value is considerably smaller than the Reynolds number associated with the
TS-like instability in non-rotating annular Poiseuille flow (ReAP): according to Garg
(1980), at η = 0.98, the result is ReAP � 7700. Conversely in the rotating case, starting
from Re � 2900, the reduction of the Reynolds number leads to a gradual departure
from the turbulent Blasius power law before approaching the laminar value at Re � 850.
Moreover, the extent of the Reynolds-number range in which the reverse transition process
occurs is seen to be larger in the rotating case compared with the non-rotating one. At
Taylor number values higher than 1500 the situation becomes considerably more involved
(Yamada 1962a,b) and worth further investigation.

The study of mechanisms through which the reverse transition process takes place in
SPF is the main aim of the present study. The comprehension of the mechanisms routing
a turbulent flow to a laminar state in a smooth manner may open a way to the exploitation
of flow-control procedures with huge fundamental and practical outcomes.

In the present study, SPF in a narrow-gap geometry with η = 0.98 is considered.
Keeping fixed the Taylor number (Ta = 1500), a database consisting of five highly resolved
DNS has been generated. Starting from sustained turbulent conditions, the Reynolds
number has been progressively reduced until complete relaminarization. Table 1 reports
the Reynolds numbers of the investigated cases, indicated by red vertical lines in figure 3.

3. Numerical method and computational set-up

Equations (2.2) have been numerically integrated using a pressure correction scheme (van
Kan 1986) with a spectral multi-domain discretization (Manna & Vacca 1999). In the axial
and azimuthal directions a blended Fourier decomposition has been used while in the
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(b)

Figure 3. Torque (a) and friction (b) coefficients versus Reynolds number (Yamada 1962a,b): square, Ta = 0;
circle, Ta = 1500. Red vertical lines and red circles denote present numerical data.

radial direction a pseudo-spectral technique, improved through a multi-domain approach
with patching interfaces, has been employed. The whole algorithm has been extensively
validated in both steady (Manna & Vacca 2001, 2009) and unsteady (Manna, Vacca &
Verzicco 2012, 2015, 2020) turbulent flows.

For each run, table 1 reports the axial and azimuthal lengths in inner coordinates
�+ = L/δ+, with the viscous length scale δ+ = ν/uτ . The friction velocity uτ is computed
on the basis of the surface-averaged wall shear stress τrz, which is then long-time-averaged.
Additionally, the surface-averaged τrz is built using the inner and outer wall data, i.e.
τrz = (τrz,i ri + τrz,o ro)/(ri + ro). The predominance of τrz over τrθ is addressed in the
next section. The axial and azimuthal lengths of the computational domain have been
chosen to accommodate the largest flow coherent structures and the adequacy of the
domain size has been verified through the analysis of the two-point correlation at various
distances from the walls: for the sake of conciseness in the Appendix only the correlations
for the velocity components at y+ = (r − ri)/δ

+ = 5 are reported in both axial and
azimuthal directions.

The computational domain has been radially split into 11 subdomains (Nsub = 11),
whose width in the radial direction has been devised to enhance the wall-layer resolution.
The sizes of the subdomains, given as percentages of the gap, are the following:
2.5 %, 2.5 %, 5 %, 10 %, 20 %, 20 %, 20 %, 10 %, 5 %, 2.5 %, 2.5 %. The simulations of
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Run Nsub (Nr × Nz × Nθ ) �z+ (r�θ)+max y+
w

R1 11 (15 × 256 × 144) 12 5 0.12
R2 11 (15 × 256 × 144) 12 5 0.06
R3 11 (9 × 300 × 250) 12 6 0.13
R4 11 (9 × 300 × 250) 11 6 0.10
R5 11 (9 × 300 × 250) 11 5 0.06

Table 2. Discretization parameters.

the R1 and R2 cases have been carried out setting the number of modes in each subdomain
equal to Nr = 15, Nz = 256 and Nθ = 144, in the radial, axial and azimuthal directions,
respectively. To keep the resolution approximately constant, the number of modes in all
directions, in the remaining tests, has been changed.

Additional details of the resolution, together with the maximum azimuthal spacing
(r�θ)+max and the distance from the wall of the first interior point y+

w , can be found in
table 2.

