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CRITICAL POINT THEOREMS WITH
RELAXED BOUNDARY CONDITION AND APPLICATIONS

YlHONG DU

This paper is a sequel to a recent paper by the author in this journal. We prove
some variants of the min-max type critical point theorems with relaxed boundary
condition and then apply the abstract results to a semilinear elliptic boundary
value problem.

1. INTRODUCTION

Whether the mountain pass type min-max critical point theorems hold true with
the relaxed boundary condition has interested several authors. Suppose I is a C1

functional on a Hilbert space E satisfying the (PS) condition, and S and dQ are Unking
sets in E. Roughly speaking, the min-max critical point theorems say that if there exist
a > /3 such that

(1.1) I(x) ^ a on S and I(x) ^ /? on dQ,

then I has a critical value c, c ̂  a.
We call (1.1) the boundary condition in the critical point theorems. By the relaxed

boundary condition we mean that there exists a such that

(1.2) I(x) ^ o on S and I(x) < a on dQ.

In the mountain pass case, this problem and some related problems were studied in
[10,11], and it was proved in [9] and [12] that the mountain pass theorem is true under
the relaxed boundary condition. Further results were obtained via Ekland's variational
principle in [8] and [6]. In [5] and [7], it was proved that more general min-max critical
point theorems remain true under the relaxed boundary condition as well. In [5], a
new deformation lemma was used while [7] used Ekland's variational principle. Other
interesting related problems were also discussed in [7].

Minimax critical point theorems with boundary condition (1.1) such as the famous
Mountain Pass Theorem have been widely used in obtaining nontrivial solutions of, for
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102 Y. Du [2]

example, elliptic boundary value problems. Therefore it is natural to expect new, better
results in the applications when, instead of (1.1), the relaxed boundary condition (1.2)
is used. In this paper, we are going to make an attempt in this direction. We make use
of the relaxed boundary condition to the resonance problem

{ — Aw = AjfeU + p(x,u) in fi

u = 0 on dO.

where fi is a bounded domain in Rn with dfl sufficiently smooth, p 6 C(fi x iZ1,^1)
is locally Lipschitz continuous and p(x,Q) = 0 , 0 < A i < . . . < A* < A*+i < . . . axe the
eigenvalues of the problem —Aw = Au with homogeneous Dirichlet boundary condition.
We use m(A;) to denote the multiplicity of A<.

For this purpose, we need to prove some variants of the known critical point the-
orems with relaxed boundary condition; in particular, we should allow the Unking sets
to be infinite dimensional while earlier results of this type essentially require dQ to be
finite dimensional. In order to be able to treat the case with an infinite dimensional dQ,
we have to make some restrictions on the functional / . Actually, as in [2], we require
/ ' to be a variant of the form "Identity operator—Compact operator". For this type
of functionals, we can prove that, in the deformation lemmas, the deformation maps
can be chosen from a special mapping class. And this enables us to treat the infinite
dimensional linking case because suitable infinite dimensional sets can link subject to
this special mapping class.

2. DEFORMATION LEMMAS

In this section, we always assume that E is a real Hilbert space. For convenience
we collect some definitions first.

DEFINITION 2.1: A nonempty set E in C([0,1] x E,E) is called a deformation

class if 4>\O<j>2 € E whenever <f>i,4>2 £ E.

Here

4>io4>2{t,x) = *!(«,&(*,»)) for (t,x) G [0,1] x E.

Let E ° = {<f> G C([0,1] xE,E): <f>(i, x) = <f>(x)},

E ^ = {</> G E° : <f>(x) = x for x € A},

Efc = {<f> G C([0,1] x E, E) : <f>t is a homeomorphism of E onto E}.

Evidently S ° , E^ and E& are all deformation classes.

DEFINITION 2.2: Let E be a deformation class, Q C E be a Banach manifold

with boundary dQ, S C E be a closed set. If dQDS = 0 and <f>t{Q)f~lS ^ 0 for every
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[3] Critical point theorems 103

t € [0,1] whenever ^ G E and <f>t(dQ) D 5 = 0 for every i G [0,1], then we say that dQ
and S E-link.

We easily see that dQ and S link in the sense of [1, 3] and [5] if and only if dQ
and S Egg-link.

Let

A = {to G C([0,1] x E,E): w is compact},

A = { « G C([0,l] xE,B}\ {0}) : «(*,*) and M*,*) )" 1

are both bounded on bounded sets},

£ • = {4>: <f>[tt x) = a(t, x)(x - w{t, x)), a G A, w € A,

a(0,z) = l,t/,(0,z) = 0 } .

