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Abstract
The protection number of a vertex v in a tree is the length of the shortest path from v to any leaf contained
in the maximal subtree where v is the root. In this paper, we determine the distribution of the maximum
protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh,
and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree 1,
then the maximum protection number is on average logarithmic in the tree size, with a discrete double-
exponential limiting distribution. If no such vertices are allowed, the maximum protection number is
doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained
by studying the singular behaviour of the generating functions of trees with bounded protection number.
While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a
variant of that result in the second case.
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1. Introduction
1.1 Simply generated trees
Simply generated trees were introduced byMeir andMoon [22], and owing to their use in describ-
ing an entire class of trees, have created a general framework for studying random trees. A simply
generated family of rooted trees is characterised by a sequence of weights associated with the
different possible outdegrees of a vertex. Specifically, for a given sequence of nonnegative real
numbers wj (j≥ 0), one defines the weight of a rooted ordered tree to be the product

∏
v wd(v)

over all vertices of the tree, where d(v) denotes the outdegree (number of children) of v. Letting
�(t)= ∑

j≥0 wjtj be the weight generating function and Y(x) the generating function in which
the coefficient of xn is the sum of the weights over all n-vertex rooted ordered trees, one has the
fundamental relation

Y(x)= x�(Y(x)). (1)

Common examples of simply generated trees are: plane trees with weight generating function
�(t)= 1/(1− t); binary trees (�(t)= 1+ t2); pruned binary trees (�(t)= (1+ t)2); and labelled
trees (�(t)= et). In the first three examples, Y(x) becomes an ordinary generating function with
the total weight being the number of trees in the respective family, while Y(x) can be seen as an
exponential generating function in the case of labelled trees.
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2 C. Heuberger et al.

Figure 1. Aplane treewith 15 vertices and the protection number of each vertex indicated. Themaximumprotection number
of this tree is 2.

In addition to the fact that the notion of simply generated trees covers many important exam-
ples, there is also a strong connection to the probabilistic model of Bienaymé–Galton–Watson
trees: here, one fixes a probability distribution on the set of nonnegative integers. Next, a ran-
dom tree is constructed by starting with a root that produces offspring according to the given
distribution. In each subsequent step, all vertices of the current generation also produce offspring
according to the same distribution, all independent of each other and independent of all previous
generations. The process stops if none of the vertices of a generation have children. If the weights
in the construction of a simply generated family are taken to be the corresponding probabilities
of the offspring distribution, then one verifies easily that the distribution of a random n-vertex
tree from that family (with probabilities proportional to the weights) is the same as that of the
Bienaymé–Galton–Watson process, conditioned on the event that the final tree has n vertices.

Conversely, even if the weight sequence of a simply generated family does not represent a prob-
ability measure, it is often possible to determine an equivalent probability measure that produces
the same random tree distribution. For example, random plane trees correspond to a geometric
distribution while random rooted labelled trees correspond to a Poisson distribution. We refer to
[8] and [17] for more background on simply generated trees and Bienaymé–Galton–Watson trees.

1.2 Protection numbers in trees
Protection numbers in trees measure the distance to the nearest leaf successor. Formally, this can
be expressed as follows.

Definition 1.1 (Protection number). The protection number of a vertex v is the length of the
shortest path from v to any leaf contained in the maximal subtree where v is the root.

Alternatively, the protection number can be defined recursively: a leaf has protection number 0,
the parent of a leaf has protection number 1, and generally the protection number of an interior
vertex is the minimum of the protection numbers of its children plus 1. In this paper, we will be
particularly interested in themaximum protection number of a tree, which is the largest protection
number among all vertices. Fig. 1 shows an example of a tree along with the protection numbers
of all its vertices.

The study of protection numbers in trees began with Cheon and Shapiro [4] considering the
average number of vertices with protection number of at least 2 (called 2-protected) in ordered
trees. Several other authors contributed to knowledge in this direction, by studying the number
of 2-protected vertices in various types of trees: k-ary trees [21]; digital search trees [9]; binary
search trees [20]; ternary search trees [15]; tries and suffix trees [11]; random recursive trees [19];
and general simply generated trees from which some previously known cases were also obtained
[7].
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Generalising the concept of a vertex being 2-protected, k-protected vertices – when a vertex
has protection number at least k – also became a recent topic of interest. Devroye and Janson [7]
proved convergence of the probability that a random vertex in a random simply generated tree has
protection number k. Copenhaver gave a closed formula for the number of k-protected vertices in
all unlabelled rooted plane trees on n vertices along with expected values [5], and these results were
extended by Heuberger and Prodinger [14]. A study of k-protected vertices in binary search trees
was done by Bóna [2] and Bóna and Pittel [3]. Holmgren and Janson [16] proved general limit
theorems for fringe subtrees and related tree functionals, applications of which include a normal
limit law for the number of k-protected vertices in binary search trees and random recursive trees.

Moreover, the protection number of the root of families of trees has also been studied. In [14],
Heuberger and Prodinger derived the probability of a plane tree having a root that is k-protected,
the probability distribution of the protection number of the root of recursive trees is determined
by Gołȩbiewski and Klimczak in [13]. The protection number of the root in simply generated
trees, Pólya trees, and unlabelled non-plane binary trees was studied by Gittenberger, Gołȩbiewski,
Larcher, and Sulkowska in [12], where they also obtained results relating to the protection number
of a randomly chosen vertex.

Very recently, Devroye et al. [6] studied the maximum protection number in Bienaymé–
Galton–Watson trees, referring to it as the leaf-height. Specifically, they showed the following:
if Xn is the maximum protection number in a Bienaymé–Galton–Watson tree conditioned on
having n vertices, then Xn

log n converges in probability to a constant if there is a positive probability
that a vertex has exactly one child. If this is not the case, then Xn

log log n converges in probability to a
constant.

Our aim in this paper is to refine the result of Devroye, Goh and Zhao by providing the full lim-
iting distribution of the maximum protection number. For our analytic approach, the framework
of simply generated trees is more natural than the probabilistic setting of Bienaymé–Galton–
Watson trees, though as mentioned earlier the two are largely equivalent.

1.3 Statement of results
As was already observed by Devroye et al. in [6], there are two fundamentally different cases to
be considered, depending on whether or not vertices of outdegree 1 are allowed (have nonzero
weight) in the given family of simply generated trees. If such vertices can occur, then we find that
themaximumprotection number of a random tree with n vertices is on average of order log n, with
a discrete double-exponential distribution in the limit. On the other hand, if there are no vertices
of outdegree 1, then the maximum protection number is on average of order log log n. There is
an intuitive explanation for this phenomenon. If outdegree 1 is allowed, it becomes easy to create
vertices with high protection number: if the subtree rooted at a vertex is an (h+ 1)-vertex path,
then this vertex has protection number h. On the other hand, if outdegree 1 is forbidden, then the
smallest possible subtree rooted at a vertex of protection number h is a complete binary tree with
2h+1 − 1 vertices. An illustration of the two cases is given in Fig. 2.

In the case where vertices of outdegree 1 can occur, the limiting distribution turns out to be
a discrete double-exponential distribution that also occurs in many other combinatorial exam-
ples, and for which general results are available – see Section 2.2. These results are adapted in
Section 5.2 to the case where there are no vertices of outdegree 1.

In the following results, we make a common technical assumption, stating formally that there
is a positive real number τ , less than the radius of convergence of�, such that�(τ )= τ�′(τ ) (see
Section 2.1 for further details). This is equivalent to the offspring distribution of the associated
Bienaymé–Galton–Watson process having a finite exponential moment, which is the case for all
the examples mentioned earlier (plane trees, binary trees, pruned binary trees, and labelled trees).
This assumption is crucial for the analytic techniques that we are using, which are based on an
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(a) (b)

Figure 2. Smallest examples where a tree may (a) or may not (b) have exactly one child and the root has protection
number 4.

asymptotic analysis of generating functions. However, it is quite likely that ourmain results remain
valid under somewhat milder conditions.

Theorem 1.2. Given a family of simply generated trees with w1 =�′(0) �= 0, the proportion of trees
of size n whose maximum protection number is at most h is asymptotically given by

exp
(−κnd−h)(1+ o(1))

as n→ ∞ and h= logd(n)+O(1), where κ (given in (55)) and d = (ρ�′(0))−1 > 1 are positive
constants, with ρ as defined in (3). Moreover, the expected value of the maximum protection number
in trees with n vertices is

logd(n)+ logd(κ)+
γ

log(d)
+ 1

2
+ψd( logd(κn))+ o(1),

where γ denotes the Euler–Mascheroni constant and ψd is the 1-periodic function that is defined by
the Fourier series

ψd(x)= − 1
log(d)

∑
k�=0

�
(
− 2kπ i
log(d)

)
e2kπ ix. (2)

In the case where vertices of outdegree 1 are excluded, we show that the maximum protection
number is strongly concentrated. In fact, with high probability it only takes on one of at most two
different values (depending on the size of the tree). The precise result can be stated as follows.

Theorem 1.3. Given a family of simply generated trees with w1 =�′(0)= 0, set r =min{i ∈
N : i≥ 2 and wi �= 0} andD= gcd{i ∈N : wi �= 0}. The proportion of trees of size n whose maximum
protection number is at most h is asymptotically given by

exp
(−κnd−rh(1+ o(1))+ o(1)

)
as n→ ∞, n≡ 1 (mod D), and h= logr ( logd(n))+O(1), where κ = wrλr1

�(τ ) and d =μ−r > 1 are
positive constants with λ1 and μ defined in (61) and (62) respectively (see Lemma 5.5). Moreover,
there is a sequence of positive integers hn such that the maximum protection number of a tree with
n vertices is hn or hn + 1 with high probability (i.e., probability tending to 1 as n→ ∞) where n≡ 1
(mod D).

Specifically, with mn = logr logd (n) and {mn} denoting its fractional part, one can set

hn =
{


mn� if {mn} ≤ 1
2 ,

mn� if {mn}> 1
2 .

If we restrict to those values of n for which {mn} ∈ [ε, 1− ε], where ε > 0 is fixed, then with high
probability Xn is equal to mn�.
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Figure 3. The asymptotic cumulative distribution function plotted against calculated values for plane, binary, and Cayley
trees.

Figure 4. The asymptotic cumulative distribution function plotted against calculated values for complete binary, and
Riordan trees [18].

Note that in the setting of Theorem 1.3, it is easy to see that there are no trees of size n if
n �≡ 1 (mod D). In the setting of Theorem 1.2, we have gcd{i ∈N : wi �= 0} = 1 because w1 �= 0.
Theorem 1.2 is illustrated in Fig. 3, while Theorem 1.3 is illustrated in Fig. 4.

The proof of Theorem 1.2 relies on a general distributional result provided in [23], see
Theorem 2.1. For the proof of Theorem 1.3, however, we will need a variant for doubly expo-
nential convergence of the dominant singularities. The statement and proof are similar to the
original and we expect that this variant will be useful in other contexts, too.
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Theorem 1.4. Let Yh(x)=
∑

n≥0 yh,nxn (h≥ 0) be a sequence of generating functions with nonneg-
ative coefficients such that yh,n is nondecreasing in h and (coefficientwise)

lim
h→∞

Yh(x)= Y(x)=
∑
n≥0

ynxn,

and let Xn denote the sequence of random variables with support N0 defined by

P(Xn ≤ h)= yh,n
yn

.

Assume that each generating function Yh has a singularity at ρh ∈R such that

(1) ρh = ρ(1+ κζ r
h + o(ζ rh)) as h→ ∞ for some constants ρ > 0, κ > 0, ζ ∈ (0, 1), and r> 1.

(2) Yh(x) can be continued analytically to the domain

{x ∈C : |x| ≤ (1+ δ)|ρh|, |Arg(x/ρh − 1)|>φ}
for some fixed δ > 0 and φ ∈ (0, π/2), and

Yh(x)=Uh(x)+Ah(1− x/ρh)α + o((1− x/ρh)α)

holds within this domain, uniformly in h, where Uh(x) is analytic and uniformly bounded in
h within the aforementioned region, α ∈R \N0, and Ah is a constant dependent on h such
that limh→∞ Ah =A �= 0. Finally,

Y(x)=U(x)+A(1− x/ρ)α + o((1− x/ρ)α)

in the region

{x ∈C : |x| ≤ (1+ δ)|ρ|, |Arg(x/ρ − 1)|>φ}
for a function U(x) that is analytic within this region.

Then the asymptotic formula

P(Xn ≤ h)= yh,n
yn

= exp
(−κnζ rh(1+ o(1))+ o(1)

)
holds as n→ ∞ and h= logr ( logd (n))+O(1), where d = ζ−1.

