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Abstract

Let G be a finitely generated group and let R be a commutative ring, regarded as a G-module
with G acting trivially. We shall determine when the cup product of two elements of H (G, R)
is zero. Our method will use the interpretation of H2(G, R) as extensions of G by R . This
will give an alternative demonstration of results of Hillman and Wurfel.
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1. Introduction

Throughout this paper G is a finitely generated group, p is 0 or a prime,
and k — "L/pZ regarded as a ZG-module with G acting trivially. The kernel
of the cup product U: Hl{G, k)®Hl(G, k) -> H2(G, k) was studied in [3],
[4] and [7], these papers depending in part on cochain calculations. We shall
offer a different approach, using the interpretation of H2(G, k) as extensions
of G by k. With the exception of Theorem 2(ii), our results are essentially
those of [4] and [7].

For any group H we set H* = H'HP when p ^ 0. As usual, we shall
identify Hl(H,k) with Hom(H, k). If H is nilpotent, then T{H) will
indicate the torsion subgroup of H (in other words the elements of finite
order in H), and when p = 0, we define G* by G*/Gf = T(G/G') .
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\l\ Group extensions 109

Let Hl{G, k)AHl{G, k) denote the alternating product, and Hl(G, k)Q
H\G, k) the symmetric product. Since the cup product is anticommutative,
it induces homomorphisms

y:Hl{G,k)AH\G,k)^H2(G,k) if/? ^2,

and
6: Hl(G, k)QHl(G, k) -» H2(G, k) if/> = 2,

as described in [3]. We shall prove

THEOREM 1. Suppose p ^ 0, and f,g€. Hom(G, k) are linearly inde-
pendent over k with kernels H, K respectively.

(i) / U g = 0 if and only if H*K* ? G*.
(ii) Ifp±2, then kery = G*/[G*, G]G" .

(iii) Ifp = 2, then ker0 = G*/[<?*, G]G**.

THEOREM 2. Let p = 0, let f,ge Hom(G, Z) be linearly independent
over Z, and let H — ker / n ker g.

(i) / / K/[G*, G] = r(G/[G*, <?])_, then ker y = G*/K.
(ii) Suppose r is the index of ( / , ~g) in Hl(G/H,Z), where f and

~g: G/H -* Z are the homomorphisms induced by f and g respec-
tively. If T/[H, G] = T(G/[H, G]), then fug has finite additive
order in H2(G, Z) if and only if G'/[H, G] is infinite.and in this
case the order is ± 1. c. m.(r, \G*/G'T\).

We use the following method: as in [4] we consider the five term exact
sequence associated with the group extension 1 —> G* —• G —> G/G* —> 1:

0 -» Hl(G/G*, k) -> HX{G, k) -* H\G*, kf -£• H2(G/G*, k) -f H2(G, k).

It will be important to describe the map S accurately. This will be done
by using group extensions (Lemma 3) and the well known structure of
H2(G/G*, k) (Lemmas 4 and 5). The motivation for this paper was to
show that the approach of [4] could be modified so as to avoid complicated
cochain calculations.

2. Notation

Mappings will mostly be written on the left, and modules will be left
modules. Let A, B < H be groups, let X C H, and let M be a ZH-
module. Then we use the notation H' for the commutator subgroup of
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H, (X) for the subgroup generated by X, \X\ for the order X, [A, B]
for (a~lb~xab\a e A, b e B), and MH for {m e M\hm = m for all
h € H}. The restriction map from H2(H, M) to H2(A, M) will be de-
noted by res^ A , and the lowest common multiple of two positive integers
by 1. c. m. If 6 is a map, then im 8 will indicate the image of 6, and ker 6
the kernel of 0 . Suppose A, B <H, A is abelian and B acts trivially on
M. Then we can also view M as a Z[H/B]-module, and we can make A
into a Z//-module by letting H act via conjugation so that h • a = hah~x

for a e A and h € H; we shall use these well known observations without
further comment in the future.

3. Preliminary results

Most of the lemmas in this section are well known. For the purposes of this
paper, the theory on page 294 of [2] instead of Lemma 3 would be sufficient.