A simple verification shows

LEMMA 2 . 1 . E* is a deformation class.

Now we give some examples of E* -Unking sets.

LEMMA 2 . 2 . Suppose E = Ei®E7, e£ 8Bx DEi, R>r>0,

S = 8Br n Elf Q = {se : 0 s£ a < R} ® BR D E2.

Then Sand dQ E*-iiat.

PROOF: For any <f> € E* satisfying <f>t(dQ) n 5 = 0 for each < € [0,1] we are going
to prove that <f>t(Q) D S ^ 0 for each t G [0,1], that is, for each t E [0,1], there is some
qt G Q such that

ll*i*t(*)ll = r and P2^«(ft) = 0

where P\ : E -* E\, Pf. E -* E^ are projection operators.

In fact, for u G E2, « G fl1, set

1&,(ae + u) = ae + u + ((|| J ^ ( « e + «)|| - r - a)e - P2wt(ae + «));

clearly rf>t is a compact perturbation of the identity operator. Moreover, since if>t{dQ)r\
S = 0 for t G [0,1], we have 0 g j>t{dQ) for t G [0,1]. Hence the Leray-Schauder
degree deg(^t]int((^),0) is well defined and is independent of t. So we have

),0) = deg(«e + tt -re , int(Q),0) = 1,

which implies that there exists some qt G Q such that i>t(qt) = 0, that is,

\\Pi<f>t(9t)\\ = r and P3wt{qt) = Ptqu

and so Pi4>t{it) = «(<»9«)(^2gt - Pat»t(ft)) = 0.
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This completes the proof. U

LEMMA 2 . 3 . Suppose E = Ei®E2, Q = BRr\E7, q G int(Q), S = q + Ei.
Then dQ and S E'-iinl.

PROOF: For <f> G S* with <f>t{8Q)r\S = 0 we are going to prove that there is some
qt G Q such that -Pj<£<($<) = q.

For u £ Ei, Pj<^t(«) = «(*,«)(« — Pjto«(«)), so it sufEces to prove

= 0

has a solution in Q.

Since <f>t(dQ) D S = 0 for * € [0,1], we easily see

« - (P2Wt{u) + ^(att.it)-1)) ^ 0 for i £ [0,1], « € dQ,

and hence deg (u - P2Wt(u) - qfafauy1} ,int((J),o)

= deg (y. - P2«;o(«) - ^(O.ur^.intCQJ.o)

= deg(«-g,int(Q),O) = l.

This shows that for each t G [0,1], u - (p3wt(v.) + ^^(t .u)"1)) = 0 has at least one

solution in Q. The proof is complete. U

Now we are going to give some deformation lemmas. We shall say that / G
Cl(E,B}) satisfies the (PS) condition on A C E, if {*„} C A, {/(*n)} is bounded
and /'(*„) —* 0 imply the existence of a convergent subsequence of { i n } .

The functional f is said to satisfy condition (C) if

1°. f satisfies the (PS) condition on every bounded sets;
2°. For any c G R1, there exist <r, R, a > 0 such that

c - a < /(«) < c + a and ||U|| ̂  R imply ||/'(u)|| ^ o / ||u||.

LEMMA 2 . 4 . Suppose / G C1 ( £ , . # ) , cG R1, and A and Bare two closed sets
in E. Moreover, suppose tbe following four conditions are satisfied:

1°. f(x) ^ c on A and f(x) < c on B;
2°. Af\B = <D, BnKe = V);
3°. /satisfies tie (PS) condition on some 6-neigbbourbood Ns(B) ofB;
4°. f'(x) = jx — Dx, j = 1 or -1, D : E —• E is completely continuous.
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[5] Critical point theorems 105

Tien there exist e > 0 and 17 G E* such that:

(i) For every t G [0,1], f/« is a homeomorphism of E onto E;
(ii) /(i7(i,*)) < / (x ) for x G £ and * G [0,1];

(iii) i;(t, x) = x for x G A and t G [0,1] ;
(iv) /(ty(l, x)) s£ c - e for x G £ ;
(v) J7-1 G E*, wnere we define rj~1{i,x) = »;^"1(x).

PROOF: We prove the lemma by three steps.

