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Abstract. We discuss specific properties of dynamical systems originating from cosmology and 
relativity. In particular, we present results of our study of the Bianchi class A cosmological models. 
We introduce new variables in which the Hamiltonian constraint for all the class A models is solved 
algebraically. We present results of dimension reduction of the investigated models. 

1. Introduction 

Models of relativistic cosmology are based on Einstein's theory of gravitation. The 
Einstein field equations describe the dynamical evolution of spacetime, as well 
as the motion of matter and physical fields. They provide a system of coupled, 
non-linear, partial differential equations. Without some simplifying assumptions or 
idealization they are intractable by analytical tools. The most natural assumption is 
to postulate a certain symmetry of space-time. Usually, such idealization allows to 
reduce Einstein's field equations to a system of ordinary differential equations. This 
reduction gives us a possibility to use the rich theory of dynamical systems. It has 
to be mentioned, however, that dynamical systems of cosmological (or relativistic) 
origin have many special features which distinguish them from a 'typical' dynam­
ical system we meet in dynamical astronomy, classical mechanics or physics. Let 
us mention a few of them. We can assume that systems we meet have the following 
form 

x = v(x), x £ Rn. (1) 

1. Although the right hand sides of (1) are polynomial, in many cases it is not 
obvious if the phase flow of this system is complete. It seems that in some cases 
it is not. It is important to point it out, because for systems with an incom­
plete flow customary indicators of chaos are not defined, although numerical 
algorithms do not distinguish between complete and incomplete flows. 

2. In many cases the system (1) has a first integral H. Usually, only solutions 
lying on the level 

M = {xeRn\H(x) = 0}, 
have a physical interpretation. Thus we have to restrict our system to an 
invariant set M. However, in many investigations this point is simply ignored. 
For example, when we ask for the existence of one or more additional first 
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integrals then a negative answer for the non-restricted system is not valid for 
the system restricted to M. 

3. In most cases the equilibria of (1) are degenerated and lie on an one or higher 
dimensional manifold of equilibria. 

4. Frequently the system (1) is Hamiltonian with respect to the canonical sym-
plectic form u on Rn, n — 2m, and the first integral H plays the role of the 
Hamiltonian function, i.e., u(v, •) = dH. Usually, the Hamiltonian has the 
'natural' form 

H = lgl3PiPj+V(q), x = (q\...,qm,pu...,pm)eR2m, 

however, the 'kinetic' energy T = \gl^piPj is not positive definite. Because 
of this, there exists no such notion as 'region of possible motion' which plays 
a fundamental role in studies of natural mechanical systems in classical me­
chanics. It seems that systems with indefinite kinetic energy possess their own 
specific properties, however, investigation of these systems is far from being 
complete. 

The last decades gave an immense popularity to the notion of deterministic 
chaos. Thus, it was natural to look for this phenomenon in the systems mentioned. 
However, a lot of controversies arose around this subject. On the one hand, these 
disputes were connected with the numerical character of the obtained results, and, 
on the other hand, they were caused by some conceptual problems. Here we point 
out some aspects of this discussion showing our point of view. 

The main example of our discussion are class A Bianchi cosmological models. 
In fact, the controversy about chaotic or non-chaotic behavior concentrates around 
Bianchi IX model. We describe these models in the next section. In Section 3 we 
present our original results connected with reduction and simplification of class A 
Bianchi dynamical systems. 

2. Bianchi Class A Cosmologies as Dynamical Systems 

Let us assume that space-time has a product topology of type R x M3, where 
M3 is 3-dimensional space-like section admitting the action of simply transitive 
isometry group, i.e. homogeneity group; then Einstein's equations take the form of 
a system of ordinary differential equations. The classification of all 3-dimensional 
homogeneous but anisotropic spaces according to the Lie algebra of the isometry 
group is called the Bianchi classification (Landau and Lifshitz, 1975). 