The R1–R4 cases have been initialized starting from the large-eddy simulation fields
of Manna & Vacca (2007) interpolated on finer grids. The R5 case has been run starting
from the R4 case. In particular, a preliminary mapping procedure has been applied to
account for the necessity of increasing the computational domain lengths. Therefore, the
source term Fz in (2.2) has been modified in order to reproduce a condition in which
the reverse transition process has been experimentally predicted by Yamada (1962a,b)
(figure 3). We anticipate that in the R5 case, the volume-averaged turbulent kinetic energy
shows a monotonic decrease in time leading finally to the destruction of all large- and
small-scale structures.

Numerical results have been obtained processing 1500 statistically independent fields
separated in time by 0.12 dimensionless units D/uτ . Data were collected only once
constant time- and space-averaged wall shear stresses were achieved. All quantities are
space-averaged in the homogeneous z and θ directions.

In the following, as usual for turbulent flows, we denote with an overline all quantities
averaged in time and over the two homogeneous z and θ directions. The deviation of the
instantaneous values from the averaged quantities is indicated by a prime symbol.

4. Results

4.1. Global parameters
The overall flow dynamics is analysed in terms of torque (Cτ ) and axial friction (λ)
coefficients defined in (2.3) and (2.4), having replaced the shear stresses and velocities
with their surface- and time-averaged values.

Table 3 reports the relevant global parameters characterizing the investigated cases,
and we start from a discussion of the R1 run. The main features of the axial flow
are not affected by the rotation of the inner cylinder, as is evident from the friction
coefficient which agrees with the Blasius value (figure 3b). This is confirmed also by
the ratio of the maximum (Um) and bulk (Ub) velocities which agrees very well with
the Dean correlation (Dean 1978): Um/Ub = 1.28Re−0.0116 = 1.16. While the axial flow
is unaffected by the inner cylinder rotation, the axial pressure gradient strongly modifies
the Taylor vortices, thus suggesting a ‘one-way’ coupling of the azimuthal to the axial
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Figure 4. Instantaneous velocity vectors (v′, u′) in the cross-plane at Ta = 1500 superposed on the w′ scalar
field, in outer coordinates, for (a) Re = 0 (Manna et al. 2020) and (b) Re = 5766.

Variable R1 R2 R3 R4 R5

Re 5766 2858 1824 1336 740
Reτ = uτ D/(2ν) 184 100 70 55 33
Um/Ub 1.16 1.19 1.24 1.30 1.50
Ub/Wi 3.84 1.91 1.22 0.89 0.49
τ rz,i/τ rz,o 1.01 1.01 1.03 1.06 1.01
λ× 102 3.27 3.96 4.78 5.39 6.49
(λ− λB)/λB (%) 0.47 2.74 11.42 16.60 21.85
Cτ × 103 4.71 2.68 1.92 1.44 0.69
τ tot/τ rz 1.00 1.01 1.02 1.03 1.03

Table 3. Global parameters.

momentum components. Indeed, the torque coefficient Cτ more than doubles with respect
to the pure Taylor flow (Cτ,0 = 2.03 × 10−3; Manna & Vacca 2009). The effects of
the axial pressure gradient on the topology of the cross-flow in the r–z plane can be
appreciated with the help of figure 4, showing, in outer coordinates, the instantaneous
velocity vectors (v′, u′) superposed on the w′ scalar field. The changes of the vortex
structures increasing the Reynolds number from Re = 0 to Re = 5766 evidence the effect
of the combined flow which mixes azimuthal and axial shear at the boundaries and results
in smaller flow scales.