Step 1. Denote K = {x G E : f'(x) = 0 } . Then there exists a locally Lipschitz
continuous map v : E \ K —» E such that

(2.1) H x ) | | < 2 | | / '(x) | | , (/'(*),«(*)) > 1/2 | |/'(x)| |2 for x G E \ K,

(2.2) Z>iz = jx — «(x) is completely continuous.

In fact, by a standard partition of unity argument we can find a locally Lipschitz
continuous map D\ : E \ K —* E such that

(2.3)

(2.4)

\\Dx-D1x\
X>!(n) C co(D(l

N^n) = {

||<l/2||/'(x)|| forxGin-K-,
^i(n))) for any iiC E\K, where

[xeE\K: dist(x,n)^l}.

Let v(x) = jx - D ix . From (2.4) we see that (2.2) is true. Using (2.3) and a
simple computation we know that (2.1) is satisfied.

Step 2. There exists a locally Lipschitz continuous map A : E —» R1 such that

(2.5) 0 < A(x) < 1 on E,

(2.6) A(z) = 0 on some neighbourhood N(K) of K,

and that the unique solution

r dr,/dt = -X(vHv)
\» / (0 ,x) =x

is defined on all R1 x E. Moreover, 77 satisfies (i)-(iv) and

(2.7) ||»j(*, x) - x|| < 1 for t G [0,1] and x G E.

Here we define \(x)v(x) — 0 for x G K. This is reasonable because A(x) satisfies (2.6).

The conclusions in this step follow from the proof of Lemma 1.1 in [5]. The only
difference is that here we suppose / satisfies the (PS) condition on Ng{B) while in [5]
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/ is supposed to satisfy the (PS) condition on the whole space E. However it can be
easily seen that our present assumption is enough for the proof.

Step 3. t], TJ-1 e S*.

Extend DI\E\N(K) *° a completely continuous map Di on E, and for x g E define
Vi(x) = jx - D2x. It follows from (2.6) that A(*)«(se) = A(*)t>i(;e) on E. Therefore

d/dt(T,(t,x)) = -AfoKO?) =

d/dt (r,{t, x) exp (j j f A(I,(T, *))<*T) )

= A(t,(<, *))D,(ij(i,«)) exp (j J* A(I|(T, a,))*").

Let a(t,x) = exp l-j I \(r)(T,z))dT),

w(t,x) =

Clearly rj{t, x) = a(t, x)(x + w(t, x)) and a(0, x) = l, w(0, x) = 0.

Hence to prove t/ € E* we only need to check that a G A and w 6 A.

o 6 A is obvious by (2.5). Moreover we have

(2.8) 0 ̂  A(»7(i,*))exp (j J X{r,(T,x))dA < c for t e [0,1].

By (2.7) we have

(2.9) »/([0,1] x il) C JVi(fl) for a n y f l c B .

Now it follows from (2.8) and (2.9) that for x 6 (l,t e [0,1]

€ e •

Hence Wi(H) C e • co(273(JVi(n)),0) for t G [0,1]. Since X?a is completely continuous,
this shows that v>t is compact. Moerover, by the definition of w we easily see that w is
continuous and that its continuity with respect to t is uniform for x in bounded sets.
This implies the complete continuity of w, and so w £ A and i ) £ E ' .

Since rf~1(t,x) = r}(—t,x), a similar argument shows rj'1 £ E*. The proof is
complete. D

LEMMA 2 . 5 . Suppose f € ^(EjR1) satisfies condition (C), c 6 R1, N is a

neighbourhood of Ke, / ' (*) = J* — -D*, j = 1 or —1, and D : E —* E is completely

continuous. Then for any <r > 0 we can find e,e,0 < c < e < <r, and i j€ S ' such that

(i) For each * 6 [0,1], ij« is a iomeomorpiism ofE onto E;
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(ii) f(tj(t, x)) ^ f(x) for x £ E and t 6 [0,1] ;
(iii) »;(<,*) = * forxeJ5\/-1([c-e,c + e]);
(iv) /(i|(l,a.))<C-efor»e/-1((-oo,c + e])\JV,

here we suppose N = 0 in case Kc = 0;
(v) , - > € ! ! • .

PROOF: By step 1 in the proof of Lemma 2.4 we know that there exists a locally
Lipschitz continuous map v : E \ K —> E satisfying (2.1) and (2.2). Let

4>(x)=v(x)/\\v(x)\\2 iorx£E\K.

Then <f>: E \ K —» E is locally Lipschitz continuous and satisfies

(2.10) ||#»)|| < 2/ II/'WH , (/'(*),^(x)) > 1/8, xeE\K.