Note that here we have ρh = ρ(1+ κζ r
h + o(ζ rh)), while in Theorem 2.1 we have the exponen-

tial case ρh = ρ(1+ κζ h + o(ζ h)).
In the next theorem, we show that the consequences of this distributional result are quite

drastic.

Theorem 1.5. Assume the conditions of Theorem 1.4. There is a sequence of nonnegative integers
hn such that Xn is equal to hn or hn + 1 with high probability. Specifically, with mn = logr logd (n)
and {mn} denoting its fractional part, one can set

hn =
{


mn� if {mn} ≤ 1
2 ,

mn� if {mn}> 1
2 .

If we restrict to those values of n for which {mn} ∈ [ε, 1− ε], where ε > 0 is fixed, then with high
probability Xn is equal to mn�.
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2. Preliminaries
2.1 Basic facts about simply generated trees
For our purposes, we will make the following typical technical assumptions: first, we assume
without loss of generality that w0 = 1 or equivalently �(0)= 1. In other words, leaves have an
associated weight of 1, which can be achieved by means of a normalising factor if necessary.
Moreover, to avoid trivial cases in which the only possible trees are paths, we assume that wj > 0
for at least one j≥ 2. Finally, we assume that there is a positive real number τ , less than the radius
of convergence of �, such that �(τ )= τ�′(τ ). As mentioned earlier, this is equivalent to the
offspring distribution having exponential moments.

It is well known (see e.g. [8, Section 3.1.4]) that if such a τ exists, it is unique, and the radius of
convergence ρ of Y can be expressed as

ρ = τ/�(τ )= 1/�′(τ ), (3)

which is equivalent to ρ and τ satisfying the simultaneous equations y= x�(y) and 1= x�′(y)
(which essentially mean that the implicit function theorem fails at the point (ρ, τ )). Moreover, Y
has a square root singularity at ρ with τ = Y(ρ), with a singular expansion of the form

Y(x)= τ + a
(
1− x

ρ

)1/2 + b
(
1− x

ρ

)
+ c

(
1− x

ρ

)3/2 +O
(
(ρ − x)2

)
. (4)

The coefficients a, b, c can be expressed in terms of� and τ . In particular, we have

a= −
(2�(τ )
�′′(τ )

)1/2
.

In fact, there is a full Newton–Puiseux expansion in powers of (1− x/ρ)1/2. If the weight sequence
is aperiodic, i.e., gcd{j : wj �= 0} = 1, then ρ is the only singularity on the circle of convergence of
Y , and for sufficiently small ε > 0 there are no solutions to the simultaneous equations y= x�(y)
and 1= x�′(y) with |x| ≤ ρ + ε and |y| ≤ τ + ε other than (x, y)= (ρ, τ ). Otherwise, if this gcd is
equal to D, there are D singularities at ρe2kπ i/D (i ∈ {0, 1, . . . ,D− 1}), all with the same singular
behaviour. In the following, we assume for technical simplicity that the weight sequence is indeed
aperiodic, but the proofs are readily adapted to the periodic setting, see Remarks 3.17 and 5.9.

By means of singularity analysis [10, Chapter VI], the singular expansion (4) yields an
asymptotic formula for the coefficients of Y : we have

yn = [xn]Y(x)∼ −a
2
√
π
n−3/2ρ−n.

If the weight sequence corresponds to a probability distribution, then yn is the probability that an
unconditioned Bienaymé–Galton–Watson tree has exactly n vertices when the process ends. For
other classes such as plane trees or binary trees, yn represents the number of n-vertex trees in the
respective class.

2.2 A general distributional result
The discrete double-exponential distribution in Theorem 1.2 has been observed in many other
combinatorial instances, for example the longest run of zeros in a random 0-1-string, the longest
horizontal segment in Motzkin paths or the maximum outdegree in plane trees. This can often be
traced back to the behaviour of the singularities of associated generating functions. The following
general result [23], similar to Theorem 1.4 but with an exponential instead of doubly exponential
rate of convergence of the dominant singularity, will be a key tool for us.
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Theorem 2.1 (see [23, Theorem 1]). Let Yh(x)=
∑

n≥0 yh,nxn (h≥ 0) be a sequence of generating
functions with nonnegative coefficients such that yh,n is nondecreasing in h and (coefficientwise)

lim
h→∞

Yh(x)= Y(x)=
∑
n≥0

ynxn,

and let Xn denote the sequence of random variables with support N0 defined by

P(Xn ≤ h)= yh,n
yn

. (5)

Assume, moreover, that each generating function Yh has a singularity ρh ∈R, such that

(1) ρh = ρ(1+ κζ h + o(ζ h)) as h→ ∞ for some constants ρ > 0, κ > 0 and ζ ∈ (0, 1).
(2) Yh(x) can be continued analytically to the domain

{x ∈C : |x| ≤ (1+ δ)|ρh|, |Arg(x/ρh − 1)|>φ} (6)

for some fixed δ > 0 and φ ∈ (0, π/2), and

Yh(x)=Uh(x)+Ah(1− x/ρh)α + o((1− x/ρh)α)

holds within this domain, uniformly in h, where Uh(x) is analytic and uniformly bounded in
h within the aforementioned region, α ∈R \N0, and Ah is a constant depending on h such
that limh→∞ Ah =A �= 0. Finally,

Y(x)=U(x)+A(1− x/ρ)α + o((1− x/ρ)α)

in the region

{x ∈C : |x| ≤ (1+ δ)|ρ|, |Arg(x/ρ − 1)|>φ}
for a function U(x) that is analytic within this region.

Then the asymptotic formula

P(Xn ≤ h)= yh,n
yn

= exp (− κnζ h)(1+ o(1))

holds as n→ ∞ and h= logd(n)+O(1), where d = ζ−1. Hence the shifted random variable Xn −
logd(n) converges weakly to a limiting distribution if n runs through a subset of the positive integers
such that the fractional part {logd(n)} of logd(n) converges.

As we will see, the conditions of this theorem hold for the random variable Xn given by the
maximum protection number of a random n-vertex tree from a simply generated family that sat-
isfies our technical assumptions. Under slightly stronger assumptions, which also hold in our case,
one has the following theorem on the expected value of the random variable Xn.

Theorem 2.2 (see [23, Theorem 2]). In the setting of Theorem 2.1, assume additionally that

(1) There exists a constant K such that yh,n = yn for h>Kn,
(2)

∑
h≥0 |A−Ah|<∞,

(3) the asymptotic expansions of Yh and Y around their singularities are given by

Yh(x)=Uh(x)+Ah(1− x/ρh)α + Bh(1− x/ρh)α+1 + o((1− x/ρh)α+1),
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uniformly in h, and

Y(x)=U(x)+A(1− x/ρh)α + B(1− x/ρh)α+1 + o((1− x/ρh)α+1),

respectively, such that limh→∞ Bh = B.

Then the mean of Xn satisfies

E(Xn)= logd(n)+ logd(κ)+
γ

log(d)
+ 1

2
+ψd( logd(κn))+ o(1),

where γ denotes the Euler–Mascheroni constant and ψd is given by (2).

2.3 A system of functional equations
As a first step of our analysis, we consider a number of auxiliary generating functions and derive a
system of functional equations that is satisfied by these generating functions. The family of simply
generated trees and the associated weight generating function � are regarded fixed throughout.
Let h be a positive integer and k an integer with 0≤ k≤ h. Consider trees with the following two
properties:

P1. No vertex has a protection number greater than h.
P2. The root is k-protected (but also has protection number at most h).

Let Yh,k(x) be the associated generating function, where x marks the number of vertices. Note in
particular that when k= 0, we obtain the generating function for trees where the maximum pro-
tection number is at most h. Hence we can express the probability that the maximum protection
number of a random n-vertex tree (from our simply generated family) is at most h as the quotient

[xn]Yh,0(x)
[xn]Y(x)

.

This is precisely the form of (5), and indeed our general strategy will be to show that the generating
functions Yh,0 satisfy the technical conditions of Theorem 2.1. Compared to the examples given
in [23], this will be a rather lengthy technical task. However, we believe that the general method,
in which a sequence of functional equations is shown to converge uniformly in a suitable region,
is also potentially applicable to other instances and therefore interesting in its own right.

Let us now derive a system of functional equations, using the standard decomposition of a
rooted tree into the root and its branches. Clearly, if a tree has property P1, then this must also be
the case for all its branches. Moreover, property P2 is satisfied for k> 0 if and only if the root of
each of the branches is (k− 1)-protected, but not all of them are h-protected (as this would make
the root (h+ 1)-protected). Thus, for 1≤ k≤ h, we have

Yh,k(x)= x�(Yh,k−1(x))− x�(Yh,h(x)). (7)

Note that the only case in which the root is only 0-protected is when the root is the only vertex.
Hence we have

Yh,0(x)= Yh,1(x)+ x. (8)

The analytic properties of the system of functional equations given by (7) and (8) will be studied
in the following section, culminating in Proposition 3.16, which shows that Theorem 2.1 is indeed
applicable to our problem.
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3. Analysis of the functional equations
3.1 Contractions and implicit equations
This section is devoted to a detailed analysis of the generating functions Yh,k that satisfy the system
of equations given by (7) and (8). The first step will be to reduce it to a single implicit equation
satisfied by Yh,1 that is then shown to converge to the functional equation (1) in a sense that will be
made precise. This is then used to infer information on the region of analyticity of Yh,1 as well as
its behaviour around the dominant singularity, which is also shown to converge to the dominant
singularity of Y . This information is collected in Proposition 3.16 at the end of the section.

In the following, we will prove various statements for sufficiently small ε > 0. In several, but
finitely many, steps it might be necessary to decrease ε; we tacitly assume that ε is always small
enough to ensure validity of all statements up to the given point. In order to avoid ambiguities,
we will always assume that ε < 1. Let us remark that ε and other constants as well as all implied
O-constants that occur in this section depend on the specific simply generated family of trees (in
particular the weight generating function� and therefore ρ and τ ), but nothing else.

Recall that ρ is the dominant singularity of the generating function Y of our simply generated
family of trees. Moreover, τ = Y(ρ) is characterised by the equation τ�′(τ )=�(τ ) (see (3)) and
satisfies τ = ρ�(τ ). Since� is increasing and�(0)= 1, we also have τ = ρ�(τ )>ρ�(0)= ρ.

Let us write Dδ(w) := {z ∈C : |z −w|< δ} for open disks. For ε > 0, we define

�(1)
ε :=Dρ+ε(0),

�(2)
ε :=Dτ−ρ+ε(0),

�(3)
ε :=Dε(0).

For 1≤ j< k≤ 3, we set�(j,k)
ε :=�

(j)
ε ×�

(k)
ε , and we also set�ε :=�

(1,2,3)
ε :=�

(1)
ε ×�

(2)
ε ×�

(3)
ε .

As τ is less than the radius of convergence of � by our assumptions, we may choose ε > 0
sufficiently small such that τ + 2ε is still smaller than the radius of convergence of�.

Consider the function defined by fx,z(y)= x(�(y)−�(z)). We can rewrite the functional
equation (7) in terms of this function as

Yh,k(x)= fx,Yh,h(x)(Yh,k−1(x)) (9)

for 1≤ k≤ h. For j≥ 0, we denote the jth iterate of fx,z by f (j)x,z , i. e., f (0)x,z (y)= y and f (j+1)
x,z (y)=

f (j)x,z(fx,z(y)) for j≥ 0. Iterating (9) then yields

Yh,k(x)= fx,Yh,h(x)(Yh,k−1(x))= · · · = f (k−1)
x,Yh,h(x)(Yh,1(x))

for 1≤ k≤ h and therefore

Yh,h(x)= f (h−1)
x,Yh,h(x)(Yh,1(x)). (10)

Plugging (8) into (7) for k= 1 yields

Yh,1(x)= x
(
�(Yh,1(x)+ x)−�(Yh,h(x))

)
. (11)

This means that (10) and (11) are a system of two functional equations for Yh,1(x) and Yh,h(x). We
intend to solve (10) for Yh,h(x) and then plug the solution into (11). As a first step towards this
goal, we show that fx,z represents a contraction on a suitable region.

Lemma 3.1. For sufficiently small ε > 0, we have |fx,z(y)|< τ − ρ for all (x, y, z) ∈�ε .
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Proof. By the triangle inequality, definition of �ε , non-negativity of the coefficients of �, and
�(0)= 1, we have

|fx,z(y)| = |x((�(y)− 1)− (�(z)− 1)
)|

≤ (ρ + ε)(|�(y)− 1| + |�(z)− 1|)
≤ (ρ + ε)((�(|y|)− 1)+ (�(|z|)− 1))
≤ (ρ + ε)(�(τ − ρ + ε)− 1+�(ε)− 1).