A reduction of Re below 5766 leads to a monotonic increase of the Um/Ub ratio. For
Reynolds numbers smaller than 2858, the friction coefficient always exceeds the Blasius
value and the difference increases as the Reynolds number is reduced (figure 3b). On
the other hand, starting from R1, the torque coefficient is a continuously decreasing
function of Re up to the relaminarization of R5 (figure 3a). In the R4 case, Cτ is
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Figure 5. Mean profiles of axial velocity in inner coordinates (a) and azimuthal velocity in outer coordinates
(b). Line colours as in table 1: black solid line, R1; red solid line, R2; green solid line, R3; blue solid line, R4;
magenta solid line, R5. Symbols: laminar solution (2.5).

smaller than the value pertaining to the pure Taylor–Couette flow Cτ,0. When the lowest
Reynolds number is attained (R5) both friction and torque coefficients agree well with the
Couette–Poiseuille values (Cτ,C = 0.69 × 10−3 and λP = 6.48 × 10−2; (2.6) and (2.7)).
Therefore, the complete relaminarization of the flow field has occurred, in agreement with
the experimental findings of Yamada (1962a,b), as shown in figure 3. Incidentally, we
observe that for all cases the ratio τ rz,i/τ rz,o (table 3) is always close to unity owing to the
narrow-gap geometry (η = 0.98). Finally, table 3 shows that the vector sum τ tot of τ rz and
τ rθ is always very close to τ rz.

Figure 5(a) reports in inner coordinates the radial profiles of the time-averaged axial
velocity component: regardless of the Reynolds number, within the viscous sublayer
y+ < 5, all velocity profiles follow the law ū+ = y+. At the highest Reynolds number (R1),
for y+ > 30 the mean velocity profile is well represented by the logarithmic law, while
on reducing Re, the logarithmic layer becomes progressively less neat. The overlapping
between the velocity profile of the R5 case with (2.5) confirms that at this Reynolds
number the flow is laminar.

The radial profiles of the time-averaged azimuthal velocity component are shown
in figure 5(b), as a function of the distance from the inner wall y = r − ri. For the
sake of comparison the laminar (2.5) and pure Taylor–Couette (Manna & Vacca 2009)
distributions also are reported. The main effect of the axial pressure gradient is the slope
reduction of the velocity profiles at the walls, until the Couette distribution is recovered
for the R5 run. In all cases the radial profile of w̄ shows a significant departure from
the pure Taylor–Couette flow, even in the R3 case whose torque coefficient differs only
slightly from Cτ,0. All Cτ values appear to be considerably smaller than the corresponding
λ values, and so are the corresponding wall shear stresses, on account of the Ub/Wi ratios
(see table 3).

Figure 6 shows the radial distribution of turbulence intensities in inner coordinates. As
the axial pressure gradient decreases, both the axial and radial intensities monotonically
decay in the wall region. Figure 6(c) indicates that the reduction of the Reynolds number

first leads to a uniform attenuation of
√

w′w′+ (from R1 to R2) and then to an increase
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Figure 6. Radial distribution of
√

u′u′ (a),
√

v′v′ (b) and
√

w′w′ (c) in inner coordinates. Line colours as in
table 1: black solid line, R1; red solid line, R2; green solid line, R3; blue solid line, R4.

(from R2 to R4). There is a twofold explanation for such a behaviour: an alteration of
the turbulence production terms along with a modified Reynolds stresses redistribution
mechanism in the energy budgets. This issue is addressed later on.

We now turn to the analysis of the viscous τ v and turbulent τ t stresses. To this aim we
consider axial and azimuthal components of the momentum equation (2.2) averaged in the
homogeneous directions:

0 = −1
r

d
(

u′v′ r
)

dr
+ 1

r
d (τ rzr)

dr
+ Fz with τ rz = 1

Ta
dū
dr

, (4.1)

0 = −dv′w′

dr
− 2

v′w′

r
+ dτ rθ

dr
+ 2

r
τ rθ with τ rθ = r

Ta
d
dr

(
w̄
r

)
. (4.2)

Integrating equation (4.1) across the gap, the following expression for the axial pressure
gradient is obtained:

Fz = 2
τ rz,o ro − τ rz,i ri

r2
o − r2

i
. (4.3)

The radial distributions of the total stresses τ t
z + τv

z and τ t
θ + τv

θ are obtained by
integrating equations (4.1) and (4.2), respectively:

−u′v′︸ ︷︷ ︸
τ t

z

+ 1
Ta

dū
dr︸ ︷︷ ︸

τv
z

= Fz

2

(
r2

i
r

− r

)
+ ri

r
τ v

z,i, (4.4)