By (2.10) and a similar argument to that in the proof of [1, Theorem 1.3] we can
show that there exists a function \ : E —* [0,1] such that

1°. x{x) = 0 on some neighbourhood N(K) of K;
2°. For

for x e E \ K

0 for x G K-I
there exist constants Jbi and Jbj such that ||V(x)|| ^ Jb3 + Jbj ||x||;

3°. The unique solution r)(t, x) of the initial problem

f dr,/dt = V(V)

(0,x) = x

is defined on R1 X E, it satisfies the requirements (i)—(iv) in our lemma and is bounded
on bounded sets.

Now if we can prove that rj, TJ*1 € S*, then we are done.

Since r}~l(t,x) = r)(—t,x), as in the proof of Lemma 2.4, we only prove i j € E * .
Extend D\ \B\N(K) to a completely continuous map on E and denote it by Da. Let

•fX,x)=J *(*)/IK*)l|2 tor x€E\K,
' 0 toixeK.

It is easy to see that V(x) = -\(x)(jx - D7x) for all x £ E. Moreover, A : E -» R1

is continuous and

0 < A(x) < X(x) U{x)\\2 ^ (X(x
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Now since drj/dt = — A(ij)(jt; — Z?j(»/)), since Di is completely continuous, and
since A and t/ are bounded on bounded sets, we can show as in Step 3 of the proof of
Lemma 2.4 that TJ G E*. The proof is complete. D

REMARK: In Lemma 2.4 and Lemma 2.5, if / is a even functional and A,B are
symmetric with respect to 0, then we can choose if to be odd in x.

After these preparations, we are ready to prove some critical point theorems with
relaxed boundary conditions in the next section.

3. CRITICAL POINT THEOREMS

Throughout this section, we suppose £ is a real Hilbert space, Q is a closed Hilbert
manifold with boundary 8Q, and 5 is a closed set in E. We are going to give some
critical point theorems which are variants of known results. In earlier results, when the
linking sets are allowed to be infinite dimensional, the stronger boundary condition (1.1)
is required (see for example [2, 12]), and when the relaxed boundary condition is used,
one of the Unking sets dQ should be finite dimensional (this is often implicit in the
theorems) and such results are generally proved under the (PS) condition rather than
the condition (C) (see [5, 6, 7] and [9]). Our results in this section are improvements
of earlier theorems so that they are more convenient in applications.

THEOREM 3 . 1 . Suppose dQ and S S*-iini, / 6 C1 ( £ , # * ) satisfies the (PS)
condition on E, /'(as) = jx — Dx, j = 1 or —1, and D is completely continuous.
Moreover, suppose supg f(x) < +oo and there exists some a € R1 such that

(3.1) f(x) s£ a on dQ; f(x) ^ a on S.

Let c

wiere r 0 = {<f> G E* : 4>(t,x) = x for x G 8Q, i G [0,1]}. Then we have

(i) O « ,
(H) * c * 0 ,

(iii) Kc D S ^ 0 in case c = a.

PROOF: Notice first that </>0(t,x) = x is an element of To, so To =fi 0. For any
$ e To, since jt(dQ)nS = dQnS = 0 and dQ and 5 E*-Knk, we have <f>{l,Q)nS £ 0.
Suppose x0 G Q is such that <f>(l,xo)e S. Then it follows from (3.1) that

aup / (4 ( l , s ) ) ^ / ( ^ l , a 0 ) ) ^ a for any ^ G To.

This implies c ^ o .
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[9] Critical point theorems 109

If c = a, it suffices to prove Ke D S ^ 0. Suppose this is not the case. Then apply
Lemma 2.4 to - / with A = dQ and B = 5; we find e > 0 and 17 G E* such that

(3.2) v'1 € S ' , »;(<, *) = x on dQ, - / ( T J ( 1 , *)) < - c - e on 5.

By the definition of c we can choose <j>0 € To such that

(3.3) /(6>(1>*)) < c + e on Q.

Let «^i(i,x) = ty-^i.^oC^x)). From (3.2) and Lemma 2.1 we see that (j>x € r 0 ,
and hence there is some XQ € Q such that <j>i(l,xo) G £ because dQ and S E*-link.
Now it follows from (3.2) and <j>i(l,x0) € S that

= f(v o ̂ 1(1,10)) ^ c + e,

which contradicts (3.3). Therefore we must have Kc fl 5 ^ 0 when c = a.