In this contribution we consider only subclass A of all Bianchi types for which, 
without any loss of generality, one can assume that the metric of M3 is diagonal, 
i.e. 

ds2 = (abc)dTZ - 77a6(/)(etW)(e^a;J'), (2) 

where 

7?o6 = diag||a2(0,62(i),c2(0ll, a,6= 1,2,3, (3) 

https://doi.org/10.1017/S0252921100072377 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072377


BIANCHI COSMOLOGIES AS DYNAMICAL SYSTEMS 19 

ua — ef dx% form the base of invariant 1 -forms depending only on spatial variables 
(x%) = (x, y, z), while rjab is a symmetric metric tensor depending only on the 
cosmological time t: dt = abcdr; r is called the synchronic time. 

The (a, b) components of Einstein's field equations 

4 = 0, (4) 

for our case give 

2(loga)TT = [nzb — n^c ) — n^a , 

2(log b)TT = (n\a2 - n\c2)2 - n4
2b\ (5) 

2(logc)TT = {n\a2 - n\b2)2 - n\cA, 

where ra,- e {0, +1 , - 1 } distinguish the Bianchi type of model. From the (0,0) 
component R° = 0 we obtain 

-(\ogabc)TT = (loga)T(log6)T + (loga)T(logc)T + (logfc)T(logc)T. (6) 

After a simple manipulation, we obtain from (5) and (6) the following identity 

H = H(a, b, c, aT, bT, cT) = 0 , 

where H is first integral of (5) of the form 

H = (loga)T(log6)T + (loga)T(logc)T + (log 6)T(log c)T 

+ ^(n{a4 + n4
2b

4 + n\cA - 2n\n\a2b2 - 2n\n\a2c2 - 2n\n\b2c2). (7) 

The system (5) forms fundamental dynamical equations for the evolution of 
three different scale factors a, b, c in three different main directions. In the special 
case when a = b = c equations (5) represent the Friedmann-Robertson-Walker 
(FRW) models. Therefore, the Bianchi models are more general than the FRW 
models (standard models of current cosmology), because we assume only homo­
geneity of space-like sections. There are different reasons to analyze the evolution 
of cosmology models which are more general than FRW models (see Wainwright 
and Hsu, 1989 for details) but the main problem is to find a more realistic descrip­
tion of the very early evolution of universe which leads to the presently observed 
galactic epoch. 

Now, we transform the system (5) to a set of first order homogeneous polynomial 
equations. To this end let us introduce new variables 

2/i = a2, y2 = b2, y3 = c2, z{ = —. (8) 
Vi 

After this change of variables the system (5) reads 

Vi = ViZi, Zi = (njVj ~ nkyk)2 - n2y2, (9) 
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where a dot denotes differentiation with respect to r. In the new variables first 
integral (7) has the form 

3 3 

H = Yl (zizi + IniniViVj) - ^2nhf- (1°) 

The basic problem is to investigate qualitative properties of the above system. 
Dynamical systems methods were first applied in the study of the Bianchi 

cosmologies by Collins (1971) who considered a number of special cases in which 
the phase space was two-dimensional. The systematic approach to the study of 
dynamics of all Bianchi cosmological models was initiated by Bogoyavlenski 
(1985) who investigated their evolution in 5-dimensional phase space. Another 
description of the dynamics of Bianchi class A models as a dynamical system 
was presented by Wainwright and Hsu (1989). They used expansion-normalized 
variables and an orthonormal frame approach (for details see Wainwright and Ellis, 
1997). 

There exist several directions in which we can start our study. It seems, how­
ever, that the most interesting problems can be extracted from studies of Bianchi 
IX (Mixmaster) model, for which n\ = n% — n3 = 1. The numerically computed 
maximal Lyapunov exponent for this system was zero or different from zero de­
pending on the time parametrisation. Because an approximation of the Mixmaster 
model by a discrete map has strong chaotic properties (Chernoff and Barrow, 1993), 
it was natural to expect such a behavior in the original system. However, as Cush-
man and Sniatycki (1995) proved, there exists no recurrence in the system and, 
thus, no form of standard deterministic chaos is present in it. Interesting numerical 
works (Cornish, 1997; Cornish Levin, 1997), where 'parametrisation independent' 
characteristics of chaos were used, do not make big progress in understanding the 
system. The point is that in these works a certain approximation of the Mixmaster 
model was investigated, not the Mixmaster model itself. Moreover, one notices 
several very unprecise notions used in these investigations. 