For ε→ 0, the upper bound converges to ρ�(τ − ρ)− ρ because we are assuming that�(0)= 1.
As ρ�(τ − ρ)− ρ < ρ�(τ )− ρ = τ − ρ by (3), the assertion of the lemma holds for sufficiently
small ε > 0. �
Lemma 3.2. For sufficiently small ε > 0 and (x, y, z) ∈�ε , we have |f ′x,z(y)| = |x�′(y)| ≤ λ for
some constant λ< 1.

Proof. For any triple (x, y, z) ∈�ε ,
|f ′x,z(y)| = |x�′(y)| ≤ (ρ + ε)�′(τ − ρ + ε).

For ε→ 0, the upper bound converges to ρ�′(τ − ρ), which is less than ρ�′(τ )= 1 (by (3)). �
For the remainder of this section, λ will be defined as in Lemma 3.2.

Lemma 3.3. For sufficiently small ε > 0 and (x, z) ∈�(1,3)
ε , fx,z maps �(2)

ε to itself and is a
contraction with Lipschitz constant λ.

Proof. The fact that fx,z maps �(2)
ε to itself for sufficiently small ε > 0 is a direct consequence of

Lemma 3.1.
Making use of Lemma 3.2, the contraction property now follows by a standard argument: For

y1, y2 ∈�(2)
ε , we have

|fx,z(y2)− fx,z(y1)| ≤
∫
[y1,y2]

|f ′x,z(y)| |dy| ≤ λ|y2 − y1|.
�

For sufficiently small ε and (x, z) ∈�(1,3)
ε , Banach’s fixed point theorem together with

Lemma 3.3 implies that fx,z has a unique fixed point in �(2)
ε . This fixed point will be denoted

by g(x, z), i. e.,

g(x, z)= fx,z(g(x, z))= x(�(g(x, z))−�(z)). (12)

If we plug in 0 for z, we see that (12) holds for g(x, 0)= 0, so uniqueness of the fixed point implies
that

g(x, 0)= 0 (13)

for x ∈�(1)
ε .

Lemma 3.4. For sufficiently small ε > 0, g : �(1,3)
ε →�

(2)
ε is an analytic function, and ∂

∂z g(x, z) is
bounded.

Proof. Note that using Lemma 3.2, we have that | ∂
∂y (y− fx,z(y))| = |1− f ′x,z(y)| ≥ 1− |f ′x,z(y)| ≥

1− λ is bounded away from zero for sufficiently small ε > 0 and (x, y, z) ∈�ε . Thus the analytic
implicit function theorem shows that g as defined by (12) is analytic and has bounded partial
derivative ∂

∂z g(x, z) on�
(1,3)
ε for sufficiently small ε > 0. �

We now intend to solve (10) for Yh,h(x). Therefore, we consider the equation

z = f (h−1)
x,z (y) (14)
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and attempt to solve it for z. For large h, f (h−1)
x,z (y) will be close to the fixed point g(x, z) of fx,z by

the Banach fixed point theorem.
Therefore, we define�h as the difference between the two:�h(x, y, z) := f (h−1)

x,z (y)− g(x, z). So
(14) can be rewritten as

z = g(x, z)+�h(x, y, z). (15)
We first establish bounds on�h.

Lemma 3.5. For sufficiently small ε > 0,

�h(x, y, z)=O(λh) and (16)
∂

∂z
�h(x, y, z)=O(λh) (17)

hold uniformly for (x, y, z) ∈�ε .
Proof. Since g is defined as the fixed point of fx,z and fx,z is a contraction with Lipschitz constant
λ, we have

|�h(x, y, z)| = |f (h−1)
x,z (y)− f (h−1)

x,z (g(x, z))| ≤ λh−1|y− g(x, z)| =O(λh)
for (x, y, z) ∈�ε , so we have shown (16).

For (x, y, z) ∈�ε/3, Cauchy’s integral formula yields
∂

∂z
�h(x, y, z)= 1

2π i

∮
|ζ−z|=ε/3

�h(x, y, ζ )
(ζ − z)2

dζ .

By (16), we can bound the integral by O(λh). Thus replacing ε by ε/3 yields (17). �
In order to apply the analytic implicit function theorem to the implicit equation (10) for Yh,h,

we will need to show that the derivative of the difference of the two sides of (15) with respect to z
is nonzero. The derivative of the second summand on the right-hand side of (15) is small by (17),
so we first consider the remaining part of the equation.

Lemma 3.6. There is a δ > 0 such that for sufficiently small ε > 0, we have∣∣∣∣ ∂∂z (z − g(x, z))
∣∣∣∣> δ (18)

for (x, z) ∈�(1,3)
ε .

Proof. To compute ∂
∂z g(x, z), we differentiate (12) with respect to z and obtain

∂

∂z
g(x, z)= x�′(g(x, z)) ∂

∂z
g(x, z)− x�′(z),

which leads to
∂

∂z
g(x, z)= − x�′(z)

1− x�′(g(x, z))
.

Note that the denominator is nonzero for (x, z) ∈�(1,3)
ε by Lemma 3.2. We obtain∣∣∣∣ ∂∂z (z − g(x, z))

∣∣∣∣ =
∣∣∣∣1+ x(�′(z)−�′(g(x, z)))

1− x�′(g(x, z))

∣∣∣∣ ≥ 1− (ρ + ε)
∣∣�′(z)−�′(g(x, z))

∣∣
1+ (ρ + ε)

∣∣�′(g(x, z))
∣∣ . (19)

By Lemma 3.4, ∂g(x,z)
∂z is analytic and bounded for (x, z) ∈�(1,3)

ε , and by (13), it follows that

g(x, z)= g(x, z)− g(x, 0)=
∫
[0,z]

∂g(x, ζ )
∂ζ

dζ =O(|z|)=O(ε)
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for ε→ 0, uniformly in x. Therefore, we have
�′(z)−�′(g(x, z))= (�′(z)−�′(0))− (�′(g(x, z))−�′(0))=O(ε)

and |�′(g(x, z))| =�′(0)+O(ε) for ε→ 0. So (19) yields∣∣∣∣ ∂∂z (z − g(x, z))
∣∣∣∣ ≥ 1− (ρ + ε)O(ε)

1+ (ρ + ε)(�′(0)+O(ε))
= 1

1+ ρ�′(0)
+O(ε)

for ε→ 0. Setting δ := 1
2

1
1+ρ�′(0) and choosing ε small enough yields the result. �

We need bounds for z such that we remain in the region where our previous results hold. In
fact, (13) shows that z = 0 would be a solution when the summand�h (which isO(λh)) is removed
from the implicit equation, so we expect that the summand�h does not perturb z too much. This
is shown in the following lemma.

Lemma 3.7. Let ε > 0 be sufficiently small and (x, y, z) ∈�ε such that (15) holds. Then
z =O(λh). (20)

Proof. In view of (15) and (16), we have

g(x, z)− z =O(λh). (21)

By definition, g(x, z) ∈�(2)
ε . The implicit equation (12) for g(x, z) and (21) imply

g(x, z)= x(�(g(x, z))−�(z))= x
∫
[z,g(x,z)]

�′(ζ ) dζ =O(|g(x, z)− z|)=O(λh).

Inserting this into (21) leads to (20). �
Lemma 3.8. There exists an ε > 0 such that for sufficiently large h, there is a unique analytic
function qh : �

(1,2)
ε →C such that

qh(x, y)= f (h−1)
x,qh(x,y)(y) (22)

and qh(x, 0)= 0 for (x, y) ∈�(1,2)
ε ; furthermore, qh(x, y)=O(λh) holds uniformly in x and y.

Proof. We choose h sufficiently large such that (17) implies∣∣∣∣ ∂∂z�h(x, y, z)
∣∣∣∣ ≤ δ

2
(23)

for (x, y, z) ∈�ε , where δ is taken as in Lemma 3.6, and such that (20) implies

|z| ≤ ε

2
(24)

for all (x, y, z) ∈�ε for which (15) holds.
By definition of f , we have fx,0(0)= 0 and therefore f (h−1)

x,0 (0)= 0 for every x ∈�(1)
ε , so z = 0 is

a solution of (14) for y= 0. By (18) and (23), we have
∂

∂z
(f (h−1)
x,z (y)− z) �= 0 (25)

for (x, y, z) ∈�ε . The analytic implicit function theorem thus implies that, for every x ∈�(1)
ε , there

is an analytic function qh defined in a neighbourhood of (x, 0) such that (22) holds there and such
that qh(x, 0)= 0. Next we show that this extends to the whole region�(1,2)

ε .
For x0 ∈�(1)

ε , let r(x0) be the supremum of all r< τ − ρ + ε for which there is an analytic
extension of y �→ qh(x0, y) from the open diskDr(0) to�(3)

ε . Suppose for contradiction that r(x0)<
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τ − ρ + ε. Consider a point y0 with |y0| = r(x0), and take a sequence yn → y0 such that |yn|<
r(x0). Note that

∣∣qh(x0, yn)∣∣ ≤ ε
2 by (24). Without loss of generality, we can assume that qh(x0, yn)

converges to some q0 with |q0| ≤ ε
2 as n→ ∞ (by compactness). By continuity, we have q0 =

f (h−1)
x0,q0 (y0). Since (x0, y0, q0) ∈�ε , we can still use the analytic implicit function theorem together
with (25) to conclude that there is a neighbourhood of (x0, y0, q0) where the equation f (h−1)

x,z (y)= z
has exactly one solution z for every x and y, and an analytic function q̃h(x, y) such that q̃h(x, y)=
f (h−1)
x,q̃h(x,y)

(y) and q̃h(x0, y0)= q0. We assume the neighbourhood to be chosen small enough such
that q̃h(x, y) ∈�(3)

ε for all (x, y) in the neighbourhood. For large enough n, this neighbourhood
contains (x0, yn, qh(x0, yn)), so we must have qh(x0, yn)= q̃h(x0, yn) for all those n. This implies
that q̃h is an analytic continuation of qh in a neighbourhood of (x0, y0) with values in �(3)

ε . Since
y0 was arbitrary, we have reached the desired contradiction.

So we conclude that there is indeed such an analytic function qh defined on all of �(1,2)
ε , with

values in�(3)
ε . The fact that qh(x, y)=O(λh) finally follows from Lemma 3.7. �

3.2 Location of the dominant singularity
Let us summarise what has been proven so far. By (10) and Lemma 3.8, for sufficiently large h we
can express Yh,h in terms of Yh,1 as

Yh,h(x)= qh(x, Yh,1(x))
at least in a neighbourhood of 0, which we can plug into (11) to get

Yh,1(x)= x
(
�(Yh,1(x)+ x)−�(qh(x, Yh,1(x)))

)
.

Setting
Fh(x, y)= x(�(y+ x)−�(qh(x, y))),

this can be rewritten as
Yh,1(x)= Fh(x, Yh,1(x)).

The function Fh is analytic on �(1,2)
ε by Lemma 3.8 and the fact that � is analytic for these

arguments. Note also that
lim
h→∞

Fh(x, y)= x
(
�(y+ x)− 1

) =: F∞(x, y)

pointwise for (x, y) ∈�(1,2)
ε . By the estimate on qh in Lemma 3.8, we also have

Fh(x, y)= F∞(x, y)+O(λh), (26)

uniformly for (x, y) ∈�(1,2)
ε . Using the same argument as in Lemma 3.5, we can also assume

(redefining ε if necessary) that
∂

∂y
Fh(x, y)= ∂

∂y
F∞(x, y)+O(λh) (27)

and analogous estimates for any finite number of partial derivatives hold as well. Having reduced
the original system of equations to a single equation for Yh,1(x), we now deduce properties
of its dominant singularity. Since Yh,1(x) has a power series with nonnegative coefficients, by
Pringsheim’s theorem it must have a dominant positive real singularity that we denote by ρh.
Since the coefficients of Yh,1(x) are bounded above by those of Y(x), we also know that ρh ≥ ρ.
Lemma 3.9. For every sufficiently large h, ρh ≤ ρ + λh/2. Moreover, ηh,1 := Yh,1(ρh)= τ − ρ +
O(λh/2).
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Proof. Note first that Yh,1(x) is an increasing function of x for positive real x<ρh. Let ρ̃ =
min(ρh, ρ + ε

2 ). Suppose first that limx→ρ̃− Yh,1(x)≥ τ − ρ + ε
2 . If h is large enough, this implies

together with (27) that

lim
x→ρ̃−

∂Fh
∂y

(x, Yh,1(x))= lim
x→ρ̃−

∂F∞
∂y

(x, Yh,1(x))+O(λh)

≥ ∂F∞
∂y

(
ρ, τ − ρ + ε

2

)
+O(λh)

= ρ�′
(
τ + ε

2

)
+O(λh)>ρ�′(τ )= 1.