If c > a, using Lemma 2.5 and a standard argument (see, for example, [1, 3] or
[12]) one easily get Ke ^ 0. The proof is complete. D

THEOREM 3 . 2 . In Theorem 3.1, if S is bounded, then the condition that f
satisSes the (PS) condition can be replaced by f satisSes condition (C).

PROOF: In this case the conditions of Lemma 2.4 and Lemma 2.5 are still met,
so by checking the proof of Theorem 3.1 we arrive at the conclusion. The proof is
complete. U

The following two theorems are concerned with even functionals.

THEOREM 3 . 3 . Suppose that f 6 Ci(E,R1') is a even functional and satisSes
condition (C), E\ and E2 are Suite dimensional subspaces of E, and n = dimEi <
m = dim£2. Moreover, suppose /(0) = 0 and liere exist r, R, 0 < r < R such that

(3.4) f(x) ^ 0 on Ef H 8Br, f{x) ^0onE7n 8BR.

Then f has at least m — n pairs of nonzero critical points.

PROOF: We follow the ideas of Rabinowitz [12]. Let

S = {A C E \ {0} : A is symmetric with respect to 0},

and let 7 be the genus on E, that is, 7(0) = 0; and for A 6 E and A =£ Q, define
f(A) = n, where n is the smallest integer such that there exists an odd map <j> €
C{A,Rn\ {0}); define ~((A) = 00 if there exists no such n.
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110 Y. Du [10]

Suppose that {e\,..., em} is a basis for Ej, and define

EW =apan{ei,...,eh},k = l , . . . ,m.

Dh = E^ n BR,

G/,={he C(Dk,E) : h is odd, and hx = x on 8Dh = Ew D 8BR}t

k>j,he Gh,Y G E and 7 (F) < k-j}.

It is proved in [12, p.56] that Tj (j = 1, . . . ,m) has the following properties:

1°. r , ^ 0 , j = \ m;

2°. r i + i c r i , i = l , . . . , m - l ;
3°. If <f> 6 C(£;, £ ) is odd and ^(*) = x on £ 2 fi 0 # H , then

^(B) G Tj for £ G Ty, j = 1, . . . ,m;

4°. If B G T,-, Z G E and 7(Z) ^ J < j , then ^ 1 6 ^ . , .
Now we prove

5°. If j ^ n + 1 and A G E is a compact set with 7(A) ^ j — n — 1, then

B D (Ei1 n 8Br \ A) ^ 0 for any B G T,-.

In fact, for B G Tj, suppose B = fc(.Dfc\y), Jb > j , /i G G4, F G E and

) f c i L- i . Let
F = {* G D* : h(x) G int(Br)},

and let V denote the component of V containing 0. Since h(dDk) = 8Dk = Ewn8BR,
R > r, we see that h(dDh) n Br = 0, and hence it follows from fc(0) = 0 that V
is a symmetric bounded open neighbourhood of 0 in E^, which implies j(dV) =

**) = fc. Evidently h(8V) C dBr. Let

D = {xeDh: h(x) G dBr}.

Then D G E, D D 8V and so 7 ( l>) > 7(5V) = Jfa,

(3.5.)

H / i ( F \ T ) n ( ^ D 5Br \ A) = 0, let
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where N(A) is an open neighbourhood of A such that j(N(A)j = 7(A); then A g E

and AdE^-n 8Br = 0. From the definition of D we see that A G 8Br, and therefore
^ n dBr = 0 implies 0 g Pi A, where Px is the projector of E onto £?i. Identify
with JT1; since Pi : A -» Pi A is odd, we have 7(^4) < n. Therefore

7(h{D\Y)) - 7pV(A)) £ 7(fc(F\T)) - i +n + 1,

that is, 7 f A ( D \ Y ) ) ^ i - 1 , which contradicts (3.5). Thus we must have h(5 \ Y) f~l

(Bj- n 8Br \ A) ^ 0, B n (Ej1- n es r \ A) ^ 0.
For j = n + 1, . . . ,m, let

ci = i££ 8UP /(*)•

From 2°, 5° and (3.4) we find

0 < Cn+i ^ . . . ^ Cm-

To prove that / has at least m — n pairs of nonzero critical points, it suffices to
prove the following two assertions:

6°. If cn+1 = ... = cn+h = 0, 1 < * < m - n , then -y(Kon Ef-ndBr) >*;
7°. If cn+kl = ... = cn+k2 =c> 0, 1 < fci < fc2 ^ m - n, then

The proof of 7° is standard (see [12] and use [1, Theorem 1.3] for even functionals), so
we only prove 6°.