Because a strict proof of chaotic (in a certain sense) behavior of this system 
seems very difficult, several authors tried to show that the Mixmaster model is not 
integrable. It must be mentioned that 'integrability' here was understood differ­
ently by different authors. Several authors tested if the model passes the standard 
Painlev6 integrability test in the form of the ARS algorithm (Ramani et at, 1989). 
Contopoulos et at (1993) indicated that the B(IX) model passes this test. This 
result was revised (Contopoulos et at, 1994), however, without any strict conclu­
sions concerning integrability. Further studies of Latifi et at (1995) showed that 
the B(IX) model does not pass the so called perturbative Painleve test. The authors 
of this paper suggest the existence of 'some chaotic regimes' in the system. The 
strongest result in this direction was obtained in (Contopoulos et at, 1995) where 
the authors show the existence of movable critical essential singularities in the 
B(IX) model. This kind of investigations connect a complicated behavior of the 
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system with singularities of their solutions on the complex time plane. It should 
be mentioned, however, that the relation between Painlev6's test and integrability, 
e.g. in the Liouville's sense, is not clear. One can notice also that the integrability 
problem was stated for the global system, not for its restriction to the level H = 0. 

The strongest and mathematically precise result concerning the Mixmaster 
model was obtained by J.J. Morales-Ruiz and J.-P. Ramis on the base of their 
theory connecting Ziglin's method and differential Galois theory (Morales-Ruiz 
and Ramis, 1997). We state this result shortly. The Mixmaster model can be formu­
lated as a Hamiltonian system. There exists a four dimensional invariant manifold 
T on which the system can be integrated explicitly. Solutions of the system re­
stricted to T are known as Taub solutions. Studying variational equations around 
Taub solutions J.J. Morales-Ruiz and J.-P. Ramis proved that the Mixmaster model 
considered as a complex Hamiltonian system is not completely integrable (in the 
Liouville sense) with rational first integrals. 

We make a few remarks about these results. First, it was not excluded that this 
system possesses one addition rational integral or is integrable in terms of non-
rational integrals. Moreover, it can possess an additional integral only on the level 
H — 0 or it can be integrable on it. Thus, by no means, the result of Morales-Ruiz 
and Ramis closes the subject. 

From the above it follows that investigations of system (9) need strong and 
precise tools, and that the most interesting questions are connected with (partial) 
integrability of this system. 

Although the Mixmaster model seems to be the most attractive, we decided to 
analyze all class A Bianchi models. Models from this class which have a regular 
behavior can be used to approximate the complex behavior of Mixmaster models 
( Belinskii et al, 1982). It will be shown that the dynamics of the B(I) and B(II) 
models can be represented on a two dimensional phase space, whereas for the 
B(VI0) and the B(VIIo) dynamical systems are three dimensional. The dynamics 
of these systems can be described precisely. 

3. The Bianchi Class A Models in the Reduced Form 

The main idea that we propose to apply for the study of the Bianchi class A 
models is the following. The right hand sides of the system (9) are homogeneous 
polynomials of degree two. Let us denote the vector field connected with them by 
X. The homogeneity of the system can be considered as its certain generalized 
symmetry. In fact, if we introduce the Euler vector field 

then it can be shown that 

LEX:=[E,X) = X, 
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where LE denotes the Lie derivative along the vector field E, and [•, •] denotes 
the Lie bracket. This symmetry can be used to lower the dimension of the system. 
Moreover, we want to restrict explicitly the system to the zero level of first integral 
H = 0, because of the physical interpretation of our system. We will also try to 
preserve the polynomial form of the right hand sides (Maciejewski and Szydlowski, 
1998). 