On the other hand, we also have
∂Fh
∂y

(ρ/2, Yh,1(ρ/2))= ∂F∞
∂y

(ρ/2, Yh,1(ρ/2))+O(λh)

≤ ∂F∞
∂y

(ρ/2, Y(ρ/2)− ρ/2)+O(λh)

<ρ�′(τ )= 1,
so by continuity there must exist some x0 ∈ (ρ/2, ρ̃) such that

∂Fh
∂y

(x0, Yh,1(x0))= 1.

Moreover, if h is large enough we have
∂2Fh
∂y2

(x0, Yh,1(x0))= ∂2F∞
∂y2

(x0, Yh,1(x0))+O(λh)> 0

as x0 and thus also Yh,1(x0) are bounded below by positive constants, and analogously
∂Fh
∂x (x0, Yh,1(x0))> 0. But this would mean that Yh,1 has a square root singularity at x0 <ρh (com-
pare the discussion in Section 3.3 later), and we reach a contradiction. Hence we can assume that

lim
x→ρ̃− Yh,1(x)< τ − ρ + ε

2
. (28)

Assume next that ρh >ρ + λh/2. Now for x1 = ρ + λh/2 < ρ̃ (the inequality holds if h is large
enough to make λh/2 < ε

2 ), u1 = Yh,1(x1)+ x1 satisfies

u1 = x1�(u1)+O(λh), (29)
since Fh(x, y)= F∞(x, y)+O(λh)= x(�(y+ x)− 1)+O(λh). Note here that u1 ≤ τ + ε

2 + λh/2

by (28), thus u1 is in the region of analyticity of � (again assuming h to be large enough).
However, since u≤ ρ�(u) for all positive real u for which �(u) is well-defined (the line u �→ u

ρ

is a tangent to the graph of the convex function � at τ ), for sufficiently large h the right-hand
side in (29) is necessarily greater than the left, and we reach another contradiction. So it fol-
lows that ρh ≤ ρ + λh/2, and in particular ρ̃ = ρh <ρ + ε

2 if h is large enough. Since we know
that limx→ρ̃− Yh,1(x)< τ − ρ + ε

2 , we also have ηh,1 := Yh,1(ρh)< τ − ρ + ε
2 . We conclude that

(ρh, ηh,1) ∈�(1,2)
ε , i.e., (ρh, ηh,1) lies within the region of analyticity of Fh. So the singularity at ρh

must be due to the implicit function theorem failing at this point:

ηh,1 = Fh(ρh, ηh,1) and 1= ∂Fh
∂y

(ρh, ηh,1).

The second equation in particular gives us

ρh�
′(ηh,1 + ρh)= 1+O(λh)
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by (27). Since�′ is increasing for positive real arguments and we know that ρ�′(τ )= 1 and ρh =
ρ +O(λh/2), we can conclude from this that ηh,1 = τ − ρ +O(λh/2). �

As we have established that ηh,1 → τ − ρ as h→ ∞, we will use the abbreviation η1 := τ − ρ

in the following. This will later be generalised to ηh,k := Yh,k(ρh)→ ηk, see Sections 4 and 5. For
our next step, we need a multidimensional generalisation of Rouché’s theorem:

Theorem 3.10 (see [1, p. 20, Theorem 2.5]). Let � be a bounded domain in C
n whose boundary

∂� is piecewise smooth. Suppose that u, v :�→C
n are analytic functions, and that the boundary

of � does not contain any zeros of u. Moreover, assume that for every z ∈ ∂�, there is at least one
coordinate j for which |uj(z)|> |vj(z)| holds. Then u and u+ v have the same number of zeros in�.

Lemma 3.11. If ε is chosen sufficiently small and h sufficiently large, then the pair (ρh, ηh,1) is the
only solution to the simultaneous equations Fh(x, y)= y and ∂

∂yFh(x, y)= 1 with (x, y) ∈�(1,2)
ε .

Proof. Note that (ρ, η1) is a solution to the simultaneous equations F∞(x, y)= x(�(x+
y)− 1)= y and ∂

∂yF∞(x, y)= x�′(x+ y)= 1, and that there is no other solution with |x| ≤ ρ + ε

and |y| ≤ η1 + ε if ε is chosen sufficiently small by our assumptions on the function � (see
Section 2.1). We take�=�

(1,2)
ε in Theorem 3.10 and set

u(x, y)=
(
F∞(x, y)− y,

∂

∂y
F∞(x, y)− 1

)
.

Moreover, take

v(x, y)=
(
Fh(x, y)− F∞(x, y),

∂

∂y
Fh(x, y)− ∂

∂y
F∞(x, y)

)
.

Note that both coordinates of v are O(λh) by (26) and (27). Since the boundary ∂� contains no
zeros of u, if we choose h sufficiently large, then the conditions of Theorem 3.10 are satisfied.
Consequently, u and u+ v have the same number of zeros in�, namely 1. Solutions to the simul-
taneous equations Fh(x, y)= y and ∂

∂yFh(x, y)= 1 are precisely zeros of u+ v, so this completes
the proof. �

At this point, it already follows from general principles (see the discussion in [10, Chapter
VII.4]) that for every sufficiently large h, Yh,1 has a dominant square root singularity at ρh, and
is otherwise analytic in a domain of the form (6). As we will need uniformity of the asymptotic
expansion and a uniform bound for the domain of analyticity, we will make this more precise in
the following section.

3.3 Asymptotic expansion and area of analyticity

Lemma 3.12. Let ε > 0 be such that all previous lemmata hold. There exist δ1, δ2 > 0, some positive
number h0, and analytic functions Rh on Dδ1 (ρh)×Dδ2 (ηh,1) and Sh on Dδ2 (ηh,1) for h≥ h0 such
that δ2 < ε, Dδ1 (ρh)×Dδ2 (ηh,1)⊆�

(1,2)
ε and

Fh(x, y)− y= (x− ρh)Rh(x, y)+ (y− ηh,1)2Sh(y) (30)

holds for (x, y) ∈Dδ1 (ρh)×Dδ2 (ηh,1) and h≥ h0 and such that |Rh| is bounded from above and
below by positive constants on Dδ1 (ρh)×Dδ2 (ηh,1) for h≥ h0 (uniformly in h) and |Sh| is bounded
from above and below by positive constants on Dδ2 (ηh,1) for h≥ h0 (uniformly in h).

Furthermore, the sequences Rh and Sh converge uniformly to some analytic functions R and S,
respectively. The same holds for their partial derivatives.
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Proof. Recall that we can approximate partial derivatives of Fh by those of F∞ with an exponential
error bound (as in (27)), giving us

∂

∂x
Fh(x, y)= ∂

∂x
F∞(x, y)+O(λh)

= ∂F∞
∂x

(ρ, η1)+O(λh)+O(x− ρ)+O(y− η1)

=�(τ )+O(λh)+O(x− ρ)+O(y− η1),

as well as

∂2

∂y2
Fh(x, y)= ∂2

∂y2
F∞(x, y)+O(λh)

= ∂2F∞
∂y2

(ρ, η1)+O(λh)+O(x− ρ)+O(y− η1)

= ρ�′′(τ )+O(λh)+O(x− ρ)+O(y− η1)

for (x, y) in a neighbourhood of (ρ, η1) contained in�(1,2)
ε and h→ ∞.

Using Lemma 3.9, we choose δ1 > 0 and δ2 > 0 small enough and h0 large enough such that
|x− ρh| ≤ δ1, |y− ηh,1| ≤ δ2, and h≥ h0 imply that∣∣∣∣ ∂∂xFh(x, y)−�(τ )

∣∣∣∣ ≤ 1
2
�(τ ) (31)

and ∣∣∣∣ ∂2∂y2 Fh(x, y)− ρ�′′(τ )
∣∣∣∣ ≤ 1

2
ρ�′′(τ ), (32)

and such that Dδ1 (ρh)×Dδ2 (ηh,1)⊆�
(1,2)
ε . By Lemma 3.11, we have

Fh(ρh, ηh,1)= ηh,1, (33)
∂Fh
∂y

(ρh, ηh,1)= 1. (34)

We now define

Sh(y) := Fh(ρh, y)− y
(y− ηh,1)2

for y ∈Dδ2 (ηh,1) \ {ηh,1}. By (33) and (34), Sh has a removable singularity at ηh,1. Therefore it is
analytic on Dδ2 (ηh,1). By (33), we have

Fh(ρh, y)− y= (Fh(ρh, y)− y)− (Fh(ρh, ηh,1)− ηh,1)

=
∫ y

ηh,1

( ∂

∂w
Fh(ρh,w)− 1

)
dw.
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By (34), this can be rewritten as

Fh(ρh, y)− y=
∫ y

ηh,1

((∂Fh
∂y

(ρh,w)− 1
)

−
(∂Fh
∂y

(ρh, ηh,1)− 1
))

dw

=
∫ y

ηh,1

∫ w

ηh,1

∂2Fh
∂y2

(ρh, v) dv dw

=
∫ y

ηh,1

∫ w

ηh,1

ρ�′′(τ ) dv dw+
∫ y

ηh,1

∫ w

ηh,1

(∂2Fh
∂y2

(ρh, v)− ρ�′′(τ )
)
dv dw

= 1
2
ρ�′′(τ )(y− ηh,1)2 +

∫ y

ηh,1

∫ w

ηh,1

(∂2Fh
∂y2

(ρh, v)− ρ�′′(τ )
)
dv dw.

Rearranging and using the definition of Sh(y) as well as (32) yields∣∣∣∣Sh(y)− 1
2
ρ�′′(τ )

∣∣∣∣ ≤ 1
4
ρ�′′(τ )

for all y ∈Dδ2 (ηh,1) and h≥ h0. Thus |Sh(y)| is bounded from below and above by positive
constants for every such y and h.

We now define Rh(x, y) such that (30) holds, which is equivalent to

Rh(x, y) := Fh(x, y)− Fh(ρh, y)
x− ρh

for x ∈Dδ1 (ρh) \ {ρh} and y ∈Dδ2 (ηh,1). We have

Fh(ρh, y)− Fh(x, y)=
∫ ρh

x

∂Fh
∂x

(w, y) dw

=�(τ )(ρh − x)+
∫ ρh

x

(∂Fh
∂x

(w, y)−�(τ )
)
dw.

Rearranging and using the definition of Rh(x, y) yields∣∣Rh(x, y)−�(τ )
∣∣ ≤ 1

2
�(τ )

by (31) for x ∈Dδ1 (ρh) \ {ρh} and y ∈Dδ2 (ηh,1) and h≥ h0. In other words, |Rh(x, y)| is bounded
from below and above by positive constants for these (x, y) and h.

To prove analyticity of Rh, we use Cauchy’s formula to rewrite it as

Rh(x, y)= 1
2π i

∮
|ζ−ρh|=δ1

Fh(ζ , y)− Fh(ρh, y)
ζ − ρh

dζ
ζ − x

for x �= ρh (note that the integrand has a removable singularity at ζ = ρh in this case). The integral
is also defined for x= ρh and clearly defines an analytic function on Dδ1 (ρh)×Dδ2 (ηh,1) whose
absolute value is bounded from above and below by a constant.

