ON NON-HOMOGENEOUS CANONICAL THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

N. PARHI

(Received 10 January 1991; revised 8 August 1991)

Communicated by A. J. Pryde

Abstract

In this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.

1991 Mathematics subject classification (Amer. Math. Soc.): 34C10, 34C11.

1. Introduction

In [1] Barrett considered homogeneous third-order linear differential equations of the form

(H)
$$[r_2(t) \{ (r_1(t)y')' + q_1(t)y \}]' + q_2(t)(r_1(t)y') = 0$$

where r_1, r_2, q_1 and $q_2 \in C([a, \infty), R)$, $a \in R$, $r_1(t) > 0$ and $r_2(t) > 0$. By a solution of (H) on $[a, \infty)$ we mean a function $y \in C^1([a, \infty), R)$ such that r_1y' and $r_2\{(r_1y')' + q_1y\} \in C^1([a, \infty), R)$ and (H) is satisfied identically. We call (H) the third-order canonical form. The adjoint of (H) is given by

(H*)
$$[r_1(t) \{ (r_2(t)y')' + q_2(t)y \}]' + q_1(t)(r_2(t)y') = 0.$$

We may note that (H^{*}) is obtained from (H) by interchanging r_1 with r_2 and q_1 with q_2 . The non-homogeneous equations associated with (H) and (H^{*}) are given, respectively, by

(NH)
$$[r_2(t) \{ (r_1(t)y')' + q_1(t)y \}]' + q_2(t)(r_1(t)y') = f_1(t)$$

and

(NH*)
$$[r_1(t) \{ (r_2(t)y')' + q_2(t)y \}]' + q_1(t)(r_2(t)y') = g_1(t)$$

© 1994 Australian Mathematical Society 0263-6115/94 \$A2.00 + 0.00

with f_1 and $g_1 \in C([a, \infty), R)$ such that $f_1(t) \ge 0$ and $g_1(t) \ge 0$.

Suppose that $\int_{a}^{\infty} dt/r_{1}(t) = \infty$. The Liouville transformation s = R(t), x(s) = y(t), where $R(t) = \int_{a}^{t} du/r_{1}(u)$, transforms (NH) into

(1)
$$\frac{d}{ds} \left[\frac{r_2(t)}{r_1(t)} \frac{d^2 x}{ds^2} + r_2(t) q_1(t) x \right] + r_1(t) q_2(t) \frac{dx}{ds} = r_1(t) f_1(t)$$

with $t = R^{-1}(s)$. If $\int_a^{\infty} dt/r_1(t) < \infty$, then the Kummer transformation $s = 1/\rho(t)$, x(s) = sy(t), where $\rho(t) = \int_t^{\infty} du/r_1(u)$, transforms (NH) into

(2)
$$\frac{d}{ds} \left[\frac{r_2(t)}{r_1(t)} s^3 \frac{d^2 x}{ds^2} + \frac{r_2(t)}{s} q_1(t) x \right] + \frac{r_1(t)q_2(t)}{s} \frac{dx}{ds} - \frac{r_1(t)q_2(t)}{s^2} x = \frac{r_1(t)}{s^2} f_1(t)$$

with $t = \rho^{-1}(1/s)$. However, Equation (2) may be written as

(3)
$$\frac{d}{ds}\left[\sigma(s)\frac{d^2x}{ds^2} + \left(\lambda(s) - \int_a^s v(u)\,du\right)x\right] + \left[\mu(s) + \int_a^s v(u)\,du\right]\frac{dx}{ds} = \frac{r_1(t)}{s^2}f_1(t)$$

where $\sigma(s) = r_2(t)s^3/r_1(t)$, $\lambda(s) = r_2(t)q_1(t)/s$, $\mu(s) = r_1(t)q_2(t)/s$ and $\nu(s) = r_1(t)q_2(t)/s^2$.

We may note that x(s) is non-oscillatory if and only if y(t) is non-oscillatory. Furthermore, Equations (1) and (3) have the same general form. If $\int_a^{\infty} dt/r_2(t) = \infty$ or $\int_a^{\infty} dt/r_2(t) < \infty$, then (NH*) is transformed into an equation of the type (1) or (3) which is obtained by interchanging r_1 with r_2 and q_1 with q_2 . Hence it is enough to study the equations of the form

(E)
$$(r(t)y'' + p(t)y)' + q(t)y' = f(t)$$

where p, q, r and $f \in C([a, \infty), R), r(t) > 0$ and $f(t) \ge 0$.