Suppose Cn+i = . . . = cn+k = 0 but f(K0 D Ef n 8Br) < Jfc - 1. Denote

B = E^ D 8Br \ (Ko D ^ n 8Br), A = 8Dm = E2n 8BR.

From (3.4) we see that -f{x) ^ 0 on A and -f(x) < 0 on B. Since £ l~l K0 = 0 and
B is bounded, by Lemma 2.4 we can find e > 0 and an odd homeomorphism t; of 25
onto itself such that

(3.6) TJX = x on .4 and — /(»;«) ^ — £ on 1?.

Since cn +t = 0 we can find Bo 6 Tn+h such that

(3.7) / (x ) ^ (l /2)e on Bo.

Let B = y^Bo. Then from 3° we know B G r n + 4 , and hence B ("1 i? ^ 0 by 5°.
Suppose zo G B n B . Then it follows from x0 G B and (3.6) that / ( t ; i 0 ) ^ e. On the
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other hand, since rjxo G Bo, f{vxo) ^ ( l / 2 ) c by (3.7). This contradiction proves 6° .

The proof of the theorem is now complete. D

THEOREM 3 . 4 . In Theorem 3.3, if we replace (3.4) by

(3.8) f(x) ^ 0 on dBp D E2 and f(x) < R on E^

tor some positive numbers p and R, then the same result holds.

PROOF: Denote S* = {A G S : -y{A) ^ Jb} and let

Ck — sup inf / (x ) , A = n + 1 , . . . ,m.

Since y(E2r\dBp) = m, we know by (3.8) that cm ^ 0. For any A G En+i,
AHEf- ^ 0. Hence it follows from (3.8) that infz£x f(x) ^ i2, Cn+i ^ R and so, since
S*+i C S i , we get

R 7* cn+1 > . . . ^ cm ^ 0.

Now to prove the theorem it suffices to prove

(i) if cn+k = ... = cm = 0, l < J f e < m - n , then 7(^0 n E2 D 5J5P) ^
m — n — fc + 1;

(ii) if cn+kl — ... = cn+fcj = c > 0 , l < * i < * 2 < m - n , then

As in the proof of Theorem 3.3, we only prove (i).

Suppose by contradiction that 7(^0 ("I E2 l~l 9-Bp) ^ m — n — fc. Then since cm = 0
and i?2 n dBp € E m , we have inf^gEanflBp / (>) ^ 0> which together with (3.8) imph'es
inf»eJSanaBp / (* ) = 0. Choose a symmetric open neighbourhood N of the compact set
K0nE2ndBp such that -y(N) < m-n-Jfe. Then 7(^2 D 8Bp \N)^ m-(m -n-k) =
n + k.

Let S = E2C\ dBp \ N. Then 5 is a symmetric bounded closed set and -/(as) ^ 0
on S, SC\ KQ = 0. By Lemma 2.4 we can find some e > 0 and an odd homeomorphism
TJ of E onto E such that

(3.9) ~f(v*) < -e on S.

On the other hand, TJ(S) G E and 7(^(5)) ^ 7(5) > n + i . Therefore r)(S) G En+Jk,
and hence Cn+k ^ e > 0 by (3.9), which contradicts cn+i = 0. The proof is complete. U

4. NONTRIVIAL SOLUTIONS OF A RESONANCE PROBLEM

In this section, we apply the results of Section 3 to the resonance problem (1.3).
For the nonlinear term p(x,t), let P{x,t) = Jop{x,a)ds; we consider the following
conditions:

(J)m P(x,i) ^ (l /2)(Am - Afc)t
a for \t\ sufficiently small.
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(II)m P(x, t) < (l /2)(Am + 1 - Xk)t
2 for aU i in R1.

(III) p is bounded, lim P(x,i) = —oo.
1*1—«>

(IV) lim tp(x,t) = 0 lim P(x,t) = A(x), A(x)eC(H).
|t|-»oo \t\ —»oo

(V) p(x,-t) = -p(x,t).

In conditions (III) and (IV), we suppose that the limits are uniform for x G ft.

For u€E = W*2

(4.1) I(u) = -(1/2) / (\Du\2 - \ku
2)dx + I P(x,u(x))dx.