−
[
v′w′ + 2

∫ r

ri

v′w′

r
dr

]
︸ ︷︷ ︸

τ t
θ

+ 1
Ta

[
r

d
dr

(
w̄
r

)
+ 2

(
w̄
r

− 1 − η

η

)]
︸ ︷︷ ︸

τv
θ

= τv
θ,i. (4.5)

Figure 7(a) reports the turbulent shear stress τ t
z , with the viscous τv

z and total (τ t
z + τv

z )

ones, normalized by τv
z,i, across the gap in inner coordinates. Regardless of the Reynolds

number, the total stress shows a linear trend. Indeed, the curvature is not effective in
causing a departure from linear behaviour, as suggested by (4.4). Moreover, the viscous
stress profiles collapse onto a single curve for y+ < 10, as expected in inner scaling.
Finally, figure 7(a) evidences a gradual reduction of the turbulent term, similarly to that
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Figure 7. Radial distribution of turbulent τ t
z/τ

v
z,i (dashed lines), viscous τ v

z /τv
z,i (dash-dotted lines) and total

(τ t
z + τv

z )/τ v
z,i (solid lines) stresses in inner coordinates (a); turbulent τ t

θ /τ
v
θ,i (dashed lines) and viscous

τ v
θ /τ v

θ,i (solid lines) stresses in inner coordinates (b). The inset shows the same quantities in outer coordinates
throughout the whole domain. Line colours as in table 1: black solid line, R1; red solid line, R2; green solid
line, R3; blue solid line, R4.

reported in figures 6(a) and 6(b) when discussing the
√

u′u′+ and
√

v′v′+ distributions.
On account of the axial velocity profiles reported in figure 5(a), an attenuation of the
turbulent production driven by the axial mean shear is expected: this is discussed in detail
in the following part.

Figure 7(b), reporting in inner coordinates the radial distribution of τ t
θ and τv

θ ,
normalized by τv

θ,i, shows that, in the bulk region, lowering the axial Reynolds number
induces an appreciable reduction of the turbulent part accompanied by a corresponding
increase of the viscous contribution. Both turbulent and viscous stresses collapse onto a
single curve for y+ < 15. Thus, while the wall layer is mostly governed by the Taylor
number, the outer layer is controlled by Re.

According to Frohnapfel et al. (2007), the process of turbulent to laminar transition
in a plane channel geometry is dominated by a modification of the near-wall turbulent
structures which have been shown to become more elongated in the streamwise direction.
Simultaneously, the Reynolds stress tensor components become more uneven in the
sense that the axial turbulence intensity u′

1u′
1 prevails over the other two components.

Quantitatively this can be seen by analysing the diagonal terms of the anisotropy Reynolds
stress tensor which, using the notation (u′

1, u′
2, u′

3) = (u′, v′, w′), reads as follows:

bij =
u′

iu
′
j

u′
iu

′
i

− 1
3
δij. (4.6)

In the above equation, u′
iu

′
i equals twice the turbulent kinetic energy. If one of the diagonal

components bii is positive, the corresponding normal stress is larger than the average
of the other normal stresses and the turbulence becomes more anisotropic (essentially
one-dimensional when bii = 2/3). On the other hand, a single negative bii value indicates
a tendency towards two-dimensional turbulence, with the ith component significantly
smaller than the sum of the other two in the limit of bii = −1/3 (Marchis, Napoli &
Armenio 2010).
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Figure 8. Radial distribution of bii in inner coordinates, taking R1 as reference: (a) R2; (b) R3; (c) R4. Line
colours as in table 1: black solid line, R1; red solid line, R2; green solid line, R3; blue solid line, R4.

Figure 8 shows the bii radial distribution in inner coordinates of R2 (figure 8a), R3
(figure 8b) and R4 (figure 8c), taking R1 as reference. The reduction of the Reynolds
number from R1 to R2 leads to an increase (in magnitude) of all diagonal terms revealing
an enhanced anisotropy of the turbulence scales. Let us stress that the increase in
magnitude of a negative quantity means that the latter is becoming more negative, i.e.
a reduction is taking place. A further reduction of Re (see figure 8b,c) implies a clear
tendency towards a reduction (in magnitude) of b11 and b33, while b22 remains essentially
unaltered. Overall, a return to isotropy of the turbulence scales is taking place. It is worth
noticing that in the R4 case a sign change of b33 occurs for y+ > 40 and therefore u′