We recall that a function $y \in C([a, \infty), R)$ is said to be *oscillatory* if for every $t_1 \ge a$ there exist t_2 and t_3 ($t_1 < t_2 < t_3$) such that $y(t_2) > 0$ and $y(t_3) < 0$. It is said to be of Z-type if it has arbitrarily large zeros but is ultimately non-negative or non-positive. A function y(t) is said to be *non-oscillatory* if it is neither oscillatory nor of Z-type. Equation (E) is said to be *non-oscillatory* if all of its solutions are non-oscillatory.

Linear non-homogeneous third order differential equations of the type

(4)
$$(r(t)y'')' + q(t)y' + p(t)y = f(t)$$

occur in the study of the entry flow phenomenon in hydrodymics [3]. We note that Equation (4) is a particular case of (E). Indeed, we may write Equation (4) as

$$\left[r(t)y'' + \left(\int_a^t p(s)\,ds\right)y\right]' + \left(q(t) - \int_a^t p(s)\,ds\right)y' = f(t).$$

Unlike the second order case, equation (4) cannot be transformed to an equation of the type

$$x''' + c(t)x' + b(t)x = h(t)$$

when $\int_a^{\infty} dt/r(t) = \infty$ or $\int_a^{\infty} dt/r(t) < \infty$.

The purpose of this paper is to study non-oscillatory behaviour of solutions of (E). In the process, we obtain a result which generalizes a result in [5]. In Section 2 we obtain sufficient conditions for non-oscillation of (E). It is interesting to note that this study is applicable to a class of non-linear equations. Section 3 deals with the relation between three independent solutions of (E).

2. Non-oscillatory behaviour of solutions

In this section we obtain sufficient conditions for non-oscillation of (E). The same techniques are then used to obtain non-oscillation results for certain classes of non-linear equations (see Equations (7) - (11) below).

THEOREM 1. If $p(t) \le 0$ and $q(t) \le 0$ for large t, then (E) is non-oscillatory.

PROOF. Let y(t) be a solution of (E) on $[a, \infty)$. Let $p(t) \le 0$ and $q(t) \le 0$ for $t \ge t_0 \ge a$. Let y(t) be of non-negative Z-type with consecutive double zeros at t_1 and t_2 ($t_0 < t_1 < t_2$). So there exists a $b \in (t_1, t_2)$ such that y'(b) = 0, $y''(b) \le 0$ and y'(t) > 0 for $t \in (t_1, b)$. Integrating (E) from t_1 to b, we get

$$0 \ge r(b)y''(b) + p(b)y(b) - c(t_1)y''(t_1)$$

= $\int_{t_1}^b f(t) dt - \int_{t_1}^b q(t)y'(t) dt > 0$

because $y''(t_1) \ge 0$. Suppose that y(t) is a non-positive Z-type solution with consecutive double zeros at t_1 and t_2 ($t_0 < t_1 < t_2$). Then there exists $b \in (t_1, t_2)$ such that y'(b) = 0 and y'(t) > 0 for $t \in (b, t_2)$. We note that $y''(b) \ge 0$ and $y''(t_2) \le 0$. Now integrating (E) from b to t_2 yields

$$0 \ge r(t_2)y''(t_2) + r(b)y''(b) - p(b)y(b)$$

= $\int_b^{t_2} f(t) dt - \int_b^{t_2} q(t)y'(t) dt > 0,$

a contradiction. Hence y(t) cannot be of Z-type.

Suppose that y(t) is an oscillatory solution with consecutive zeros at t_1 , t_2 and t_3 ($t_0 < t_1 < t_2 < t_3$) such that y(t) < 0 for $t \in (t_1, t_2)$ and y(t) > 0 for $t \in (t_2, t_3)$. So there exist $b \in (t_1, t_2)$ and $c \in (t_2, t_3)$ such that y'(b) = 0, y'(c) = 0, y'(t) > 0 for $t \in (b, t_2)$ and y'(t) > 0 for $t \in (t_2, c)$. If $y''(t_2) \ge 0$, then integrating (E) from t_2 to c, we obtain

$$0 \ge r(c)y''(c) + p(c)y(c) - r(t_2)y''(t_2) = \int_{t_2}^c f(t) dt - \int_{t_2}^c q(t)y'(t) dt > 0,$$

a contradiction because $y''(c) \le 0$. Furthermore, if $y''(t_2) < 0$ then integrating (E) from b to t_2 yields

$$0 > r(t_2)y''(t_2) - r(b)y''(b) - p(b)y(b) = \int_b^{t_2} f(t) dt - \int_b^{t_2} q(t)y'(t) dt > 0,$$

a contradiction, because $y''(b) \ge 0$. Hence y(t) cannot be oscillatory. This completes the proof of the theorem.