LEMMA 3. Let A be an abelian normal subgroup of the group H, let K —
H/A, let M be a ZK-module, and view A as a ZK-module with K acting
on A by conjugation. Let /eHomZ A :(^4, M) and let

5: H1 (A, M)H = YLomZK(A ,M)^H2(K, M)

be the transgression map associated with the group extension 1 —• A —> H —•
K —• 1. Suppose x '• K x K —* A is a factor set representing the element
in H2(K, A) corresponding to the above extension. Then (after choosing the
notation correctly) -S(f) is an element of H2(K, M) which is represented
by the factor set f%:KxK^M. In particular if f is surjective, then S(f)
is represented by a group extension of the form

1 -• ^ /ke r / -> # / k e r / -H. K -» 1.

PROOF. TO ensure that —<$(/) and fx represent the same element in
H2(K, A), we need to choose the notation correctly, and the notation of [6,
IV.4 and XI.9] will suffice. Let T be a set of coset representatives for A in
H, let ~: H —> K denote the natural epimorphism, and let B(ZH) denote
the (normalized) bar resolution [6, page 114]. Thus Bn(ZH) is the free ZH-
module with free generators {[x{\... IJCJIJC, e H\l} , and / is represented
by any / e Homz/ /(fl,(Zi/), M) such that f([a]) = f(a) for all aeA\l;
we shall define / by /([<**]) = f{a) for all a e A and teT (at ^ 1), and
assume 1 e T. Let d: B2(ZH) -> BX(ZH) be the boundary map defined by

d([x\y]) = x[y]-[xy] + [x]
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[4] Group extensions 111

for x, y e H\ 1. Then S(f) is represented by the factor set y/: K x K —> M
satisfying y/(x, y) = fd([x\y]) for x, y G H (cf. the "connection" of [6,
page 349]). In fact if we write x — ar, y — bs, xy = ct (a, b, c e
A; r, s, t e T), then y/(x, y) - / ( ^ " V " 1 ) . But the factor set x can be
denned by #Qc, y) = rst~x (see [6, page 111]), and we deduce that -S(f)
and fx represent the same element of H (K, M).

Now suppose / is surjective. If fx is represented by an extension of the
form l - » M - » £ - t ^ - » l , then there exists a commutative diagram

1

E

for some group homomorphism 6: H —• E, necessarily surjective, and the
result follows.

LEMMA 4. Let p be a prime, let G be a finite elementary abelian p-group,

and let ( / , , . . . , / „ ) be a k-basisfor Hl(G,k).

(i) If p = 2, then the set {ftufj\l < i,j < n) is a k-basisfor H2(G, k).

( i i ) f d d h h { f f / ? / | / } k
j

(ii) If p is odd, then the set {fjUfj, /?//|l <i<j<n, 1 < / < n} is a k-

basisfor H2(G, k), where 0: Hl(G,k) -> H2(G, k) is the Bockstein map.

In particular if x £ H2(G, k), then resc A x = 0 for all cyclic subgroups A

of G if and only if x = E,<y Kjftu fj for some xa e k •

LEMMA 5. Let G be a free abelian group, and let (fx, ... , fn) be a Z-

basisfor HX{G, Z) . Then the set {ft u / ; | l < / < ; < « } is a Z-basis for

H2(G,Z).

PROOF. Lemmas 4 and 5 follows from the Ktinneth theorem (see [1, page
101] and [5, VI.15]). For information of the Bockstein map, see [1, 2.23].

4. Cup products and group extensions

LEMMA 6. Let p be a prime, let G be an elementary abelian p-group,
and let (/, , f2, ..., /„) be a k-basisfor H1 (G,k). Write K{ = ker / , and
K2 = ker f2. Suppose x € H2(G, k) is represented by the group extension
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(i) / / 6~\KX) and 6~l(K2) are elementary abelian, then x = A/j u / 2 for
some A e k.

(ii) If p is odd, then E has exponent p if and only if x = S,<; A,- -/J- U fi

for some A|;. e k .