To see uniform convergence of Rh, we use Cauchy’s formula once more and get

Rh(x, y)= 1
(2π i)2

∮
|ζ−ρh|=δ1

∮
|η−ηh,1|=δ2

Fh(ζ , η)− Fh(ρh, η)
ζ − ρh

dη
η− y

dζ
ζ − x

(35)

for x ∈Dδ1 (ρh) and y ∈Dδ2 (ηh,1). Without loss of generality, h0 is large enough such that
|ρh − ρ|< δ1/4 and |ηh,1 − η1|< δ2/4. By Cauchy’s theorem, we can change the contour of
integration such that (35) implies

Rh(x, y)= 1
(2π i)2

∮
|ζ−ρ|=δ1/2

∮
|η−η1|=δ2/2

Fh(ζ , η)− Fh(ρh, η)
ζ − ρh

dη
η− y

dζ
ζ − x
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for x ∈Dδ1/4(ρ) and y ∈Dδ2/4(η1), as the deformation is happening within the region of analyticity
of the integrand. Using (26) and the fact that the denominator of the integrand is bounded away
from zero shows that

Rh(x, y)= 1
(2π i)2

∮
|ζ−ρ|=δ1/2

∮
|η−η1|=δ2/2

F∞(ζ , η)− F∞(ρh, η)
ζ − ρh

dη
η− y

dζ
ζ − x

+O(λh)

for x ∈Dδ1/4(ρ) and y ∈Dδ2/4(η1). By Lemma 3.9, replacing the remaining occurrences of ρh by ρ
induces another error term of O(λh/2), so that we get

Rh(x, y)= R(x, y)+O(λh/2)

with

R(x, y) := 1
(2π i)2

∮
|ζ−ρ|=δ1/2

∮
|η−η1|=δ2/2

F∞(ζ , η)− F∞(ρ, η)
ζ − ρ

dη
η− y

dζ
ζ − x

for x ∈Dδ1/4(ρ) and y ∈Dδ2/4(η1). Of course, theO constants do not depend on x and y; therefore,
we have uniform convergence. Analogously, we get

Sh(y)= 1
2π i

∮
|η−ηh,1|=δ2

Fh(ρh, η)− η

(η− ηh,1)2
dη
η− y

(36)

= S(y)+O(λh/2) (37)
with

S(y) := 1
2π i

∮
|η−η1|=δ2/2

Fh(ρ, η)− η

(η− η1)2
dη
η− y

,

for y ∈Dδ2/4(η1). Analogous results hold for partial derivatives.
We replace δ1 by δ1/4 and δ2 by δ2/4 to get the result as stated in the lemma. �

Lemma 3.13. The constants δ1, δ2 and h0 in Lemma 3.12 can be chosen such that whenever y=
Fh(x, y) for some (x, y) ∈Dδ1 (ρh)×Dδ2 (ηh,1) and some h≥ h0, we have |y− ηh,1|< δ2/2.
Proof. We first choose δ1 and δ2 as in Lemma 3.12. Then y= Fh(x, y) and Lemma 3.12 imply that

|y− ηh,1| =
√

|x− ρh|
∣∣∣∣Rh(x, y)Sh(y)

∣∣∣∣.
The fraction on the right-hand side is bounded by some absolute constant according to Lemma

3.12. So by decreasing δ1 if necessary, the right-hand side is at most δ2/2. �
Lemma 3.14. Let ε > 0 be such that the previous lemmata hold. There exists δ0 > 0 such that, for
all sufficiently large h, the asymptotic formula

Yh,1(x)= ηh,1 + ah
(
1− x

ρh

)1/2 + bh
(
1− x

ρh

)
+ ch

(
1− x

ρh

)3/2 +O
(
(ρh − x)2

)
(38)

holds for x ∈Dδ0 (ρh)with |Arg(x− ρh)| ≥ π/4 and certain sequences ah, bh and ch. The O-constant
is independent of h, and ah, bh, ch converge to the coefficients a, b, c in (4) at an exponential rate as
h→ ∞. Additionally, |Yh,1(x)− η1|< ε/2 for all these x.
Proof. By (30), the function Yh,1 is determined by the implicit equation

0= Fh(x, Yh,1(x))− Yh,1(x)= (x− ρh)Rh(x, Yh,1(x))+ (Yh,1(x)− ηh,1)2Sh(Yh,1(x)). (39)

For r> 0, set C(r) := {x ∈Dr(ρh) : |Arg(x− ρh)| ≥ π/4} and C̃(r) := {x ∈C : |x− ρh| = r
and |Arg(x− ρh)| ≥ π/4}. Choose δ1, δ2, h0 as in Lemma 3.13. For some h≥ h0, let rh be the
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supremum of all r ≤ δ1 such that Yh,1 can be continued analytically to C(r) with values in
Dδ2/2(ηh,1). We claim that rh = δ1.

Suppose for contradiction that rh < δ1 and let x∞ ∈ C̃(rh). Choose a sequence of elements
xn ∈ C(rh) converging to x∞ for n→ ∞ and set yn := Yh,1(xn) for all n. By assumption, we have
|yn − ηh,1| ≤ δ2/2. By replacing the sequence xn by a subsequence if necessary, we may assume
that the sequence yn is convergent to some limit y∞. Note that |y∞ − ηh,1| ≤ δ2/2. By continuity
of Fh, we also have y∞ = Fh(x∞, y∞). As (x∞, y∞) ∈�(1,2)

ε with x∞ �= ρh, Lemma 3.11 and the
analytic implicit function theorem imply that Yh,1 can be continued analytically in a suitable open
neighbourhood of x∞. This neighbourhood can be chosen small enough such that the inequality
|Yh,1(x)− ηh,1| ≤ δ2 holds for all x in this neighbourhood. However, Lemma 3.13 implies that we
then actually have |Yh,1(x)− ηh,1| ≤ δ2/2 for all such x.

The set of these open neighbourhoods associated with all x∞ ∈ C̃(rh) covers the compact set
C̃(rh), so a finite subset of these open neighbourhoods can be selected. Thus we find an ana-
lytic continuation of Yh,1 to C(̃rh) for some r̃h ∈ (rh, δ1) with values still in Dδ2/2(ηh,1), which is
a contradiction to the choice of rh.

Thus we have rh = δ1. In particular, choosing h large enough that |ηh,1 − η1|< (ε− δ2)/2 gives
|Yh,1(x)− η1| ≤ |Yh,1(x)− ηh,1| + |ηh,1 − η1|< δ2/2+ (ε− δ2)/2= ε/2 for all x ∈ C(δ1).

Rearranging (39) yields

(ηh,1 − Yh,1(x))2 =
(
ρh

Rh(x, Yh,1(x))
Sh(Yh,1(x))

)(
1− x

ρh

)
. (40)

We know from Lemma 3.12 that Rh is bounded above and Sh is bounded below on Dδ1 (ρh)×
Dδ2 (ηh,1) and Dδ2 (ηh,1), respectively. Therefore, the absolute value of the first factor on the right-
hand side of (40) is bounded above and below by positive constants for x ∈Dδ1 (ρh). For x<ρh,
we have that the factor (1− x/ρh) is trivially positive and that ηh,1 > Yh,1(x) because Yh,1 is strictly
increasing on (0, ρh), so the first factor on the right-hand side of (40) must be positive. Thus we
may take the principal value of the square root to rewrite (40) as

ηh,1 − Yh,1(x)=
√
ρh

Rh(x, Yh,1(x))
Sh(Yh,1(x))

(
1− x

ρh

)1/2
(41)

for x ∈ C(δ1). The above considerations also show that the radicand in (41) remains positive in the
limit x→ ρ−

h (i.e., as x approaches ρh from the left) and then for h→ ∞.
As we just observed that the first factor on the right-hand side of (41) is bounded, (41) implies

Yh,1(x)− ηh,1 =O
(
(x− ρh)1/2

)
, (42)

with an O-constant that is independent of h. We can now iterate this argument: using Taylor
expansion along with the fact that partial derivatives of Rh and Sh are uniformly bounded above
while Sh is also uniformly bounded below, we obtain

Rh(x, Yh,1(x))
Sh(Yh,1(x))

= Rh(ρh, ηh,1)+O(x− ρh)+O(Yh,1(x)− ηh,1)
Sh(ηh,1)+O(Yh,1(x)− ηh,1)

= Rh(ρh, ηh,1)
Sh(ηh,1)

+O
(
(x− ρh)1/2

)
.

Plugging this into (41) yields

ηh,1 − Yh,1(x)=
√
ρh

Rh(ρh, ηh,1)
Sh(ηh,1)

(
1− x

ρh

)1/2 +O(x− ρh),

still with an O-constant that is independent of h. This can be continued arbitrarily often to obtain
further terms of the expansion and an improved error term (for our purposes, it is enough to stop
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at O((x− ρh)2)). Indeed it is well known (cf. [10, Lemma VII.3]) that an implicit equation of the
form (39) has a solution as a power series in (1− x/ρh)1/2. In particular, (38) follows with an error
term that is uniform in h. The coefficients ah, bh, ch can be expressed in terms of Rh, Sh and their
partial derivatives evaluated at (ρh, ηh,1): specifically,

ah = −
√
ρh

Rh(ρh, ηh,1)
Sh(ηh,1)

,

bh =
ρhSh(ηh,1) ∂Rh∂y (ρh, ηh,1)− ρhS′

h(ηh,1)Rh(ρh, ηh,1)
2Sh(ηh,1)2

,

ch = ρ
3/2
h N

8
√
Rh(ρh, ηh,1)Sh(ηh,1)7

,

where the numerator N is a polynomial in Rh(ρh, ηh,1), Sh(ηh,1) and their derivatives. By Lemma
3.12, Rh and Sh as well as their partial derivatives converge uniformly to R and S as well as their
partial derivatives, respectively, with an error bound of O(λh/2). We also know that ρh and ηh,1
converge exponentially to ρ and η1, respectively, see Lemma 3.9. This means that first replacing all
occurrences of Rh and Sh by R and S, respectively, and then replacing all occurrences of ρh and ηh,1
by ρ and η1, respectively, shows that ah = a+O(λh/2), bh = b+O(λh/2), and ch = c+O(λh/2)
where a, b, and c are the results of these replacements. Taking the limit for h→ ∞ in (30) shows
that R and S and therefore a, b, and c play the same role with respect to F∞ as Rh, Sh, ah, bh, and
ch play with respect to Fh, which implies that a, b, and c are indeed the constants from (4). �

Having dealt with the behaviour around the singularity, it remains to prove a uniform bound
on Yh,1 in a domain of the form (6) for fixed δ.

Lemma 3.15. Let ε > 0 be such that all previous lemmata hold. There exist δ > 0 and a positive
integer h0 such that Yh,1(x) has an analytic continuation to the domain

{x ∈C : |x| ≤ (1+ δ)|ρh|, |Arg(x/ρh − 1)|>π/4}
for all h≥ h0, and has the uniform upper bound

|Yh,1(x)| ≤ τ − ρ + ε

2
= η1 + ε

2
for all h≥ h0 and all x.

Proof. Let us define rh = supRh, where

Rh =
{
r : Yh,1 extends analytically to Dr(0) \Dδ0 (ρh) and satisfies |Yh,1(x)|<η1 + ε

2
there

}
,

with δ0 as in the previous lemma. Note that trivially, rh ≥ ρ. If lim infh→∞ rh >ρ, we are done:
in this case, there is some δ > 0 such that Yh,1 extends analytically to Dρ(1+δ)(0) \Dδ0 (ρh) and
satisfies |Yh,1(x)|<η1 + ε

2 there. As the previous lemma covers Dδ0 (ρh), this already completes
the proof.

So let us assume that lim infh→∞ rh = ρ and derive a contradiction. The assumption implies
that there is an increasing sequence of positive integers hj such that limj→∞ rhj = ρ. Without loss
of generality, we may assume that rhj ≤ ρ + ε

2 for all j. Pick (for each sufficiently large j) a point xhj
with |xhj | = rhj and |Yhj,1(xhj)| = η1 + ε

2 . If this were not possible, we could analytically continue
Yhj,1 at every point xwith |x| = rhj and x /∈Dδ0 (ρhj) to a disk where Yhj,1 is still bounded by η1 + ε

2 .
This analytic continuation is possible, since by Lemma 3.11 the pair (ρhj , ηhj,1) is the only solution
to the simultaneous equations Fhj(x, y)= y and ∂

∂yFhj(x, y)= 1 with (x, y) ∈�(1,2)
ε , so the analytic

implicit function theorem becomes applicable (compare e.g. the analytic continuation of qh in
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Figure 5. Illustration of the domain xhj A.

Lemma 3.8). By compactness, this would allow us to extend Yhj,1 to Dr(0) \Dδ0 (ρhj) for some
r> rhj while still maintaining the inequality |Yhj,1(x)|<η1 + ε

2 , contradicting the choice of rhj .
Without loss of generality (choosing a subsequence if necessary), we can assume that xhj and

Yhj,1(xhj) have limits x∞ and y∞, respectively. By construction, |x∞| = ρ and |y∞| = η1 + ε
2 .

Since xhj /∈Dδ0 (ρ) for all j, Arg xhj is bounded away from 0. Thus we can find α > 0 such that
|Arg xhj | ≥ 2α for all j. Define the region A by

A=
{
z ∈C : |z|< 1

2
or (|z|< 1 and |Arg z|<α)

}
.

Note that xhjA avoids the part of the real axis that includes ρhj (see Fig. 5), so the function
Yhj,1(x) is analytic in this region for all j by construction since (x, Yhj,1(x)) ∈�(1,2)

ε whenever
x ∈ xhjA. So we have a sequence of functions Wj(z) := Yhj,1(xhjz) that are all analytic on A and
are uniformly bounded above by η1 + ε

2 by our choice of xhj . By Montel’s theorem, there is a sub-
sequence of these functions (without loss of generality the sequence itself) that converges locally
uniformly and thus to an analytic functionW∞ on A. This function needs to satisfy the following:

• W∞(0)= 0, sinceWj(0)= 0 for all j,
• W∞(z)= F∞(x∞z,W∞(z))= x∞z(�(x∞z +W∞(z))− 1) for z ∈A, since we have the

uniform estimate

Wj(z)= Yhj,1(xhjz)= Fhj(xhjz, Yhj,1(xhjz))= F∞(xhjz, Yhj,1(xhjz))+O(λh).

This is also equivalent to

x∞z +W∞(z)= x∞z�(x∞z +W∞(z)).