THEOREM 1'. If $\int_a^t p(\theta) d\theta \leq 0$ and $q(t) \leq \int_a^t p(\theta) d\theta$ for large t, then Equation (4) is non-oscillatory.

PROOF. This result follows from Theorem 1.

[4]

REMARK. We note that $p(t) \le 0$ implies $\int_a^t p(\theta) d\theta \le 0$ but the converse is not necessarily true. Furthermore, $p(t) - q'(t) \ge 0$ implies $q(t) \le \int_a^t p(\theta) d\theta$, if $q(a) \le 0$. Hence Theorem 1' improves Theorem 2.1 in [5].

THEOREM 2. If $p(t) \ge 0$, $q(t) \le 0$ and $p(s) + q(t) \le 0$, for t and $s \in [a, \infty)$ and $p(s) + q(t) \ne 0$ on any subinterval of $[a, \infty)$, then (E) is non-oscillatory.

PROOF. Let y(t) be a solution of (E) on $[a, \infty)$. If y(t) is of non-negative Z-type with consecutive double zeros at t_1 and t_2 ($a < t_1 < t_2$), then there exists a point $b \in (t_1, t_2)$ such that y'(b) = 0 and y'(t) > 0 for $t \in (t_1, b)$. Since $y'' \ge 0$ and $y''(b) \le 0$, then integrating (E) from t_1 to b, we obtain

$$0 \ge r(b)y''(b) - r(t_1)y''(t_1)$$

$$\ge -p(b)y(b) - \int_{t_1}^b q(t)y'(t) dt$$

$$\ge -\int_{t_1}^b [q(t) + p(b)]y'(t) dt > 0,$$

a contradiction. If y(t) is of non-positive Z-type with consecutive double zeros at t_1 and t_2 ($a < t_1 < t_2$), then there exists a point $b \in (t_1, t_2)$ such that y'(b) = 0 and y'(t) > 0 for $t \in (b, t_2)$. Clearly $y''(b) \ge 0$ and $y''(t_2) \le 0$. So integrating (E) from b to t_2 yields

$$0 \ge r(t_2)y''(t_2) - r(b)y''(b)$$

$$\ge p(b)y(b) - \int_b^{t_2} q(t)y'(t) dt$$

$$\ge -\int_b^{t_2} [q(t) + p(b)]y'(t) dt > 0,$$

a contradiction. Hence y(t) cannot be of Z-type.

Suppose that y(t) is oscillatory. Let t_1, t_2, t_3 $(a < t_1 < t_2 < t_3)$ be consecutive zeros of y(t) such that $y'(t_1) \le 0$ and $y'(t_2) \ge 0$ and $y'(t_3) \le 0$. So there exist $b \in (t_1, t_2)$ and $c \in (t_2, t_3)$ such that y'(t) > 0 for $t \in (b, t_2)$ and $t \in (t_2, c)$. Clearly, $y''(b) \ge 0$ and $y''(c) \le 0$. If $y''(t_2) \ge 0$, then integrating (E) from t_2 to c, we obtain

$$0 \ge r(c)y''(c) - r(t_2)y''(t_2)$$

$$\ge -p(c)y(c) - \int_{t_2}^c q(t)y'(t) dt$$

$$\ge -\int_{t_2}^c [q(t) + p(c)]y'(t) dt > 0$$

a contradiction. If $y''(t_2) < 0$, then integrating (E) from b to t_2 , we get

$$0 > r(t_2)y''(t_2) - r(b)y''(b)$$

$$\geq p(b)y(b) - \int_b^{t_2} q(t)y'(t) dt$$

$$\geq \int_b^{t_2} [q(t) + p(b)] y'(t) dt > 0.$$

This contradiction completes the proof of the theorem.

REMARK. The condition $p(s) + q(t) \le 0$ for t and $s \in [a, \infty)$ is equivalent to $p(s) \le |q(t)|$. Hence $0 \le p(s) \le K \le |q(t)|$ for t and $s \in [a, \infty)$, where K > 0 is a constant, implies that $p(s) + q(t) \le 0$.

THEOREM 2'. If $\int_a^t p(u) du \ge 0$, $q(t) \le \int_a^t p(u) du$ and $\int_a^s p(u) du \le \int_a^t p(u) du - q(t)$, then Equation (4) is non-oscillatory.