3u′
3

exceeds the average of u′
1u′

1 and u′
2u′

2 .
An exhaustive characterization of the wall-layer turbulence structure in terms of

deviation from the isotropic state requires the inspection of all components of the
anisotropy Reynolds stress tensor. This information is efficiently condensed in the AI index
(Manna et al. 2012):

AI = II
II1D

, (4.7)

with II the second invariant of the bij tensor and II1D = −1/3 the corresponding
one-component turbulence value. Figure 9 reports in inner coordinates the radial
distribution of AI for all cases. For the sake of comparison, the plane channel data
of Iwamoto, Suzuki & Kasagi (2002), as reported in Iwamoto (2002), are shown in
figure 9(b).

Recall that a vanishing AI corresponds to three-dimensional, isotropic turbulence
while AI → 1 indicates turbulent fluctuations developing in one preferred direction
(one-dimensional turbulence). Figure 9 supports the results reported in figure 8 showing
that the reduction of the Reynolds number from 5766 to 2858 yields a nearly uniform
anisotropy increase in the whole wall layer, while a further reduction of Re has the opposite
effect of increasing the isotropy. While the first trend is expected, being representative
of pressure-driven flows as the driving force is reduced (see figure 9b), the latter is
peculiar to SPF, where energy is added to the bulk flow through two different mechanisms,
operating along orthogonal directions. As a result, the turbulence intensities are fed
by two production terms, along with the inter-component energy transfer terms, whose
effectiveness changes as Re is reduced. Therefore, the comprehension of the energy
redistribution mechanisms requires an analysis of the Reynolds stress budgets.

For the problem under investigation, the time-averaged energy budget of the axial
variance is the most relevant whenever the Re/Ta ratio is considerable, as in the R1
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Figure 9. Radial distribution of anisotropy index AI in inner coordinates. (a) Spiral Poiseuille flow. Line
colours as in table 1: black solid line, R1; red solid line, R2; green solid line, R3; blue solid line, R4.
(b) Turbulent plane channel (data of Iwamoto et al. (2002), as reported in Iwamoto (2002)): black solid line,
Reτ = 300; red solid line, Reτ = 150; green solid line, Reτ = 110.

and R2 cases. In these flows, most of the turbulent kinetic energy is contributed by the
production term in the axial direction. Reducing the Reynolds number, both the shear
stress and the axial mean shear uniformly attenuate, as previously shown in figure 7(a). To
inspect the modification of the production term we present in figure 10 the time-averaged
energy budget of the axial variance, which reads

−2u′v′ dū
dr︸ ︷︷ ︸

Pzz

−1
r

∂
(

ru′2v′
)

∂r︸ ︷︷ ︸
Tzz

+ 1
Re

1
r

∂

∂r

(
r
∂u′2

∂r

)
︸ ︷︷ ︸

Dzz

+ 2p′ ∂u′

∂z︸ ︷︷ ︸
Πzz

− 2
Re

[(
∂u′

∂r

)2

+ 1
r2

(
∂u′

∂θ

)2

+
(

∂u′

∂z

)2
]

︸ ︷︷ ︸
−εzz

= 0. (4.8)

In (4.8) Pzz, Tzz, Dzz, Πzz and −εzz indicate production, turbulent transport, viscous
diffusion, velocity–pressure gradient and dissipation, respectively. Figure 10 reports the
radial distribution of all these terms along with their unbalance (Uzz), in inner coordinates.
Before proceeding any further let us recall that the velocity scale used to normalize all
terms in the energy budget is based on the surface-averaged wall shear stress τ rz. While
approximate, this is a valid choice because the vector sum of τ rz and τ rθ is very close to τ rz
(see table 3). Close to the wall, Dzz is positive and balances the dissipation. For y+ > 30,
the production is essentially balanced by the sum of dissipation and velocity–pressure
gradient, with negligible Tzz and Dzz. In the present normalization, the scaling is only
marginal as Re is reduced by a factor of four. Indeed, the Reynolds-number reduction
induces a uniform decrease (in magnitude) of all terms. Of interest for the comprehension
of the transitional region widening is the rapid attenuation of Πzz as it governs the energy
transfer among the normal stresses. Additionally, inspection of the velocity–pressure
gradient term will allow substantiation of the peculiar behaviour of the anisotropy index
in the wall layer, as Re is reduced.