It is well-know that under certain growth conditions on p, I is well defined and that
critical points of / are solutions of (1.3). Since p(z,0) = 0, 0 is a trivial critical point.
We are looking for nontrivial critical points of I. Conditions (III) and (IV) are sufficient
restrictions on the growth of p. Moreover, condition (III) guarantees that / satisfies the
(PS) condition on E (see [13]) while condition (IV) is a "strong" resonance condition,
in which case / does not satisfy the (PS) condition but verifies condition (C) (see [1]).
Conditions (I)m and (H)m correspond to the boundary conditions in the critical point
theorems and in this case I satisfies the relaxed boundary condition (1.2) but not (1.1).
We are going to prove the following theorems.

THEOREM 4 . 1 . If p satisfies tor some m > Jb t ie conditions (I)m, (H)m and
(m), then (1.3) has at least one nontrivial solution.

THEOREM 4 . 2 . If p satisfies for some m ^ k + 1 the conditions (I)m, (H)m

and (IV), then (1.3) has at least one nontrivial solution.

THEOREM 4 . 3 . Suppose p satisfies for some m ^ k the conditions (I)m, (HI) or
(IV), and (V). Then problem (1.3) has at least "^iLhTn(Xi) pairs of nontrivial solutions.

The above theorems are related to some known results. When m = k, Theorem
4.1 is in some sense a dual version of Theorem l(b)(/3) of Thews [14]. The case
Thews considered essentially implies P(x,t) < 0 for t small, lim P(x,t) — +oo and

|i|-.oo

P{x,t) < ( l /2)(A4 +i - \h)t2 for all t. Theorem 4.2 is related to some results of Bartolo,
Benci and Fortunato [1], but they require P(x,t) < 0 for t small too. Another related
result of Theorem 4.2 is Theorem 1 of Capozzi, Lupo and Solimini [4], where they do
not require (H)m (m ^ k + 1), but they assume p(x,t) = p(i) and p'(0) < Xh+i - A*
which is more restrictive than (I)i,+i • Theorem 4.3 is a slight generalisation of Theorem
2.22 of Rabinowitz [13]; it also relates to a result in Bartolo, Benci and Fortunato [1],
but their condition implies P(x,i) < — (A* — Ak)fa for some integer h < Jb.

PROOF OF THEOREM 4.1:
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Let E = Woll2(fi) with norm ||u||2 = Ja\Du\2dx, and suppose / is defined by
(4.1). For u e E, define

J(u)= I P{x,v.{x))dx.
Ja

It is easy to see that /'(it) = —it + Du, and D : E —> E is completely continuous.
Moreover, it follows from (III) that / satisfies the (PS) condition on E (see [13]).

Let £?(*) denote the eigenspace corresponding to the eigenvalue A,- and denote

Then E = E\® E2, E\ is finite dimensional, £2 is infinite dimensional.

Let »m 6 E^™) n 5J?i. We are going to prove that there exist e, R, 0 < e < R,
and M > 0 such that for

S = £1 D dBe, and Q = {svm :0^a^R}@E2n BR,

the following conclusions hold:

(4.2) l o .J(«)^0on5;

2°./(u)«$0ondQ;

If 1° - 3° in (4.2) hold true, then by Theorem 3.1 or Theorem 3.2 we know that I
has a critical value c > 0 corresponding to a nontrivial critical point, and hence (1.3)
has a nontrivial solution as required.

For it € Ei, we have

I(u) = -(1/2) jf (|£>«|2 - \hu2)dx + /(«) > -(1/2)(1 - A»/Am) ||«||2 + J(u).

Since E\ is finite dimensional, u G E% small in norm implies max|u(a;)| is small.

Therefore by (7)m we can find e > 0 sufficiently small such that for « G Ei H dBt,

J{u) > (l/2)(Am - Xh) f u2(x)dx > (1/2)(1 - A*/Am) ||«||2 .

Thus 7(u) ̂  -(1/2)(1 - Ai/Am) ||w||2 + J{u) ̂  0, and 1° is satisfied.

Denote

Qi = {svm : 0<j<«} f f l£ ,n 8BR, Q3 = BRD E*, Qa = {Rvm}
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Clearly dQ = Q\ U Q2 U Q3.

By {II)m we get for u 6 E* that

/(«) = -(1/2) / (\Du\2 - Xku
2)dx + / («)

(4-3) 7 ° V ^
< -(1/2)(1 - At/Am+1) ||u||2 + l/2(Am+1 - Xk) / u2dx < 0.

By (III) we get

(4.4) Urn J(Rvm) = -oo.

