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Abstract

In this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical
linear differential equations of third order. Some of these results have been extended to non-linear
equations.

1991 Mathematics subject classification (Amer. Math. Soc): 34C10, 34C11.

1. Introduction

In [1] Barrett considered homogeneous third-order linear differential equations of the
form
(H)

where rur2,qy and q2 € C([a, oo), R), a e R, r^t) > 0 and r2(t) > 0. By a
solution of (H) on [a, oo) we mean a function y e Cl([a, oo), R) such that rxy' and
M(7i / ) ' + qiy) € Cl([a, oo), R) and (H) is satisfied identically. We call (H) the
third-order canonical form. The adjoint of (H) is given by

(H*) [nit) {(r2(t)y'Y + q2(t)y}]'+ qi(t)(r2(t)y') = 0.

We may note that (H*) is obtained from (H) by interchanging rx with r2 and q\ with q2.
The non-homogeneous equations associated with (H) and (H*) are given, respectively,
by
(NH) [r2(0 {{rx(t)y')'+ qx{t)y)] + q2(t){rx{t)y') = /,(?)

and
(NH*) [nit) {(r2(t)y')'+ q2(t)y}]'+ qi(t)(r2(t)y') =
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[2] On non-homogeneous canonical third-order differential equations 139

with fi and gi e C([a, oo), R) such that / , (t) > 0 and gi (t) > 0.

Suppose that /a°° dt/r^t) = oo. The Liouville transformation 5 = R(t), x(s) =

y(t), where R(t) = fa du/r\{u), transforms (NH) into

( d [ r j ^ ) d h c + + d x ^
ds \_r\(t) ds2 J ds

with t — R~l(s). If /a°° dt/rx{t) < oo, then the Kummer transformation s = l/p(t),
x(s) = sy(t), where p(t) = /(°° du/r^u), transforms (NH) into

(2) J3 + ? ( 0 ^ +
5 [_ri(0 ds2 s \ s ds s2

with f = /o"'(l/i) . However, Equation (2) may be written as

(3) j-s U(s)^ +

where a(s) = r2(f)53/''i(0, Hs) = r2{t)qx(t)/s, n(s) = rx(t)q2{t)/s and
rx{t)q2{t)ls2.

We may note that x(s) is non-oscillatory if and only if y(t) is non-oscillatory.
Furthermore, Equations (1) and (3) have the same general form. If f™dt/r2(t) = oo
or /o°° dt/r2{t) < oo, then (NH*) is transformed into an equation of the type (1) or
(3) which is obtained by interchanging rx with r2 and <7i with q2. Hence it is enough
to study the equations of the form

(E) (r(t)y" + p(t)y)'+q(t)y' =

where p , q, r and / e C([a, oo), R), r(t) > 0 and f(t) > 0.
We recall that a function y e C([a, oo), R) is said to be oscillatory if for every

t\ > a there exist t2 and f3 (tt < t2 < f3) such that y(t2) > 0 and y(?3) < 0. It is
said to be of Z-type if it has arbitrarily large zeros but is ultimately non-negative or
non-positive. A function y(t) is said to be non-oscillatory if it is neither oscillatory
nor of Z-type. Equation (E) is said to be non-oscillatory if all of its solutions are
non-oscillatory.

Linear non-homogeneous third order differential equations of the type

(4) (r(t)y")' + q(t)y' + p(t)y = f(t)

occur in the study of the entry flow phenomenon in hydrodymics [3]. We note that
Equation (4) is a particular case of (E). Indeed, we may write Equation (4) as

+ (f p(s)ds\ y~\ + (q(t) - j p(s)ds\ y' = f(t).
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Unlike the second order case, equation (4) cannot be transformed to an equation of
the type

x'" + c(t)x'+ b(t)x = h(t)

when /a°° dt/r(t) = oo or /a°° dt/r(t) < oo.
The purpose of this paper is to study non-oscillatory behaviour of solutions of (E).

In the process, we obtain a result which generalizes a result in [5]. In Section 2 we
obtain sufficient conditions for non-oscillation of (E). It is interesting to note that this
study is applicable to a class of non-linear equations. Section 3 deals with the relation
between three independent solutions of (E).

2. Non-oscillatory behaviour of solutions

In this section we obtain sufficient conditions for non-oscillation of (E). The same
techniques are then used to obtain non-oscillation results for certain classes of non-
linear equations (see Equations (7) - (11) below).

THEOREM 1. If p(t) < 0 andq(t) < Ofor large t, then (E) is non-oscillatory.