This follows from Theorem 2.

EXAMPLE. Consider

(5)
$$\left(2t^{3}y'' + \frac{1}{t+2}y\right)' - 4ty' = 4t^{2} + \frac{t(t+4)}{(t+2)^{2}}, \quad t \ge 1.$$

Clearly $p(s) = 1/(s+2) \le 1/3 < 4t = |q(t)|$ for $s, t \ge 1$. From Theorem 2 it follows that Equation (5) is non-oscillatory. In particular, $y(t) = t^2$ is a non-oscillatory solution of the equation. Note that Equation (5) may be written as

$$(2t^{3}y'')' - (4t - \frac{1}{t+2})y' - \frac{1}{(t+2)^{2}}y = 4t^{2} + \frac{t(t+4)}{(t+2)^{2}}, \qquad t \ge 1.$$

Clearly, Theorem 2' cannot be applied to (5). We note that

$$\int_{1}^{t} - \left[\frac{1}{(u+2)^{2}}\right] du = \frac{1}{t+2} - \frac{1}{3}$$

However Theorems 2 and 2' can be applied to the equation

$$(5t^{4}y'' + 2y)' - 8y' = 40t^{3} - 12t, \qquad t \ge 0,$$

which admits the non-oscillatory solution $y(t) = t^2$.

The proofs of the following two results are similar to the proofs of Theorem 2 and 2' and hence will be omitted.

THEOREM 3. If $p(t) \le 0$, $q(t) \ge 0$ and $p(t) + q(s) \le 0$ for t and $s \in [a, \infty)$ such that $p(t) + q(s) \ne 0$ on any subinterval of $[a, \infty)$, then (E) is non-oscillatory.

THEOREM 3'. If $\int_a^t p(u) du \leq 0$, $q(t) \geq \int_a^t p(u) du$ and $\int_a^t p(u) du \leq \int_a^s p(u) du - q(s)$, then Equation (4) is non-oscillatory.

Our last non-oscillation result for linear equations is contained in the following theorem

THEOREM 4. Let $p(t) \ge 0$ and $q(t) \ge 0$. If $\lim_{t\to\infty} f(t)/(p(s) + q(t)) = \infty$ uniformly for $s \ge a$, then every solution of (E) whose first derivative is bounded is non-oscillatory.

PROOF. Let y(t) be a solution of (E) on $[a, \infty)$ such that $|y'(t)| \le L$ for $t \ge a$. From the given hypothesis it follows that there exists a T > a, independent of s, such that f(t) > L(p(s) + q(t)) for $t \ge T$.

Suppose that y(t) is of non-negative Z-type with consecutive double zeros at t_1 and t_2 ($T < t_1 < t_2$). Then there exists $b \in (t_1, t_2)$ such that y'(b) = 0 and y'(t) > 0 for $t \in (t_1, b)$. Now integrating (E) from t_1 to b, we get

$$0 \ge r(b)y''(b) - r(t_1)y''(t_1) = -p(b)y(b) - \int_{t_1}^b q(t)y'(t) dt + \int_{t_1}^b f(t) dt$$

N. Parhi

$$= -\int_{t_1}^{b} [q(t) + p(b)] y'(t) dt + \int_{t_1}^{b} f(t) dt$$
$$\geq \int_{t_1}^{b} [f(t) - L(q(t) + p(b))] dt > 0,$$

a contradiction. Similar contradiction may be obtained in case y(t) is non-positive Z-type or oscillatory. Hence the theorem is proved.

REMARK. The Liouville transformation transforms

(6)
$$\left[r_2(t) \left((r_1(t)y')' + q_1(t)y^{\alpha} \right) \right]' + q_2(t) (r_1(t)y')^{\beta} = f_1(t),$$

where q_1, q_2, r_1, r_2 and f_1 are as in (NH) and each of $\alpha > 0$ and $\beta > 0$ is a quotient of odd integers, to an equation of the type

(7)
$$(r(t)y'' + p(t)y^{\alpha})' + q(t)(y')^{\beta} = f(t).$$

However, the Kummer transformation fails to do so.

THEOREM 5. If
$$p(t) \le 0$$
 and $q(t) \le 0$, then (7) is non-oscillatory.

The proof of this theorem is similar to that of Theorem 1 and hence is omitted.

REMARK. Theorems 1-5 all remain true if the condition, ' $f(t) \ge 0$ ' is replaced by ' $f(t) \le 0$ '.