941 A6-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

27
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.273


Reverse transition of a turbulent spiral Poiseuille flow

0 10 20 30 40 50

–0.2

0.0

0.2

0.4

Πzz

Uzz

–εzz

PzzDzz

Tzz

0 10 20 30 40 50

–0.2

0.0

0.2

0.4

Πzz

Uzz

–εzz

PzzDzz

Tzz

y+

0 10 20 30 40 50

–0.2

0.0

0.2

0.4

Πzz

Uzz

–εzz

Pzz

Dzz

Tzz

y+

0 10 20 30 40 50

–0.2

0.0

0.2

0.4

Πzz

Uzz

–εzz

Pzz

Dzz

Tzz

(a) (b)

(c) (d )

Figure 10. Axial velocity fluctuation energy budget in inner coordinates: (a) R1 case, (b) R2 case, (c) R3 case
and (d) R4 case. Black solid line, Pzz; red solid line, −εzz; green solid line, Tzz; blue solid line, Dzz; magenta
solid line, Πzz; black dashed line, Uzz.

Let us split the velocity–pressure gradient Πii into the pressure strain Φii and pressure
diffusion Ψii terms as follows:

Πzz = Φzz + Ψzz = 2p′ ∂u′

∂z
+ 0,

Πrr = Φrr + Ψrr = 2p′ ∂v′

∂r
− 2

∂ ( p′v′)
∂r

,

Πθθ = Φθθ + Ψθθ = 2
r

p′
(

∂w′

∂θ
+ v′

)
− 2

p′v′

r
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

Owing to the free divergence constraint, only the diagonal pressure-strain terms Φii
produce an energy exchange among the velocity components. A negative (positive) value
of Φii indicates an energy loss (gain) from the ith component towards the others. In a
pure axial shear flow (Ta = 0), the production term exists only for the axial component
(Pzz). Accordingly, the azimuthal and radial components may only receive energy through
the redistribution process, i.e. through Φθθ and Φrr, respectively. Likewise, in a pure
Taylor–Couette flow (Re = 0), the rotation of the inner cylinder causes the presence of
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Figure 11. Radial distribution of Pr = Pθθ /Pzz in inner coordinates. Line colours as in table 1: black solid
line, R1; red solid line, R2; green solid line, R3; blue solid line, R4.

the production term

Pθθ = −2v′w′ dw̄
dr

(4.10)

in the budget of the azimuthal component. The axial and radial components may therefore
receive energy only through the Φzz and Φrr pressure-strain terms.

In the SPFs considered here, the rotation of the inner cylinder determines the appearance
in the azimuthal velocity component budget of the production term expressed by (4.10).
The relative importance of the terms Pzz and Pθθ in determining the radial distribution
of the Reynolds stresses depends on the efficiency of the off-diagonal terms of the
Reynolds stress tensor in performing the work (per unit time) against the deformation
tensor. The importance of Pθθ with respect to Pzz is evidenced in figure 11, where the radial
distribution in inner coordinates of the Pr = Pθθ /Pzz ratio is presented. For Re > 1336,
Pzz prevails over Pθθ in the inspected portion of the gap. Conversely, in the R4 case, Pθθ

exceeds Pzz for 40 < y+ < 50.
As mentioned, the turbulent kinetic energy exchange among the velocity components