PROOF. Let y(t) be a solution of (E) on [a, oo). Let p(t) < 0 and q{t) < 0 for
t > t0 > a. Let y(t) be of non-negative Z-type with consecutive double zeros at t\
and t2 (t0 < ti < t2). So there exists a b e (th t2) such that y'(b) = 0, y"(b) < 0 and
y'(t) > 0 for t e (tu b). Integrating (E) from t\ to b, we get

0 > r(b)y"(b) + p(b)y(b) - c(h)y"(tx)

/

b pb

f(t)dt- I q(t)y'(t)dt>0
because y"(tx) > 0. Suppose that y(t) is a non-positive Z-type solution with consec-
utive double zeros at tx and t2 (t0 < h < h)- Then there exists b e (tx, t2) such that
y'(b) = 0 and y'(t) > 0 for t e (b, t2). We note that y"(b) > 0 and y"(t2) < 0. Now
integrating (E) from b to t2 yields

0 > r(t2)y"(t2) + r(b)y"(b) - p(b)y(b)

2q(t)y'(t)dt>0,
Jb

a contradiction. Hence y(t) cannot be of Z-type.
Suppose that y(t) is an oscillatory solution with consecutive zeros at tu t2 and ?3

(t0 < h < t2 < t3) such that y(t) < 0 for t e (tu t2) and y(t) > 0 for t e (t2, ?3). So
there exist b e (tu t2) and c e (t2, t3) such that y'(b) = 0, y'(c) = 0, y'(t) > 0 for
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t 6 (b, t2) and y'{t) > 0 for t e (t2, c). If y"(t2) > 0, then integrating (E) from t2 to
c, we obtain

0 > r{c)y"{c) + p(c)y(c) - r{t2)y"(t2) = f fit) dt - f q(t)y'(t)dt > 0,

a contradiction because v"(c) < 0. Furthermore, if y"{t2) < 0 then integrating (E)
from b to t2 yields

0 > r{t2)y"{t2) - r(b)y"(b) - p(b)y(b) = f / ( 0 dt - f \{t)y'{t) dt > 0,
Jb Jb

a contradiction, because y"(b) > 0. Hence y(t) cannot be oscillatory. This completes
the proof of the theorem.

THEOREM 1'. // fa p{9)dO < 0 and q(t) < J'a p(9)dO for large t, then Equa-
tion (4) is non-oscillatory.

PROOF. This result follows from Theorem 1.

REMARK. We note that pit) < 0 implies J'api9)d9 < 0 but the converse is
not necessarily true. Furthermore, pit) — q'it) > 0 implies qit) < fa pi9)d9, if
qia) < 0. Hence Theorem 1' improves Theorem 2.1 in [5].

THEOREM 2. If pit) > 0, qit) < 0 and pis) + qit) < 0,for t and s e [a, oo) and
pis) + qit) ^Oon any subinterval of [a, oo), then (E) is non-oscillatory.

PROOF. Let yit) be a solution of (E) on [a, oo). If yit) is of non-negative Z-type
with consecutive double zeros at t\ and t2 (a < tt < t2), then there exists a point
b e itut2) such that y\b) = 0 and y'(?) > 0 for t e (tx, b). Since y" > 0 and
y"(b) < 0. then integrating (E) from ?i to b, we obtain

0>rib)y"ib)-ritl)y"itl)

>-pib)yib)- / qit)y\t)dt

pib)]y'it)dt>0,

a contradiction. If yit) is of non-positive Z-type with consecutive double zeros at t\
and t2 ia < tx < t2), then there exists a point b e (h,t2) such that y'ib) = 0 and
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y'(t) > 0 for t G {b, t2). Clearly y"(b) > 0 and y"{t2) < 0. So integrating (E) from b
to ?2 yields

0 > r(t2)y"{t2) - r(b)y"(b)

f'2
> p(b)y(b) — I q(t)y (t)dt

Jb

-p(b)]y'(t)dt>0,Ib

a contradiction. Hence y{t) cannot be of Z-type.
Suppose that y{t) is oscillatory. Let ti,t2, t3 (a < t\ < t2 < f3) be consecutive

zeros of y(t) such that y'(tx) < 0 and y'(t2) > 0 and v'(f3) < 0. So there exist
b e (tu t2) and c e (t2, t3) such that y'(t) > 0 for / G (b, t2) and t G (t2, c). Clearly,
y"{b) > 0 and y"{c) < 0. If y"(t2) > 0, then integrating (E) from t2 to c, we obtain

0 > r(c)y"(c) - r(t2)y"(t2)

>-p(c)y(c)- fq(t)y'(0dt
Jt2

-p{c)}y'{t)dt>0,

a contradiction. If y"{t2) < 0, then integrating (E) from b to t2, we get

0 > r(t2)y"(t2) - r(b)y"(b)

>p{b)y(b)- f2q(t)y'(t)dt
Jb

> [ [q(t) + p(b)]y'(t)dt > 0.
Jb

This contradiction completes the proof of the theorem.