PROOF. Suppose 0—1 (ATj) and d~l(K2) are elementary abelian. By Lem-
ma 4 we may write

and

~X(where A,. •, A,- e A:. Since 6~X(KX) is elementary abelian, resG K x = 0 and

we see that A. = ktj = 0 if / ^ 1. Also 0~1(AT2) is elementary abelian,
hence resG K x = 0 and we deduce that A} = A.. = 0 if j / 2 . This proves

fl-
it is easy to show (and is well known) that E has exponent p if and only

if resG A x — 0 for all cyclic subgroups A of G. Thus we obtain (ii) from
Lemma 4(ii).

LEMMA 7. Let G be a free abelian group, let (/ , , . . . , fn) be a Z-basisfor
\G, Z), and let K =

by the group extension
Hl (G,Z), and let K = ker / , n ker f2. Suppose x e H2(G, Z) is represented

1-1(i) If [E,6 \K)] = 1, then x = rfx U /2 wAere drAer r = 0 or r =
±\kerd/E'\.

1 - 1 /(ii) / / ^ = rfx u / 2 w/jere r e Z , r/ie« [E, 0 \K)] = 1.

PROOF. By Lemma 5, write x — Z),<j A,- •/) U / where A,.. e Z, and set
L = ker 6 and ^ . = ker ft (1 < / < « ) .

(i) Since 0~'(.£,) is abelian, resG K x = 0 and we see that A/; = 0 if
i'• ^ 1, and then 0~'(^:2) abelian imples that resG K x = 0> and hence
Aj. = 0 if > ^ 2 . Thus x = rf\V f2 for some r e Z. Suppose r = ± 1 . If
E' ^ L, then there exists a prime /> such that E' C L" . Let n:Z^> Z/pZ
denote the natural surjection. Since {nfx, . . . , 7r/n) is a Z//?Z-basis for
/ / ' (G , Z/pZ), it follows from Lemma 4 that rc/j u nf2 / 0, and hence

0 -» Z//?Z — £ / L p -• G -» 1

is nonsplit. This contradicts E' C If . Therefore E' — L.
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[6] Group extensions 113

In general if 0 / r e Z, let \ir: Z —> Z denote multiplication by r . Then
we have a commutative diagram

0

for some map <p , where the top sequence represents fx U f2 and the bottom
sequence rfx u f2 • This shows that \L/E'\ = \r\, and (i) follows.

(ii) Since resK / ,U/2 = res^ / ,U/2 = 0, we see that 6~\KX) and d~\K2)
are abelian, and hence [d~\Kx)d~l(K2), d~l(K)] = 1. But [a,bf =
[as, b] for a, b e E, s e Z, and 0~'(iiri)0~1(A^2) has finite index in E,
and the proof of (ii) is easily completed.

PROOF OF THEOREM 1. Consider the five term exact sequence associated
with the group extension 1 —> G* —• G —> G/G* —> 1:

0 -• H\G/G* , k) £ Hl(G, k) ^ Hl(G*, kf A H2{G/G*, fc) -^ / / 2 (G, fc)

where 0 and <p are the inflation maps, and S is the transgression map.
C h o o s e J , g e H \ G / G * , k ) s u c h t h a t 0 ( 7 ) = / , 6(g) = g . I f f u g = 0 ,
then / u g = <5(M) for some M € H\G* , kf; note that w ̂  0, so w is
onto and G*/L = k where L = ker M . Using Lemma 3, we see that 8(u) is
represented by a group extension of the form

0 - • A; -» G / L -5f G/G* - • 1

for some homomorphism 7t. Since resG ,G- ^ g - / U ~g = 0, it follows that

n~x(H/G*) is elementary abelian, and hence H* C L. Similarly K* c L
and we deduce that H*K* ^ G*.