Equations of the type

(8)
$$y''' + yy'' + \lambda [1 - (y')^2] = 0$$

arise in boundary layer theory in fluid Mechanics cite[p. 520]2. The particular case of (8), y''' + yy'' = 0, is known as the Blasius equation. In the following we study the non-oscillatory behaviour of solutions of the non-homogeneous Blasius equation

(9)
$$y''' + yy'' = f(t)$$

where $f \in C([a, \infty), R)$ is such that $f(t) \ge 0$.

THEOREM 6. All solutions of Equation (9) are non-oscillatory.

PROOF. Equation (9) may be written as

(10)
$$[y'' + yy']' = (y')^2 + f(t).$$

Let y(t) be a solution of (10) on $[a, \infty)$. Proceeding exactly as in Theorem 1, one may show that y(t) cannot be of Z-type or oscillatory. Hence y(t) is non-oscillatory.

144

The following examples illustrate the theorem.

EXAMPLES.

- (i) The equation y''' + yy'' = 0 admits both positive and negative solutions $y_1(t) = t$ and $y_2(t) = -t$,
- (ii) The equation $y''' + yy'' = 8/t^4$, $t \ge 1$, admits the positive bounded solution y(t) = 4/t,
- (iii) $y(t) = -e^{-t}$ is a bounded negative solution of

$$y''' + yy'' = e^{-t} + e^{-2t}, \qquad t \ge 0.$$

The asymptotic behaviour of solutions of Equation (8) has been studied by Hartman [2]. Equation (8) with $\lambda = 1/2$ is often called the Homann differential equation. In the following we obtain a theorem concerning non-oscillatory behaviour of solutions of non-homogeneous equation associated with Equation (8), that is,

(11)
$$y''' + yy'' + \lambda \left[1 - (y')^2\right] = f(t),$$

where $f \in C([a, \infty), R)$ is such that $f(t) \ge 0$.

THEOREM 7. If $-1 \le \lambda < 0$ then all solutions of Equation (11) are non-oscillatory. If $\lambda > 0$ and $\lim_{t\to\infty} f(t) = \infty$, then all solutions of Equation (11) are non-oscillatory. If $\lambda < -1$ and $\lim_{t\to\infty} f(t) = \infty$ then all solutions of Equation (11) whose first derivatives are bounded are non-oscillatory.

PROOF. The equation (11) can be written as

$$(y'' + yy')' = (1 + \lambda)(y')^2 + f(t) - \lambda.$$

In each case we see that the right-hand side of the above identity is positive for sufficiently large t. Then proceeding as in Theorem 1 we may show that all solutions of (11) are non-oscillatory. Hence the proof of the theorem is complete.

EXAMPLES.

(i) All solutions of

$$y''' + yy'' - [1 - (y')^2] = 6t^2 - 1, \qquad t \ge 1,$$

are non-oscillatory. In particular, $y(t) = t^2$ is a non-oscillatory solution of the equation.

(ii) The equation

$$y''' + yy'' + [1 - (y')^2] = 1 + \frac{7}{t^4}, \qquad t \ge 1,$$

is non-oscillatory with a particular non-oscillatory solution y(t) = -1/t. (iii) The equation

$$y''' + yy'' + [1 - (y')^2] = 1 + e^t, \qquad t \ge 0,$$

is non-oscillatory. In particular, $y(t) = e^t$ is a non-oscillatory solution of the equation.

3. Relation between linearly independent solutions

In this section we study the relation between three linearly independent solutions of (E). Let $y_1(t)$, $y_2(t)$ and $y_3(t)$ be solutions of (E) with initial conditions

THEOREM 8. If $p(t) \le 0$, $q(t) \le 0$ and $q'(t) \ge 0$, then $y_1(t)$ cannot meet $y_2(t)$ in the strip $[a, t_1)$, where t_1 is given by

$$t_1 \geq 1 + a + p(a) \int_a^{t_1} \left(\int_a^s \frac{du}{r(u)} \right) ds.$$