REMARK. The condition p(s) + q(t) < 0 for t and 5 € [a, oo) is equivalent to
P(s) < \q(t)\. Hence0 < p(s) < K < \q(t)\ for? ands e [a, oo), where A" > Oisa
constant, implies that p(s) + q{t) < 0.

THEOREM 2'. / / J'ap{u)du > 0, q(t) < fap(u)du and js
ap{u)du <

J'a p(u) du — q{t), then Equation (4) is non-oscillatory.

This follows from Theorem 2.

EXAMPLE. Consider

/ 3 „ _ J _ V _ , _ 2 ?(f +4)
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Clearly pis) = I/is + 2) < 1/3 < At = \qit)\ for s, t > 1. From Theorem 2 it
follows that Equation (5) is non-oscillatory. In particular, yit) = t2 is a non-oscillatory
solution of the equation. Note that Equation (5) may be written as

1 . 2 tit + A)

Clearly, Theorem 2' cannot be applied to (5). We note that

However Theorems 2 and 2' can be applied to the equation

(5?y + 2y)' - 8 / = 40t3 - I2t, t > 0,

which admits the non-oscillatory solution y(t) = t2 .

The proofs of the following two results are similar to the proofs of Theorem 2 and
2' and hence will be omitted.

THEOREM 3. If p(t) < O,q(t) > 0 and pit) + q{s) < Ofor t and s e [a, oo) such
that p(t) + q(s) ^ 0 on any subinterval of [a, oo), then (E) is non-oscillatory.

THEOREM 3'. / / fap(u)du < 0, q(t) > fap{u)du and j'ap{u)du <
Js

a p(u)du — q(s), then Equation (4) is non-oscillatory.

Our last non-oscillation result for linear equations is contained in the following
theorem

THEOREM 4. Let p(t) > 0 and q(t) > 0. / / Yim,^ f{t)/{p{s) + q(t)) = oo
uniformly for s > a, then every solution of (E) whose first derivative is bounded is
non-oscillatory.

PROOF. Let y(t) be a solution of (E) on [a, oo) such that \y'(t)\ < L for t > a.
From the given hypothesis it follows that there exists aT > a, independent of s, such
that f{t) > Lipis) + qit)) for t >T.

Suppose that yit) is of non-negative Z-type with consecutive double zeros at tx and
t2 (7

1 < tx < t2). Then there exists b e itu t2) such that y\b) = 0 and y'it) > 0 for
t € it\,b). Now integrating (E) from ?, to b, we get

0 >/•(&)/'(&)-r(/,)/('i)

= -p(b)y(b)- I qit)y\t)dt+ f f(t)dt
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= - f [<7(0 + P(b)] y'it) dt+ [ fit) dt

> I [fit) - Liqit) + pib))] dt > 0,

a contradiction. Similar contradiction may be obtained in case yit) is non-positive
Z-type or oscillatory. Hence the theorem is proved.

REMARK. The Liouville transformation transforms

(6) fait) (iriiOy')' + qiiOy")]' + q2iO(r\it)y')P = fit),

where q\,q2,r\, r2 and fx are as in (NH) and each of a > 0 and fi > 0 is a quotient
of odd integers, to an equation of the type

(7) (rit)f + pit)ya)' + qitKyY = fit).

However, the Kummer transformation fails to do so.

THEOREM 5. If pit) < 0 and qit) < 0, then (7) is non-oscillatory.

The proof of this theorem is similar to that of Theorem 1 and hence is omitted.

REMARK. Theorems 1-5 all remain true if the condition, 'fit) > 0' is replaced by
7(0 < 0'.

Equations of the type

(8) y"' + yy" + k[l-(yf)2] = 0

arise in boundary layer theory in fluid Mechanics cite[p. 520]2. The particular case
of (8), v'" + v v" = 0, is known as the Blasius equation. In the following we study the
non-oscillatory behaviour of solutions of the non-homogeneous Blasius equation

(9) / " + yy" = fit)

where / e C([a, oo), R) is such that fit) > 0.

THEOREM 6. All solutions of Equation (9) are non-oscillatory.

PROOF. Equation (9) may be written as

(10) [y" + yy']' = iy')2 + fit).