is ruled by the pressure-strain terms, which are analysed next. Figure 12 shows the radial
distributions in inner coordinates of Φii, for all cases. In the same figure, the production
term Pθθ and the sum Φθθ + Pθθ are also reported. In the R1 case, figure 12 shows a large
transfer of turbulent kinetic energy from the streamwise component to the azimuthal one
in the inspected portion of the gap, except very close to the wall. On the other hand, in
the first 12 wall units, we observe the occurrence of the splatting phenomenon, that is, a
net energy transfer from the radial component to the streamwise and azimuthal ones. The
splatting is connected to sweep events carrying high-speed fluid towards the wall similarly
to an impinging jet. The Pθθ production term appears negligible compared to the Φθθ term
at all y+, suggesting that w′w′ is essentially and indirectly fed by the axial flow. Reducing
the Reynolds number, a uniform attenuation of all pressure-strain terms Φii is observed,
while Pθθ follows an opposite trend. Indeed, the sum Φθθ + Pθθ reduces from R1 to R2
to increase afterwards. Generally, as the axial Reynolds number is lowered the azimuthal
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Figure 12. Radial distribution of pressure-strain terms and the production for the azimuthal velocity
component, in inner coordinates: (a) R1 case, (b) R2 case, (c) R3 case and (d) R4 case. Black solid line,
Φzz; red solid line, Φrr; green solid line, Φθθ ; blue solid line, Pθθ ; magenta solid line, Φθθ + Pθθ .

flow gains importance over the axial one and consequently the Φθθ term tends to decrease
to become negative at y+ > 35 at the lowest Reynolds number. Under those circumstances
an energy transfer from the θ component to the other ones is occurring, in much the same
way as the Φzz is distributing energy to the other two components owing to the axial mean
shear. The effects of the changes in the energy producing terms are clearly visible in the
bii profiles (see figure 8).

In order to shed some light on the peculiar behaviour of the anisotropy index with
Reynolds number, we present in figure 13(a) the ratio Dr = −Pzz/Φzz in the wall region
for y+ > 2. This ratio represents a measure of the efficiency of the pressure strain Φzz
to distribute the energy produced in the axial direction by the Pzz term to the remaining
components. Since Φzz is a consuming term, Dr is positive, because of the minus sign.
Clearly, large Dr values, that is, vanishing Φzz, entail a less effective energy transfer
mechanism. Overall, for y+ � 15, the shapes of the radial distributions of AI and Dr
are similar. Figure 13(a) shows that the Reynolds-number reduction affects the efficiency
of the above mentioned mechanism differently. Reducing the Reynolds-number from R1
to R2, a weakening of the energy transfer occurs, in the inspected portion of the gap.
Further lowering Re close to the wall, i.e. y+ � 15, a Dr reduction is observed suggesting
that an enhanced energy transfer is taking place. For y+ � 15, the reduction of the
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Figure 13. (a) Radial distribution of Dr in inner coordinates. Line colours as in table 1: black solid line, R1;
red solid line, R2; green solid line, R3; blue solid line, R4. (b) Radial distribution of Dr in inner coordinates:
turbulent plane channel. Black solid line, Reτ = 110; black dashed line, Reτ = 590.

Reynolds number from R2 to R4 leads to a Dr increase indicating a less effective
energy transfer of the energy produced in the axial direction towards v′v′ and w′w′.
Simultaneously, the azimuthal component of the pressure-strain term Φθθ attains negative
values suggesting an increased relevance of the Pθθ production term (see also figure 11)
and corresponding smaller AI values (see figure 9).

The key role of the Dr ratio in quantifying the tendency of turbulence to deviate from
the isotropic state can be also observed at higher Reynolds numbers. Figure 13(b) shows
the Dr radial distribution of the plane channel DNS data of Iwamoto et al. (2002), as
reported in Iwamoto (2002) (Reτ = 110) and Moser, Kim & Mansour (1999) (Reτ = 590).
These results offer an explanation of the Reynolds-number dependence of the turbulence
anisotropy documented by Frohnapfel et al. (2007).

To summarize, the delayed reverse transition as Re is decreased is attributed to the role
played by the inner-wall rotation in altering the standard anisotropic process occurring in
a laminarizing pure shear flow (Frohnapfel et al. 2007). In the present SPF, not only does
the flow remain turbulent but its friction coefficient closely follows the Blasius correlation
at subcritical Reynolds numbers smaller than ReAP.

According to the phenomena discussed above, the rotation of the inner wall could be
used to reduce the anisotropy of the wall layer to delay the reverse transition process if
an enhanced turbulent mixing at subcritical Reynolds number is required. In this respect,
this process shares similarities with the bar-roughened channel simulated by Lammers,
Jovanovic & Durst (2006) in which sustained turbulence was demonstrated at Reτ as low
as 50.