These two properties imply that W∞(z)= Y(x∞z)− x∞z, since Y is the unique function that
is analytic at 0 and satisfies the implicit equation Y(x)= x�(Y(x)). Implicit differentiation of
Yhj,1(x)= Fhj(x, Yhj,1(x)) for x ∈ xhjA yields

Y ′
hj,1(x)=

∂Fhj
∂x (x, Yhj,1(x))

1− ∂Fhj
∂y (x, Yhj,1(x))

=
∂F∞
∂x (x, Yhj,1(x))+O(λhj)

1− ∂F∞
∂y (x, Yhj,1(x))+O(λhj)

. (43)

Note that the numerator is uniformly bounded. Moreover, we recall again that the only solution
to the simultaneous equations F∞(x, y)= x(�(y+ x)− 1)= y and ∂

∂yF∞(x, y)= x�′(y+ x)= 1
with |x| ≤ ρ + ε and |x+ y| ≤ τ + ε is (x, y)= (ρ, τ − ρ)= (ρ, η1) by our assumptions on �.
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By construction, there is a constant εA > 0 such that |x− ρ| ≥ εA whenever x ∈ xhjA for some
j. The map (x, y) �→ ‖(F∞(x, y)− y, ∂

∂yF∞(x, y)− 1)‖ is continuous on the compact set

K := {(x, y) : |x| ≤ ρ + ε and |x+ y| ≤ τ + ε and |x− ρ| ≥ εA}
and has no zero there (using the Euclidean norm on C

2). Therefore, it attains a minimum δA > 0
on K.

Now for x ∈ xhjA, |x| ≤ ρ + ε holds by assumption, as does |x+ Yhj,1(x)| ≤ τ + ε. Moreover,
|x− ρ| ≥ εA. Thus we can conclude that (x, Yhj,1(x)) ∈K and therefore ‖(F∞(x, Yhj,1(x))−
Yhj,1(x),

∂F∞
∂y (x, Yhj,1(x))− 1)‖ ≥ δA for all such x. Since

F∞(x, Yhj,1(x))− Yhj,1(x)= Fhj(x, Yhj,1(x))− Yhj,1(x)+O(λhj)=O(λhj),

this means that
∣∣∣1− ∂F∞

∂y (x, Yhj,1(x))
∣∣∣ ≥ δA −O(λhj), so that the denominator in (43) is bounded

below by a positive constant for sufficiently large j.
So we can conclude that Y ′

hj,1(x) is uniformly bounded by a constant for x ∈ xhjA, implying
that Wj′(z) is uniformly bounded (for all z ∈A and all sufficiently large j) by a constant that is
independent of j. Therefore,Wj(z) is a uniformly equicontinuous sequence of functions on A, the
closure of A. By the Arzelà–Ascoli theorem, this implies that Wj(z)→W∞(z)= Y(x∞z)− x∞z
holds even for all z ∈A, not only on A. In particular, y∞ =W∞(1)= Y(x∞)− x∞. Here, we have
|x∞| ≤ ρ and |y∞| = η1 + ε

2 by assumption. However,

|Y(x)− x| ≤ |Y(ρ)− ρ| = η1

holds for all |x| ≤ ρ by the triangle inequality, so we finally reach a contradiction. �
We conclude this section with a summary of the results proven so far. The following

proposition follows by combining the last two lemmata.

Proposition 3.16. There exists a constant δ > 0 such that Yh,1(x) can be continued analytically to
the domain

{x ∈C : |x| ≤ (1+ δ)|ρh|, |Arg(x/ρh − 1)|>π/4}
for every sufficiently large h. Moreover, Yh,1(x) is then uniformly bounded on this domain by a
constant that is independent of h, and the following singular expansion holds near the singularity:

Yh,1(x)= ηh,1 + ah
(
1− x

ρh

)1/2 + bh
(
1− x

ρh

)
+ ch

(
1− x

ρh

)3/2 +O
(
(ρh − x)2

)
,

where the O-constant is independent of h and ah, bh, ch converge at an exponential rate to a, b, c
respectively as h→ ∞.

Remark 3.17. Let D= gcd{i ∈N : wi �= 0} be the period of �. The purpose of this remark is to give
indications how the results so far have to be adapted for the case D> 1.

If D> 1, then for all trees of our simply generated family of trees, the number n of vertices will be
congruent to 1modulo D because all outdegrees are multiples of D. Trivially, the same is true for all
trees with maximum protection number h.

By [10, Remark VI.17], both Y and Yh,1 have D conjugate roots on its circle of convergence.
Therefore, it is enough to study the positive root at the radius of convergence. Up to Theorem 3.10,
no changes are required. In Lemma 3.11, there are exactly D solutions instead of exactly one solution
to the simultaneous equations. Lemmata 3.12, 3.13, and 3.14 analyse the behaviour of Yh,1 around
the dominant positive singularity and remain valid without any change. In the proof of Lemma
3.15, we need to exclude balls around the conjugate roots. Proposition 3.16 must also be changed to
exclude the conjugate roots.
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4. The exponential case:w1 �= 0
4.1 Asymptotics of the singularities
Proposition 3.16 that concluded the previous section shows that condition (2) of Theorem 2.1
is satisfied (with α= 1

2 ) by the generating functions Yh,1 (and thus also Yh,0, since Yh,0(x)=
Yh,1(x)+ x). It remains to study the behaviour of the singularity ρh of Yh,0 and Yh,1 to make the
theorem applicable. As it turns out, condition (1) of Theorem 2.1 holds precisely if vertices of
outdegree 1 are allowed in our simply generated family of trees. In terms of the weight generating
function�, this can be expressed asw1 =�′(0) �= 0. Starting with Lemma 4.3, we will assume that
this holds. The case where vertices of outdegree 1 cannot occur (equivalently, w1 =�′(0)= 0) is
covered in Section 5.

Let us define the auxiliary quantities ηh,k := Yh,k(ρh) for all 0≤ k≤ h. We know that these must
exist and be finite for all sufficiently large h. Since the coefficients of Yh,k are nonincreasing in k in
view of the combinatorial interpretation, we must have

ηh,0 ≥ ηh,1 ≥ · · · ≥ ηh,h. (44)

Note also that the following system of equations holds:

ηh,0 = ηh,1 + ρh, (45)
ηh,k = ρh�(ηh,k−1)− ρh�(ηh,h) for 1≤ k≤ h, (46)

in view of (8) and (7), respectively. SinceYh,1 is singular at ρh by assumption, the Jacobian determi-
nant of the system that determines Yh,0, Yh,1, . . . , Yh,h needs to vanish (as there would otherwise
be an analytic continuation by the analytic implicit function theorem). This determinant is given
by ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0 0

−ρh�′(ηh,0) 1 0 · · · 0 ρh�
′(ηh,h)

0 −ρh�′(ηh,1) 1 · · · 0 ρh�
′(ηh,h)

...
...

...
. . .

...
...

0 0 0 · · · −ρh�′(ηh,h−1) 1+ ρh�
′(ηh,h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using column expansion with respect to the last column to obtain the determinant, we find that
this simplifies to

h∏
j=1

(
ρh�

′(ηh,j)
) + (

1− ρh�
′(ηh,0)

)(
1+

h∑
k=2

h∏
j=k

(
ρh�

′(ηh,j)
)) = 0. (47)

We will now use (45), (46), and (47) to determine an asymptotic formula for ρh. Throughout
this section, Bi’s will always be positive constants with Bi < 1 that depend on the specific family of
simply generated trees, but nothing else.

Lemma 4.1. There exist positive constants C and B1 with B1 < 1 such that ηh,k ≤ CBk1 for all
sufficiently large h and all k with 0≤ k≤ h.

Proof. Since we already know that ηh,1 converges to τ − ρ and that ρh converges to ρ, ηh,0
converges to τ by (45). By the monotonicity property (44), all ηh,k must therefore be bounded
by a single constant M for sufficiently large h. Since ηh,1 converges to τ − ρ, we must have
that ρh�′(ηh,1) converges to ρ�′(τ − ρ). Therefore, ρh�′(ηh,1)≤ ρ�′(τ − ρ/2) for sufficiently
large h. It follows that ρh�′(ηh,1)≤ ρ�′(τ − ρ/2)<ρ�′(τ )= 1. For all 1≤ j≤ h, we now have

ηh,j = ρh�(ηh,j−1)− ρh�(ηh,h)≤ ρh�′(ηh,j−1)(ηh,j−1 − ηh,h)≤ ρh�′(ηh,1)ηh,j−1.
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Thus by induction

ηh,k ≤ ηh,1
(
ρh�

′(ηh,1)
)k−1 ≤M

(
ρ�′(τ − ρ/2)

)k−1.
This proves the desired inequality for sufficiently large h and 1≤ k≤ h with B1 = ρ�′(τ −
ρ/2)< 1, and we are done. �

With this bound, we will be able to refine the estimates for the system of equations, leading
to better estimates for ρh and ηh,0. Recall from Lemma 3.9 that ρh and ηh,1 converge to their
respective limits ρ and τ − ρ = η1 (at least) exponentially fast. Since ηh,0 = ηh,1 + ρh by (45), this
also applies to ηh,0. We show that an analogous statement also holds for ηh,k with arbitrary k. In
view of (46), it is natural to expect that ηh,k → ηk, where ηk is defined recursively as follows: η0 = τ

and, for k> 0, ηk = ρ�(ηk−1)− ρ, which also coincides with our earlier definition of η1 = τ − ρ.
This is proven in the following lemma.

Lemma 4.2. For a suitable constant B2 < 1 and sufficiently large h, we have ρh = ρ +O(Bh2) and
ηh,k = ηk +O(Bh2) for all k with 0≤ k≤ h, uniformly in k.

Proof. For a suitable choice of B2, the estimate for ρh has been established by Lemma 3.9, as has
the estimate for ηh,k in the cases where k= 0 and k= 1. Set δh,k = ηh,k − ηk. Since ηh,h ≤ CBh1 by
Lemma 4.1, we have �(ηh,h)=�(0)+O(Bh1)= 1+O(Bh1). Without loss of generality, suppose
that B2 ≥ B1. Then, using (46), we obtain

ηh,k = ρh�(ηh,k−1)− ρh�(ηh,h)
= (ρ +O(Bh2))�(ηk−1 + δh,k−1)− (ρ +O(Bh2))(1+O(Bh1))
= ρ(�(ηk−1)+�′(ξh,k−1)δh,k−1)− ρ +O(Bh2)
= ηk + ρ�′(ξh,k−1)δh,k−1 +O(Bh2)

where ξh,k−1 is between ηk−1 and ηh,k−1 (by the mean value theorem) and the O-constant is inde-
pendent of k. Let M be this O-constant. We already know (compare the proof of Lemma 4.1)
that ηh,k−1 ≤ ηh,1 ≤ τ − ρ/2 for every k≥ 2 if h is sufficiently large. Likewise, it is easy to see
that ηk is decreasing in k, hence ηk−1 ≤ η1 = τ − ρ. Thus, ξh,k−1 ≤ τ − ρ/2 and ρ�′(ξh,k−1)≤
ρ�′(τ − ρ/2)= B1 < 1. So we have, for every k> 1,

|δh,k| = |ηh,k − ηk| ≤ B1|δh,k−1| +MBh2.
Iterating this inequality yields

|δh,k| ≤ Bk−1
1 |δh,1| + (1+ B1 + · · · + Bk−2

1 )MBh2 ≤ |δh,1| + MBh2
1− B1

,

and the desired statement follows. �
From Lemma 4.1 and the fact that ηh,k → ηk, we trivially obtain ηk ≤ C · Bk1, with the same

constants B1 and C as in Lemma 4.1. In fact, we can be more precise, and this is demonstrated
in the lemma that follows. Since the expression ρ�′(0) occurs frequently in the following, we set
ζ := ρ�′(0). Recall that we assume�′(0) �= 0 until the end of this section.

Lemma 4.3. The limit λ1 := limk→∞ ζ−kηk exists. Moreover, we have

ηk = λ1ζ
k(1+O(Bk1)),

with B1 as in Lemma 4.1.

Proof. Recall that we defined the sequence (ηk)k≥0 by η0 = τ and ηk = ρ�(ηk−1)− ρ for k≥ 1.
Using Taylor expansion, we obtain

ηk = ρ�′(0)ηk−1(1+O(ηk−1))= ζηk−1(1+O(ηk−1)).
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Since we already know that ηk−1 ≤ C · Bk−1
1 , this implies that

ηk = ζηk−1(1+O(Bk1)).
Now it follows that the infinite product

λ1 = η0
∏
j≥1

ηj

ζηj−1
= lim

k→∞
η0

k∏
j=1

ηj

ζηj−1
= lim

k→∞
ζ−kηk

converges. The error bound follows from noting that

ζ−kηk = λ1
∏

j≥k+1

ζηj−1

ηj
= λ1

∏
j≥k+1

(1+O(Bj1)).
�

Next, we consider the expression in (47) and determine the asymptotic behaviour of its parts.