Conversely suppose H*K* ^ G*. Choose a subgroup M such that / /*#*
c M < G* and M is maximal under these conditions. Then M<G and
G*/M = k because [G, G*] = [HK, G*] = [H, G*][K, G*] c i/*A:*. Since
H/M and ^T/Af are elementary abelian, application of Lemma 6(i) shows
that

0 — k — G/M — G/G* — 1

is represented by Xf u ~g for some l e f c . Now G/M is ncrt elementary
abelian, hence X / 0 and it follows from Lemma 3 that / U g e im<J.
Therefore f\Jg = 0 which proves (i).

Now suppose p is odd and let

y: H\G/G* , k) A H\G/G* , k) -» H2(G/G*, k)
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be the map induced by the cup product. Then y is a monomorphism by
Lemma 4(ii) and q>y = y{6 A 6), and hence

ker y = ker y{6 A 6) = ker <py = ker <p n imy = im(5 n \my

because 6 is an isomorphism and ker (p = im d. Since <5 is a monomor-
phism, we deduce that

ker y s 11; e Hl{G*, kf\ 5{v) = £ V - u fj for some Kj e k\ •

If u # 0 and N = kern , then <S(i>) is represented by an extension of the
form

0 -> it -»(7/JV -> (?/G* -» 1

by Lemma 3. It now follows from Lemma 6(ii) that G/N has exponent p
if and only if d(v) = X),<, ^, ,^ u fj f ° r some ktj e A:. Therefore ker y =
Hom(G*/[G*, (?]( / , k). But G is finitely generated, hence G* is finitely
generated and we conclude that kery = G*/[G*, G]GP as required.

The case p = 2 is similar but easier; one uses Lemma 4(i) instead of
Lemmas 4(ii) and 6(ii). Since this argument is identical to that of [4, Section
3], we omit it.

PROOF OF THEOREM 2. Consider the five term exact sequence associated
with the group extension 1 —> G* —• G —* G/G* —> 1:

0 -• Hl(G/G* ,Z)l*Hl(G,Z)-+ HX{G*, if

where 8 and <p are the inflation maps, and S is the transgression map.
If y: Hl(G/G*, Z) A Hl{GIG*, Z) -• H2(G/G*, Z) is the homomorphism
induced by the cup product, then y is an isomorphism by Lemma 5, and
tpy = y(6 A 6). Since 6 is an isomorphism, <5 is a monomorphism and we
deduce that

kery = kerj>(0 Ad) = ker <py = ker <p = im<J

(because (7 is finitely generated implies G*/[G*, (?] is finitely generated)
which proves (i). The argument of this section is identical to that of [4,
Section 2].

Now let (e, h) be a Z-basis for H\G/H, Z). By anticommutativity of
the cup product eue = huh = 0, hence / U g = ±reuh , so we may assume
that r = 1 and that ( / , ~g) is a Z-basis for H\G/H, Z). Choose a Z-basis
( / , , . . . , /„) of Hl(G/G*, Z) such that 0(/,) = / and 8(f2) = g. Suppose
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fug has finite additive order s. Then there exists u e Hom(G*/[G* ,G],Z)

such that 5{u) = sfx u / 2 . Note that u ^ 0 so if L = ker u, then G*/L s Z .

Let v: G* —> Z be an epimorphism with kernel L , so u = tv for some f e Z .

Then f<5(u) = j / , u / 2 , thus f|.s by Lemma 5 and we deduce that t = ± 1 .

Also application of Lemma 3 shows that d{v) is represented by an extension

of the form

O^Z^ G/L-+G/G* -* 1.

Therefore [H, G] C L and \G*/G'L\ = s by Lemma 7. But it is easy to show

that G'/[H, G] is cyclic, hence L = T and we conclude that \G*/G'T\ = s.

Conversely suppose G'/[H, G] is infinite. Since G'/[H, G] is cyclic, it

follows that G*/T = Z. If w: G* -> Z is an epimorphism with kernel T,

then (5(to) is represented by an extension of the form

0 - • Z - • G/T -» G/G* - f 1

by Lemma 3. From Lemma 7(i), this extension also represents ±// j U f2

where / = \G*/G'T\. It follows that lfUg = 0 and hence / u g has finite

order. This complete the proof of Theorem 2. ,
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