PROOF. From Theorem 1 it follows that $y_1(t)$ and $y_2(t)$ are non-oscillatory. Successive integrations yield

$$y_{1}(t) = (t-a) + \int_{a}^{t} \left(\int_{a}^{u} \left(\frac{1}{r(s)} \int_{a}^{s} f(\theta) d\theta \right) ds \right) du$$
$$- \int_{a}^{t} \left(\int_{a}^{u} \frac{1}{r(s)} (p(s) + q(s)) y_{1}(s) ds \right) du$$
$$+ \int_{a}^{t} \left(\int_{a}^{u} \frac{1}{r(s)} \left(\int_{a}^{s} q'(\theta) y_{1}(\theta) d\theta \right) ds \right) du$$

and

$$y_{2}(t) = 1 + p(a) \int_{a}^{t} \left(\int_{a}^{s} \frac{du}{r(u)} \right) ds + \int_{a}^{t} \left(\int_{a}^{u} \left(\frac{1}{r(s)} \int_{a}^{s} f(\theta) d\theta \right) ds \right) du$$
$$- \int_{a}^{t} \left(\int_{a}^{u} \frac{p(s) + q(s)}{r(s)} y_{2}(s) ds \right) du$$
$$+ \int_{a}^{t} \left(\int_{a}^{u} \left(\frac{1}{r(s)} \int_{a}^{s} q'(\theta) y_{2}(\theta) d\theta \right) ds \right) du.$$

If $t_1 > a$ is the first point where $y_1(t)$ meets $y_2(t)$, then $y_1(t_1) = y_2(t_1)$ and $y_1(t) < y_2(t)$ for $t \in [a, t_1)$. Thus $y_2(t_1) \ge 1 + p(a) \int_a^{t_1} (\int_a^s du/r(u)) ds + y_1(t_1) - (t_1 - a)$, that is,

$$t_1 \geq 1 + a + p(a) \int_a^{t_1} \left(\int_a^s \frac{du}{r(u)} \right) ds.$$

Hence the theorem is proved.

REMARK. The conclusion of Theorem 8 holds if (i) $p(t) \ge 0$, $q(t) \le 0$, such that $p(t) + q(t) \le 0$ and $q'(t) \ge 0$; (ii) $p(t) \le 0$, $q(t) \ge 0$ such that $p(t) + q(t) \le 0$ and $q'(t) \ge 0$

However, if $p(t) \ge 0$, $q(t) \ge 0$ and $q'(t) \le 0$, then $y_1(t)$ cannot meet $y_2(t)$ in the strip $[a, t_1)$, where t_1 is given by

$$t_1 \leq 1 + a + p(a) \int_a^{t_1} \left(\int_a^s \frac{du}{r(u)} \right) ds$$

THEOREM 9. If $p(t) \le 0$, $q(t) \le 0$ and $q'(t) \ge 0$, then $y_3(t)$ cannot meet $y_1(t)$ in the strip (a, t_1) , where t_1 is given by

$$t_1 \le a + \int_a^{t_1} \left(\int_a^s \frac{du}{r(u)} \right) ds$$

and $y_3(t)$ cannot meet $y_2(t)$ in the strip $[a, t_1)$, where t_1 is given by

$$1 \le (1 - p(a)) \int_a^{t_1} \left(\int_a^s \frac{du}{r(u)} \right) ds$$

The proof of this theorem is similar to that of Theorem 8 and hence is omitted.

REMARK. The conclusion of the above theorem remains true if (i) $p(t) \ge 0$, $q(t) \le 0$, such that $p(t) + q(t) \le 0$ and $q'(t) \ge 0$, (ii) $p(t) \le 0$, $q(t) \ge 0$ such that $p(t) + q(t) \le 0$ and $q'(t) \ge 0$.

Acknowledgement

I thank Dr S. K. Nayak for bringing the Blasius equation to my notice. I also thank the referee for his remarks which helped to improve the paper.

N. Parhi

References

- [1] J. H. Barrett, 'Oscillation theory of ordinary linear differential equations', Adv. in Math. 3 (1969), 415–509.
- [2] P. Hartman, Ordinary differential equations (Wiley, New York, 1964).
- [3] G. Jayaraman, N. Padmanabhan and R. Mehrotra, 'Entry flow into a circular tube of slowly varying cross-section', in: *Fluid Dynamics Research* 1 (The Japan Society of Fluid Mechanics, 1986) pp. 131–144.
- [4] N. Parhi, 'Nonoscillatory behaviour of solutions of nonhomogeneous third order differential equations', *Applicable Anal.* **12** (1981), 273–285.
- [5] N. Parhi and S. Parhi, 'Qualitative behaviour of solutions of forced nonlinear third order differential equations', *Riv. Mat. Univ. Parma* (4) 13 (1987), 201–210.
- [6] C. A. Swanson, Comparison and oscillation theory of linear differential equations (Academic Press, New York, 1968).

Berhampur University Berhampur - 760007 India