Lemma 4.4. For large enough h and a fixed constant B3 < 1, we have

1+
h∑

k=2

h∏
j=k

(ρh�′(ηh,j))= 1
1− ζ

+O(Bh3)

and
h∏

j=1
ρh�

′(ηh,j)= λ2ζ
h(1+O(Bh3)),

where λ2 := ∏
j≥1

�
′(ηj)
�

′(0) .

Proof. Note that
h∏

j=k
(ρh�′(ηh,j))= ρh−k+1

h

h∏
j=k
�′(ηh,j).

In view of Lemma 4.2, we have ρh−k+1
h = ρh−k+1(1+O(Bh2))h−k+1 = ρh−k+1(1+O(hBh2)), uni-

formly in k. Moreover, Lemma 4.1 yields �′(ηh,j)=�′(0)+O(ηh,j)=�′(0)+O(Bj1), uniformly
in h. Thus

h∏
j=k
�′(ηh,j)=�′(0)h−k+1

h∏
j=k

(1+O(Bj1))=�′(0)h−k+1(1+O(Bk1)).

Hence the expression simplifies to

1+
h∑

k=2

h∏
j=k

(ρh�′(ηh,j))= 1+ (1+O(hBh2))
h∑

k=2

ζ h−k+1(1+O(Bk1)).

Since ζ < 1 and B1 < 1, we can simply evaluate the geometric series, and the expression further
simplifies to

1+
h∑

k=2

ζ h−k+1 +O(Bh3)=
1− ζ h

1− ζ
+O(Bh3)=

1
1− ζ

+O(Bh3)

for an appropriately chosen B3 < 1. This proves the first statement. For the second statement, we
also use Lemma 4.2, along with the monotonicity of�′ and the assumption that�′(0) �= 0, which
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implies that�′(ηj) is bounded away from 0. This yields

h∏
j=1

ρh�
′(ηh,j)=

h∏
j=1

(ρ +O(Bh2))(�′(ηj)+O(Bh2))= ρh(1+O(hBh2))
h∏

j=1
�′(ηj).

Since �′(ηj)=�′(0)+O(ζ j) (by Lemma 4.3), the product that defines λ2 converges. So we can
rewrite the product term as

h∏
j=1

�′(ηj)=�′(0)h
h∏

j=1

�′(ηj)
�′(0)

= λ2�
′(0)h

∏
j≥h+1

�′(0)
�′(ηj)

,

and thus, using again the estimate�′(ηj)=�′(0)+O(ζ j) on the remaining product,

h∏
j=1

ρh�
′(ηh,j)= λ2ζ

h(1+O(hBh2))(1+O(ζ h)).

This proves the desired formula for a suitable choice of B3. �
Corollary 4.5. For sufficiently large h, we have that

ρh�
′(ηh,0)= 1+ λ2(1− ζ )ζ h(1+O(Bh3)), (48)

where λ2 and B3 are as in Lemma 4.4.

Proof. Taking the asymptotic formulas from the statement of Lemma 4.4 and applying them to
(47) we obtain the formula after solving for ρh�′(ηh,0). �

In the proof of Lemma 4.2 we used the bound ηh,h =O(Bh1) (obtained from Lemma 4.1). In
order to refine the process, we need a more precise estimate.

Lemma 4.6. For sufficiently large h and a fixed constant B4 < 1, we have that

ηh,h = λ1(1− ζ )ζ h(1+O(Bh4)), (49)

where λ1 is as defined in Lemma 4.3.

Proof. Pick some α ∈ (0, 1) in such a way that ζ α > B2, with B2 as in Lemma 4.2, and set m=

αh�. From Lemma 4.3, we know that ηm =�(ζ αh). By Lemma 4.2, ηh,m = ηm +O(Bh2), so by our
choice of α there is some B4 < 1 such that ηh,m = ηm(1+O(Bh4)) for sufficiently large h.

Next, recall from (46) that

ηh,k = ρh
(
�(ηh,k−1)−�(ηh,h)

)
.

By the mean value theorem, there is some ξh,k ∈ (ηh,h, ηh,k−1) such that

ηh,k = ρh(ηh,k−1 − ηh,h)�′(ξh,k)= ρh(ηh,k−1 − ηh,h)(�′(0)+O(ηh,k−1)).

Assume now that k≥m, so that ηh,k−1 =O(Bαh1 ) by Lemma 4.1. Moreover, ρh = ρ +O(Bh2) by
Lemma 4.2. So with B=max(B2, Bα1 ), it follows that

ηh,k = ζ (ηh,k−1 − ηh,h)(1+O(Bh)),

uniformly for all k≥m. Rewrite this as

ηh,k−1 = ηh,h + ηh,k
ζ

(1+O(Bh)).
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Iterate this h−m times to obtain

ηh,m =
h−m∑
j=0

ηh,h
ζ j

(1+O(Bh))j

= ηh,hζ
−(h−m) 1− ζ h−m+1

1− ζ
(1+O(hBh)).

Now recall that ηh,m = ηm(1+O(Bh4)), and that ηm = λ1ζ
m(1+O(Bαh1 )) by Lemma 4.3. Plugging

all this in and solving for ηh,h, we obtain (49), provided that B4 was also chosen to be greater than
B and ζ 1−α . �

Now we can make use of this asymptotic formula for ηh,h in order to obtain a refined estimate
for ηh,0.

Proposition 4.7. For a fixed constant B5 < 1 and large enough h, we have that

ηh,0 = τ + (1− ζ )(�(τ )λ2 −�′(0)λ1)
τ�′′(τ )

ζ h +O((ζB5)h) (50)

and

ρh = ρ + λ1(1− ζ )
�(τ )

ζ h+1 +O((ζB5)h), (51)

where λ1 and λ2 are as in Lemmata 4.3 and 4.4 respectively.

Proof. From (45) and (46) with k= 1, we have
ηh,0 = ρh

(
�(ηh,0)−�(ηh,h)+ 1

)
. (52)

By means of Taylor expansion and Lemma 4.6, we get

ηh,0 = ρh
(
�(ηh,0)−�′(0)ηh,h +O(η2h,h)

)
.

We multiply this by (48) and divide through by ρh to obtain

ηh,0�
′(ηh,0)=

(
�(ηh,0)−�′(0)ηh,h +O(η2h,h)

)(
1+ λ2(1− ζ )ζ h(1+O(Bh3))

)
(53)

or, with H(x)= x�′(x)−�(x),
H(ηh,0)=

(−�′(0)ηh,h +O(η2h,h)
)
(1+O(ζ h))+�(ηh,0)λ2(1− ζ )ζ h(1+O(Bh3)).

We plug in the asymptotic formula for ηh,h from Lemma 4.6 and also note that �(ηh,0)=�(τ +
O(Bh2))=�(τ )+O(Bh2) by Lemma 4.2. This gives us

H(ηh,0)= (�(τ )λ2 −�′(0)λ1)(1− ζ )ζ h +O((ζB5)h), (54)

where B5 =max(ζ , B2, B3, B4). Now note that the function H is increasing (on the positive real
numbers within the radius of convergence of �) with derivative H′(x)= x�′′(x) and a unique
zero at τ . So by inverting (54), we finally end up with

ηh,0 = τ + 1
H′(τ )

(�(τ )λ2 −�′(0)λ1)(1− ζ )ζ h +O((ζB5)h),

completing the proof of the first formula. Now we return to (48), which gives us

ρh = 1+ λ2(1− ζ )ζ h(1+O(Bh3))
�′(ηh,0)

= 1+ λ2(1− ζ )ζ h(1+O(Bh3))
�′(τ )+�′′(τ )(ηh,0 − τ )+O((ηh,0 − τ )2)

.

Plugging in (50) and simplifying by means of the identities ρ�(τ )= τ and ρ�′(τ )= 1 now yields
(51). �
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4.2 Proof of Theorem 1.2
We are now finally ready to apply Theorems 2.1 and 2.2. The generating functions
Yh(z) := Yh,0(z)= Yh,1(z)+ z were defined precisely in such a way that yh,n = [zn]Yh(z) is the
number of n-vertex trees for which the maximum protection number is less than or equal to h.
Thus the random variable Xn in Theorem 2.1 becomes the maximum protection number of a ran-
dom n-vertex tree. Condition (2) of Theorem 2.1 is satisfied in view of Proposition 3.16. Condition
(1) holds by Proposition 4.7 with ζ = ρ�′(0) and

κ = λ1(1− ζ )ζ
ρ�(τ )

= λ1(1− ζ )ζ
τ

, (55)

where λ1 is as defined in Lemma 4.3 and we recall the definition of ζ as ρ�′(0). This already
proves the first part of Theorem 1.2.

We can also apply Theorem 2.2: Note that the maximum protection number of a tree with
size n is no greater than n− 1, thus yh,n = yn for h≥ n− 1, and an appropriate choice of constant
for Condition (1) in Theorem 2.2 would be K = 1. Conditions (2) and (3) are still covered by
Proposition 3.16. Hence Theorem 2.2 applies, and the second part of Theorem 1.2 follows.

5. The double-exponential case:w1 = 0
5.1 Asymptotics of the singularities
In Section 4.1, it was crucial in most of our asymptotic estimates that w1 =�′(0) �= 0. In this
section we assume that w1 =�′(0)= 0 and define r to be the smallest positive outdegree with
nonzero weight:

r =min{i ∈N : i≥ 2 and wi �= 0} =min{i ∈N : i≥ 2 and�(i)(0) �= 0}.
Our goal will be to determine the asymptotic behaviour of ρh in this case, based again on the
system of equations that is given by (45), (46) and (47). Once again, Bi’s will always denote positive
constants with Bi < 1 (different from those in the previous section, but for simplicity we restart
the count at B1) that depend on the specific family of simply generated trees, but nothing else.

No part of the proof of Lemma 4.1 depends on �′(0) �= 0 and thus it also holds in the case
which we are currently working in, so we already have an exponential bound on ηh,k. However,
this bound is loose if�′(0)= 0, and so we determine a tighter bound.

Lemma 5.1. There exist positive constants C and B1 with B1 < 1 such that ηh,k ≤ CBrk1 for all
sufficiently large h and all k with 0≤ k≤ h.

Proof. From (46), we have that ηh,k = ρh�(ηh,k−1)− ρh�(ηh,h). Using the Taylor expansion
about 0, this gives, for some ξh,k−1 ∈ (0, ηh,k−1),

ηh,k = ρh
(
�(0)+ �(r)(ξh,k−1)

r! ηrh,k−1

)
− ρh�(ηh,h)

≤ ρh�
(r)(ξh,k−1)

r! ηrh,k−1 ≤ ρh�
(r)(ηh,1)
r! ηrh,k−1.

There is a constantM such that ρh
�(r)(ηh,1)

r! ≤M for all sufficiently large h, since we already know
that ρh and ηh,1 converge. So for sufficiently large h, we have ηh,k ≤Mηrh,k−1 for all k> 1. Iterating
this inequality yields

ηh,k ≤M
rk−�−1
r−1 ηr

k−�
h,�
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for 0≤ �≤ k. In view of the exponential bound on ηh,� provided by Lemma 4.1, we can choose �
so large that M1/(r−1)ηh,� ≤ 1

2 for all sufficiently large h. This proves the desired bound for k≥ �
with B1 = 2−r−� and a suitable choice of C (for k< �, it is implied by the exponential bound). �

Our next step is an analogue of Lemma 4.4.

Lemma 5.2. For large enough h and the same constant B1 < 1 as in the previous lemma, we have

1+
h∑

k=2

h∏
j=k

(ρh�′(ηh,j))= 1+O(Br
h
1 )

and
h∏

j=1
ρh�

′(ηh,j)=O(Br
h
1 ).

Proof. We already know that ρh�′(ηh,1) converges to ρ�′(τ − ρ)< 1, so for sufficiently large h
and some q< 1, we have ρh�′(ηh,j)≤ ρh�′(ηh,1)≤ q for all j≥ 1. It follows that

h∑
k=2

h∏
j=k

(ρh�′(ηh,j))≤
h∑

k=2

qh−kρh�
′(ηh,h)≤ 1

1− q
ρh�

′(ηh,h)

and
h∏

j=1
ρh�

′(ηh,j)≤ qh−1ρh�
′(ηh,h).

Now both statements follow from the fact that �′(ηh,h)=�′(0)+O(ηh,h)=O(ηh,h) and the
previous lemma. �

Taking the results from Lemma 5.2 and applying them to (47), we find that

ρh�
′(ηh,0)= 1+O

(
Br

h
1

)
. (56)

Additionally note that using Lemma 5.1 and Taylor expansion, we have that

�(ηh,h)= 1+O(Br
h
1 ).