Now for u £ Qit suppose t* = Rvm + v, v € BR H E2. By the boundedness of p
and (4.4) we obtain

/(it) = -1/2 / (\Dv\2 +R2 \Dvm\2 - Xhv2 - R^X^dx + J(Rvm +v)

< -1 /2 J (\Dv\2 - Xhv2")dx + J(Rvm) + J(Rvm +v)- J(Rvm)

< -1/2(1 - Afc/Am+1) ||t,||
2 + J(Rvm) + f fRVm+Vp(x,i)dtdx

< -1/2(1 -A4/Am+1)| |t;| |2+ max|p(*,<)| / \v\dx + J(Rvm)
Jo

^ -1/2(1 - A»/Am+1) ||w||2 + Mi \\v\\ + J{Rvm) -*-oo(R-> oo).

For tt G Q\ , suppose « = svm + v, v G 5 5 R H E2, 0 ^ « < R. Then

7(u) < -1 /2 J (\Dv\2 - Xkv
2}dx + J(svm + v)

^ -1/2(1 - Xk/Xm+1)\\v\\2 + max \p{x,t)\ f (\v\ + s \vm\)dx

< -1/2(1 - Ai/Ara+1)fl2 + M2R -+ -oo(R -* 00).

From (4.5), (4.6) and (4.3) we see that 2° in (4.2) is satisfied.

For ue Q, suppose « = svm +v, 0 ^ a ^ R, v e BRHEI. Then

/(«) < -1/2 j (\Dv\2 - Xhv2")dx + J(v + avm) ^ J(v + svm)

max|p(a;,0l / (\v\ +s\vm\)dx ^ M2R.
Ja

Hence 3° is satisfied. The proof is complete. D
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Let us make a few remarks before giving proofs of the other theorems.
First, from the proof of Theorem 4.1 we see that the conditions in this theorem

can be replaced by:

(')m Sa P{*M*))** > V2(Am - A»)Sn«(*)2<k for uedB.nEltc small;
Wm Jo /»(»,«(*))<*• < l/2(Aro+1 - \h) Jo u(x)*dx for « G E2;
( / / / ) ' p is bounded, / o P(x, u(x))dx -» -oo for u € E™ and ||u|| -» oo.

Second, in the proof of Theorem 4.1, since 0 G 8Q, we must have

sup /(«) == 0.
x£8Q

Furthermore, since S is compact, one can easily check that

inf /(«) > 0

if and only if ( / ) m is satisfied and

/ P(x,u(x))dx > l/2(Am - Xk) f u2dx for all « 6 0Bt n £ ( r o ) .

Therefore, in this case, the relaxed boundary condition provides a better result
than the original one.

PROOF OF THEOREM 4.2::

Let 7, E, S, Q be denned as in the proof of Theorem 4.1. Now / satisfies condition
(C) by (IV) (see [1]). Since 5 is bounded, from Theorem 3.2 we see that to complete
the proof it suffices to prove 1° - 3° in (4.2).

It follows from (IV) that p is bounded, and so by ( / ) m , (//)TO and the proof of
Theorem 4.1 we see that 1°,3°, (4.3) and (4.6) are all satisfied.

For u E Q j ,

(u) = -1/2 J - \ku
2)dx + J(u)

-1/2(1 - Xk/Xu+i) \\uf + M \\u\\ - - co (R -» oo).

This together with (4.3) and (4.6) shows 2° in (4.2) is satisfied. And the proof is
complete. D

PROOF OF THEOREM 4.3:

Let I, E and E& be defined as in the proof of Theorem 4.1. Define

El=
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Then dim£? -dimJEi = E?l4m(Aj).
Since p satisfies (III) or (IV), / satisfies condition (C) and so by Theorem 3.4 we

need only prove that for some positive numbers p and R,

/ («) ^ 0 on 8BP D E2 and / («) < R on E^.

By (/)r o and the proof of Theorem 4.1, there exists p > 0 sufficiently small such
that / («) > 0 for « € dBp D E2.

Let

Then JE?̂  = £<*> ®E3. For tt 6 ftf", suppose u = vh + v,vk E E<-h\v G E3. Then

I(u) = -1/2 f (\Dv\3 - A4«2)dz + J(vh + v)

(4 7)
-1 /2(1 - A*/A*+1) ||«||2 + J(vk) + M \\v\\

Mi + sup J(vk)
()

where M, Mi are constants independent of u.

From (IV) we can easily prove that J is bounded on E^ and hence it follows
from (4.7) that there exists R such that / (u) < R on E^. The proof is complete. D
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