5. Conclusions

In this paper we have analysed the reverse transition process occurring in a SPF, with a
rotating inner cylinder and a fixed outer one, when the constant axial pressure gradient is
progressively reduced. A narrow-gap geometry (η = 0.98), for which experimental data
are available, has been considered. The reverse transition process has been numerically
investigated by integration of the Navier–Stokes equations, discretized in cylindrical
coordinates. A spectral Chebyshev algorithm for the inhomogeneous (radial) direction and
blended Fourier decomposition for the homogeneous (axial and azimuthal) ones have been
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Figure 14. Velocity spatial correlations in the z direction (a,c,e) and in the azimuthal direction (b,d, f ) at
y+ = 5. (a,b) Axial component, (c,d) radial component and (e, f ) azimuthal component. Line colours as in
table 1: black solid line, R1; red solid line, R2; green solid line, R3; blue solid line, R4.

used. Keeping fixed the Taylor number, five flow conditions, characterized by different
values of the axial Reynolds number Re, have been considered. The reduction of the axial
Reynolds number induces a gradual suppression of the turbulent activities until a complete
laminarization of the flow field ultimately occurs. Different from the non-rotating case, in
turbulent SPF the friction coefficient closely follows the Blasius correlation during the
reverse transition process, which is found to take place at subcritical Re values smaller
than in the non-rotating case. These peculiarities of the SPF, already experimentally
observed through a global parameter study by Yamada (1962a,b), have been confirmed
by the present work and an explanation has been offered. Specifically, the differences
in the reverse transition process between the rotating and non-rotating cases have been
attributed to significant variations of the anisotropy of the Reynolds stress tensor in the
wall layer. Indeed, while in the non-rotating case the laminarization process occurs with
an increase of the anisotropic character of the turbulence (Frohnapfel et al. 2007), in the
present case a tendency to isotropization has been found. Close to the wall, the turbulence
isotropic character improvement has been attributed to an augmented efficiency of the
pressure-strain term Φzz to redistribute the energy produced in the axial direction towards
the radial and azimuthal components. Far from the wall, the increased relevance of the
production term in the azimuthal velocity component enhances the tendency to isotropy
in the reverse transition process. Therefore, the two-dimensional route of the selective
de-amplification mechanism of TS type is ruled out in the present SPF.
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Figure 16. Velocity power spectra in the z direction (a–c) and in the θ direction (d–f ) at y+ = 5. (a,d) Axial
component, (b,e) radial component and (c, f ) azimuthal component. Line colours as in table 1: black solid line,
R1; red solid line, R2; green solid line, R3; blue solid line, R4.

Appendix. Box size and accuracy check

The appropriateness of the chosen computational domain length in both axial and
azimuthal directions has been ascertained, analysing the two-point correlations for all the
velocity components: checks at several distances from the inner wall have been performed
and only the results at y+ = 5 are shown for the sake of conciseness. Figure 14(a,c,e)
refers to the axial direction, while figure 14(b,d, f ) refers to the azimuthal one. Figure 14
evidences that the spatial correlation coefficient drops to zero at separation distances
smaller than one-quarter of the domain length in both z and θ directions. Therefore the
domain size contains all the near-wall coherent structures in both directions. As further
evidence, figure 15 shows the contours of the fluctuating axial velocity component at
y+ = 5, for all cases, in inner coordinates. Reducing the Reynolds number induces a
progressive azimuthal tilting of the elongated coherent wall structures and a concurrent
reduction of length and width of these structures. There is no evidence of intermittency
in the wall layer in terms of laminar–turbulent alternating patterns, as reported by Ishida,
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Duguet & Tsukahara (2016, 2017) in transitional annular Poiseuille flow at η = 0.8 and
Reτ = 72 without azimuthal rotation of the boundaries. It may be conjectured that the
stripe pattern detected by Ishida et al. (2016, 2017) does not occur in the present flow
owing to the destabilizing effects associated with the rotation, even in the narrow-gap
case.

Figure 16 shows the one-dimensional power spectra in the z and θ directions. In all tests,
the spectra are perfectly smooth, without any energy pile-up at the highest wavenumbers,
thus confirming that the simulations are solving all the energy-containing scales.
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