Now recall that (45) and (46) yield (see (52))
ηh,0 = ρh

(
�(ηh,0)−�(ηh,h)+ 1

)
, (57)

which now becomes
ηh,0 = ρh�(ηh,0)+O

(
Br

h
1

)
. (58)

Taking advantage of the expressions in (56) and (58), we can now prove doubly exponential
convergence of ρh and ηh,0 (using the approach of Proposition 4.7).

Lemma 5.3. For large enough h, it holds that

ρh = ρ +O
(
Br

h
1

)
and ηh,0 = τ +O

(
Br

h
1

)
.

and thus also ηh,1 = ηh,0 − ρh = η1 +O(Brh1 ).

Proof. Multiplying (56) and (58) and dividing by ρh yields

ηh,0�
′(ηh,0)=�(ηh,0)+O

(
Br

h
1

)
.
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As in the proof of Proposition 4.7, we observe that the function H(x)= x�′(x)−�(x) is increas-
ing (on the positive real numbers within the radius of convergence of �) with derivative H′(x)=
x�′′(x) and a unique zero at τ . So it follows from this equation that ηh,0 = τ +O

(
Brh1

)
. Using this

estimate for ηh,0 in (56) it follows that ρh = ρ +O
(
Brh1

)
. �

As in the previous section, we will approximate ηh,k by ηk, defined recursively by η0 = τ and
ηk = ρ(�(ηk−1)− 1). As it turns out, this approximation is even more precise in the current case.

Lemma 5.4. For a fixed constant B2 < 1 and sufficiently large h, we have that

ηh,k = ηk(1+O(Br
h
2 )),

uniformly for all 0≤ k≤ h.

Proof. Recall that, by (46), ηh,k = ρh�(ηh,k−1)− ρh�(ηh,h). By Taylor expansion, we find that
ηh,k = ρh�(ηh,k−1)− ρh +O(ηrh,h).

Since ηh,k ≥ ηh,h, we have ηh,k −O(ηrh,h)= ηh,k(1−O(ηr−1
h,h )). Now we use the estimates ηh,h =

O(Brh1 ) from Lemma 5.1 and ρh = ρ +O(Brh1 ) from Lemma 5.3 to obtain

ηh,k = ρ(�(ηh,k−1)− 1)
(
1+O(Br

h
1 )

)
.

We compare this to
ηk = ρ(�(ηk−1)− 1).

Taking the logarithm in both these equations and subtracting yields

log
ηh,k
ηk

= log(�(ηh,k−1)− 1)− log (�(ηk−1)− 1)+O(Br
h
1 ). (59)

For large enough h, we can assume that ηh,1 ≤ τ and thus ηh,k ≤ τ for all k≥ 1. The auxiliary
function

�1(u)= log
(
�(eu)− 1

)
is continuously differentiable on (− ∞, log (τ )]. Since limu→−∞ � ′

1(u)= r, as one easily verifies,
|� ′

1(u)|must be bounded by some constant K for all u in this interval, thus |�1(u+ v)−�1(u)| ≤
K|v| whenever u, u+ v≤ log(τ ). We apply this with u+ v= log ηh,k−1 and u= log ηk−1 to obtain∣∣∣ log (�(ηh,k−1)− 1)− log (�(ηk−1)− 1)

∣∣∣ ≤K
∣∣∣ log ηh,k−1

ηk−1

∣∣∣.
Plugging this into (59) yields ∣∣∣ log ηh,k

ηk

∣∣∣ ≤K
∣∣∣ log ηh,k−1

ηk−1

∣∣∣ +O(Br
h
1 ). (60)

We already know that
∣∣ log ηh,0

η0

∣∣ =O(Brh1 ) and
∣∣ log ηh,1

η1

∣∣ =O(Brh1 ) in view of Lemma 5.3. Iterating
(60) gives us ∣∣∣ log ηh,k

ηk

∣∣∣ =O
(
(1+K +K2 + · · · +Kk)Br

h
1 ),

which implies the statement for any B2 > B1. �
The next lemma parallels Lemma 4.3.

Lemma 5.5. There exist positive constants λ1 and μ< 1 such that

ηk = λ1μ
rk(1+O(Br

k
1 )

)
,

with the same constant B1 as in Lemma 5.1.
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Proof. Note that Lemma 5.1 trivially implies that ηk =O(Brk1 ). From the recursion

ηk = ρ(�(ηk−1)− 1),

we obtain, by the properties of�,

ηk = ρ�(r)(0)ηrk−1
r! (1+O(ηk−1)).

Set

λ1 =
(ρ�(r)(0)

r!
)−1/(r−1) = (ρwr)−1/(r−1) (61)

and divide both sides by λ1 to obtain
ηk
λ1

=
(ηk−1
λ1

)r
(1+O(ηk−1)).

Let us write eθk−1 for the final factor, where θk−1 =O(ηk−1). Taking the logarithm yields

log
ηk
λ1

= r log
ηk−1
λ1

+ θk−1.

We iterate this recursion k times to obtain

log
ηk
λ1

= rk log
η0
λ1

+
k−1∑
j=0

rk−1−jθj

= rk
(
log

η0
λ1

+
∞∑
j=0

r−1−jθj
)

−
∞∑
j=k

rk−1−jθj.

The infinite series converge in view of the estimate θj =O(ηj)=O(Brj1 ) that we get from
Lemma 5.1. Moreover, we have

∑∞
j=k rk−1−jθj =O(Brk1 ) by the same bound. The result follows

upon taking the exponential on both sides and multiplying by λ1, setting

μ := exp
(
log

η0
λ1

+
∞∑
j=0

r−1−jθj
)

= η0
λ1

∞∏
j=0

eθj/r
j+1

. (62)

Note that μ< 1 because we already know that ηk =O(Brk1 ). �
In order to further analyse the behaviour of the product

∏h
j=1 (ρh�′(ηh,j)) in (47), we need one

more short lemma.

Lemma 5.6. For sufficiently large h, we have that

�′(ηh,k)=�′(ηk)
(
1+O(Br

h
2 )

)
,

uniformly for all 1≤ k≤ h, with the same constant B2 as in Lemma 5.4.

Proof. Again, we can assume that h is so large that ηh,k ≤ τ for all k≥ 1. The auxil-
iary function �2(u)= log(�′(eu)) is continuously differentiable on (− ∞, log τ ] and satisfies
limu→−∞ � ′

2(u)= r − 1. Thus its derivative is also bounded, and the same argument as in Lemma
5.4 shows that ∣∣∣ log �′(ηh,k)

�′(ηk)

∣∣∣ ≤K
∣∣∣ log ηh,k

ηk

∣∣∣
for some positive constant K. Now the statement follows from Lemma 5.4. �
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Lemma 5.7. There exist positive constants λ2, λ3 and B3 < 1 such that, for large enough h,

h∏
j=1

(ρh�′(ηh,j))= λ2λ
h
3μ

rh+1(
1+O(Br

h
3 )

)
, (63)

with μ as in Lemma 5.5.

Proof. First, observe that

h∏
j=1

(ρh�′(ηh,j))=
(
ρ
(
1+O(Br

h
1 )

))h h∏
j=1

(
�′(ηj)

(
1+O(Br

h
2 )

)) = ρh
( h∏

j=1
�′(ηj)

)(
1+O(hBr

h
2 )

)
in view of Lemmata 5.3 and 5.6 (recall that B2 > B1). Next, Taylor expansion combined with
Lemma 5.5 gives us

�′(ηk)= �(r)(0)
(r − 1)!η

r−1
k (1+O(ηk))= �(r)(0)λr−1

1
(r − 1)! μ(r−1)rk(1+O(Br

k
1 )

)
.

Set λ3 := ρ
�(r)(0)λr−1

1
(r−1)! = rwrρλ

r−1
1 , so that

�′(ηk)= λ3
ρ
μ(r−1)rk(1+O(Br

k
1 )

)
.

It follows that the infinite product

� :=
∞∏
j=1

ρ�′(ηj)
λ3μ(r−1)rj

converges, and that

h∏
j=1

ρ�′(ηj)
λ3μ(r−1)rj

=�
(
1+O(Br

h
1 )

)
.

Consequently,

h∏
j=1

�′(ηj)=�
(λ3
ρ

)h
μrh+1−r(1+O(Br

h
1 )

)
.

Putting everything together, the statement of the lemma follows with λ2 =�μ−r and a suitable
choice of B3 > B2. �

With this estimate for the product term in the determinant of the Jacobian (47), and the esti-
mate for the sum term from Lemma 5.2, we can now obtain a better asymptotic formula for
ρh�

′(ηh,0) than that which was obtained in (56). For large enough h, we have that

ρh�
′(ηh,0)= 1+ λ2λ

h
3μ

rh+1(
1+O(Br

h
3 )

)
. (64)

For the error term, recall that B1 < B3. Moreover, combining Lemmata 5.4 and 5.5 leads to

ηh,h = λ1μ
rh(1+O(Br

h
2 )

)
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since B2 was chosen to be greater than B1, which we can apply to (57):
ηh,0 = ρh

(
�(ηh,0)−�(ηh,h)+ 1

)
= ρh

(
�(ηh,0)− �(r)(0)

r! ηrh,h +O(ηr+1
h,h )

)
= ρh

(
�(ηh,0)−wrλ

r
1μ

rh+1(
1+O(Br

h
3 )

))
(65)

since B3 was chosen to be greater than B1 (and thus also μ) and B2. As we did earlier to obtain
Lemma 5.3, we multiply the two equations (64) and (65) and divide by ρh to find that

ηh,0�
′(ηh,0)=

(
�(ηh,0)−wrλ

r
1μ

rh+1(
1+O(Br

h
3 )

))(
1+ λ2λ

h
3μ

rh+1(
1+O(Br

h
3 )

))
.

From this, the following result follows now in exactly the same way as Proposition 4.7 follows
from (53).

Proposition 5.8. For large enough h and a fixed constant B4 < 1, we have that

ηh,0 = τ + �(τ )λ2λh3 −wrλ
r
1

τ�′′(τ )
μrh+1 +O(μrh+1

Br
h
4 )

and

ρh = ρ
(
1+ wrλ

r
1

�(τ )
μrh+1 +O(μrh+1

Br
h
4 )

)
.

5.2 An adapted general scheme and the proof of Theorem 1.3
In this final section, we will first prove Theorems 1.4 and 1.5. Then, we will be able to put all pieces
together and prove Theorem 1.3.

Proof of Theorem 1.4. We apply singularity analysis, and use the uniformity condition to obtain

yh,n = Ah
�(− α)

n−α−1ρ−n
h (1+ o(1))

uniformly in h as n→ ∞ as well as

yn = A
�(− α)

n−α−1ρ−n(1+ o(1)).

Since in addition Ah →A and ρh = ρ(1+ κζ r
h + o(ζ rh)), it holds that

yh,n
yn

=
(ρh
ρ

)−n
(1+ o(1))= exp

(−κnζ rh + o(nζ r
h
)
)
(1+ o(1))

= exp
(−κnζ rh(1+ o(1))+ o(1)

)
. �

Proof of Theorem 1.5. Fix ε > 0. If h≥mn + ε = logr logd(n)+ ε, then Theorem 1.4 gives us

P(Xn ≤ h)≥ exp
(−κn1−rε (1+ o(1))+ o(1)

) = 1− o(1),
thus Xn ≤ h with high probability. If {mn} ≤ 1− ε, then this is the case for h= mn�, otherwise
for h= mn� + 1. Similarly, if h≤mn − ε = logr logd(n)− ε, then Theorem 1.4 gives us

P(Xn ≤ h)≤ exp
(−κn1−r−ε (1+ o(1))+ o(1)

) = o(1),
thus Xn > h with high probability. If {mn} ≥ ε, then this is the case for h= 
mn�, otherwise for
h= 
mn� − 1. The statement now follows by combining the two parts. �

https://doi.org/10.1017/S0963548324000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000099


Combinatorics, Probability and Computing 35

Remark 5.9. As in Remark 3.17, we indicate the changes which are necessary for the case that the
period D of � is greater than 1.

Theorem 1.4 only depends on singularity analysis. It is well known (see [10, Remark VI.17]) that
singularity analysis simply introduces a factor D in this situation, and as this factor D cancels because
it occurs both in the asymptotic expansions of Yh as well as Y , this theorem remains valid for n≡ 1
(mod D).

Theorem 1.3 is now an immediate consequence of Theorems 1.4 and 1.5. In analogy to
the proof of Theorem 1.2, the analytic conditions on the generating functions are provided by
Proposition 3.16. The condition on the asymptotic behaviour of ρh is given by Proposition 5.8
(with ζ =μr). Thus the proof of Theorem 1.3 is complete.
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