Let yit) be a solution of (10) on [a, oo). Proceeding exactly as in Theorem 1, one
may show that yit) cannot be of Z-type or oscillatory. Hence yit) is non-oscillatory.
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The following examples illustrate the theorem.

EXAMPLES.

(i) The equation y'" + yy" = 0 admits both positive and negative solutions
yi(t) = t and y2(t) = -t,

(ii) The equation / " + yy" = 8/t4, t > 1, admits the positive bounded solution
y(t)=4/t,

(iii) y(t) = —e~' is a bounded negative solution of

/ " + yy" = e~' + e~2', t>0.

The asymptotic behaviour of solutions of Equation (8) has been studied by Hart-
man [2]. Equation (8) with X = 1/2 is often called the Homann differential equation.
In the following we obtain a theorem concerning non-oscillatory behaviour of solu-
tions of non-homogeneous equation associated with Equation (8), that is,

(11) y'" + yy" + i[i-(y')2] = f(t),

where / e C([a, oo), R) is such that f(t) > 0.

THEOREM 7. If— 1 < A. < 0 then all solutions ofEquation (11) are non-oscillatory.
Ifk > 0a«6?lim,_).oo f(t) = oo, then all solutions ofEquation (11) are non-oscillatory.
If X < — 1 and lim,^oo / ( 0 = oo then all solutions of Equation (11) whose first
derivatives are bounded are non-oscillatory.

PROOF. The equation (11) can be written as

( / ' + yy')' = (1 + X)(y')Z + f(t) - X.

In each case we see that the right-hand side of the above identity is positive for
sufficiently large t. Then proceeding as in Theorem 1 we may show that all solutions
of (11) are non-oscillatory. Hence the proof of the theorem is complete.

EXAMPLES.

(i) All solutions of

y'" + yy"-[l-(y')2] = 6t2-\, t>\,

are non-oscillatory. In particular, y(t) = t2 is a non-oscillatory solution of
the equation.
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(ii) The equation

is non-oscillatory with a particular non-oscillatory solution y(t) = —\/t.
(iii) The equation

y'" + yy" + [l-(y')2] = l+e', t>0,

is non-oscillatory, hi particular, y(t) = e' is a non-oscillatory solution of the
equation.

3. Relation between linearly independent solutions

hi this section we study the relation between three linearly independent solutions
of (E). Let y\(t), yi(O and y3(t) be solutions of (E) with initial conditions

yi(a) = 0 y[(a) = I tf(a) = 0
yi(a) = 1 y'2(a) = 0 y2'(a) = -q(a)/r(a)
y3(a) = 0 y'3(a) = 0 y'^a) = l/r(a)

THEOREM 8. If p(t) < 0, q(t) < 0 and q'(t) > 0, then yx(t) cannot meet y2(t) in
the strip [a, t{), where tx is given by

PROOF. From Theorem 1 it follows that y^t) and y2(t) are non-oscillatory. Suc-
cessive integrations yield

- f ([ -^
+ f (f ~7Ja \Ja r(s

and

f. Of ̂ >)d'+1 if.
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Iffi > aisthefirstpointwhere>'1(r)meets>'2(?),theny1(f1) = y2(ti)andyi(t) < y2(t)
for t e [a, r,). Thus y2(h) > 1 + p(a) j'a

l (£ du/r(u)) ds + yx{tx) - (r, - a), that is,

Hence the theorem is proved.

REMARK. The conclusion of Theorem 8 holds if
(i) pit) > 0, qit) < 0 , such that pit) + q{t) < 0 and q'(t) > 0;
(ii) /HO < 0. <7(0 > 0 such that p(f) + <?(?) < 0 and q'{t) > 0

However, if p(t) > 0, q(t) > 0 and g'O) < 0, then Vj (r) cannot meet v2(0 in the
strip [a, ti), where t{ is given by

/

'' / fs du \
( / ~T~ ) d s

\Ja r\u)/

THEOREM 9. If p{t) < 0, q(t) < 0 and q'{t) > 0, then y3(t) cannot meet yx{t) in
the strip (a,t\), where t\ is given by

Ja \Ja r(u)J

and y3(t) cannot meet y2(t) in the strip [a,t\), where tx is given by

The proof of this theorem is similar to that of Theorem 8 and hence is omitted.

REMARK. The conclusion of the above theorem remains true if
(i) p{t) > 0, q(t) < 0, such that p(t) + q(t) < 0 and q'{t) > 0,
(ii) p{t) < 0, qit) > 0 such that pit) + qit) < 0 and q\t) > 0 .
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