We start from the following change of variables 

where 

Wl = yi + V2, W2 = yi-V2, W3 = V3- (11) 

Then the system (9) has the form 

— = p(u3,u4,u5) -2uiuj, (12) 

—- = -p(ui,u4,u5)-2u2U3, (13) 
as 

- ? = ~ {[(«2 - «i)«5 - (»i + n2)u4]
2 - \n\ - 4«f}, (14) 

as I 
— = (tii +u2- 2ui)u4 + (tii - ^2)^5, (15) 

- r - = (til +U2- 2ti3)ti5 + (til - M2)«4, (16) 
as 

—— = 2ti3ti6, (17) 
as 

where 

p(ti3, u4, u5) = -{(n2 - ni)u5 + {-n\ - n2)u4 - 2n3] X 

[{n\ + n2)u5 + (ni - n2)u4 - 2n3], 

and ds — ju^dr. 
Let us notice that in equations (12-16) the variable U(, does not appear explicitly, 

i.e. the dynamical system (12-17) separates into two subsystems, from which 
system (12-16) is closed. The time dependence of the variable tx6 is determined by 
integration of the equation (17) 

u6 = ti06exp / «3(r ')dr' . (18) 

Therefore instead of studying the 6-dimensional system (12-17) one can study 
only the system (12-16) because the full information about the dynamics is con­
tained in the reduced system. Thus, our system has five 'true degrees of freedom'. 
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TABLE I 
The collection of constants n, and the respective forms of the first integral for Bianchi A 
cosmological models, k denotes the dimension of the reduced system. 

Bianchi type 
BI 

BII 

BVIo 
B VIIo 
BVIII 
BIX 

nx 

0 
"2 

0 

0 
-1 
1 

1 
1 

"3 

0 

0 

0 
0 
-1 
1 

first integral 
H = T,Uj uiui 

H = Y?i<j uiui ~ «5 
H = Tfi<j u'ui ~ ul 
H — Y,i<j Uiuj - «4 - 2U5 - 1 
H = Y^i<j uiuj ~ W4 + 2«5 - 1 

* 
2 

2 

3 

3 
4 
4 

Moreover, the system (12-17) has the first integral 

3 i 1 

H = ] P UiUj - -(ni - n2)ul - -An\ + n2)
2u\ - n\ 

+ -(«2 - nj)u4U5 + (nin3 + n2n3)-a5 + (nin3 - n2n3)w4, (19) 

which in turn can be used to reduce the dimension of dynamical system by one. 
Table 1 contains the forms of first integral (19) for all Bianchi class A types. It 

is easy to see that in all cases one variable can be eliminated, for example in the 
most general case of the Mixmaster models (B(IX) and B(VIII)) it is possible to 
eliminate the variable u5 if we take into account that 

1 3 

us = 2ni(u4 + l ~ X] uiui)i (2°) 

on the level H = 0. For these two systems four equations (12-15) with us defined 
by (20) form a closed system. It defines the reduced dynamics for the B(IX) and 
B(VIII) models. An important outcome of this reduction is the fact that we are able 
to prove that neither of these systems (considered o n ^ ) has an additional analytic 
first integral. A proof of this fact for the B(IX) model can be found in our paper 
(Maciejewski and Szydlowski, 1998). For the B(VIII) model the proof is similar. 

For the rest of the class A Bianchi models we can perform a next step of 
reduction. Here we present only some basic facts. Details and complete analysis of 
the reduced systems will be published elsewhere. 

For the Bianchi I model, the first three of equations (12-17) can be integrated 
explicitly. The last two after redefinition of the time variable u\ ds = ds can be writ­
ten in the form of two linear differential equations depending on two parameters. 
Thus, we can perform a complete analysis of this system. 
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For the Bianchi II model three equations separate from the rest and they have 
the following form 

—- = -2K(ui,u2,U3,) - 2u\u$, (21) 
as 

- j— = 2K(uuU2,u-$) -2u2U3, (22) 
as 

—— = 2K(uuU2,U3)-2ul, (23) 
as 

where K(ui, 112,113) = Y^<juiuj- Because the right-hand sides of the above 
system are homogeneous functions of order two, we can introduce the projective 
variables and reduce it to a two dimensional system, which can be integrated 
explicitly. 

For the Bianchi VIo and B VII0 models the reduction leads to a three dimensional 
system of the form 

g = -s
2 + (z+iy, (24) 

% = -4{z + l) + xyz, (25) 
as 
dz 
— = -yz(z + 2). (26) 

This system has two two-dimensional invariant manifolds z = 0 and z = -2 . 
On these manifold we can perform explicit integration. It is unclear if the system 
(24-26) is integrable or not. 
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