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Variations on a Paper of Erdős and
Heilbronn

In celebration of the one hundredth anniversary of the birth of Hans Arnold Heilbronn

P. D. T. A. Elliott

Abstract. It is shown that an old direct argument of Erdős and Heilbronn may be elaborated to yield a

result of the current inverse type.

Let p be a prime, a1, . . . , ak distinct non-zero residue classes mod p, and N a

residue class mod p. Let

F(N) = F(N; p; a1, . . . , ak)

denote the number of solutions of the congruence

e1a1 + · · · + ekak ≡ N (mod p),

where the e1, . . . , ek are restricted to the values 0 and 1.

In their 1964 paper on the addition of residue classes mod p, Erdős and Heil-

bronn [2] establish two theorems.

Theorem I F(N) > 0 if k ≥ 3(6p)1/2.

Theorem II F(N) = 2k p−1(1 + o(1)) if k3 p−2 → ∞ as p → ∞.

The proof of Theorem I is elementary, resting in part on a result of Cauchy, re-

discovered by Davenport [1], that if A, B are sets of distinct residue classes mod p,

of respective cardinalities |A|, |B|, then the sums formed by taking an element from

each of A and B contain at least min(|A| + |B| − 1, p) distinct classes.

Featured in their proof is the maximum of a function taken over all the u-element

subsets of a (possibly relabelled) subset a1, . . . , a2u of the a j , 1 ≤ u ≤ k/2.

Erdős and Heilbronn remark that Theorem I is nearly best possible. Their conjec-

ture that the appropriate restriction should be k > 2p1/2 was justified by Olson [4].

In this paper I shall concentrate on the second of their theorems, a result that they

show to be, in a sense, best possible.

If we set A =
∑k

n=1an, then

F(N) = p−1
p−1
∑

r=0

e−2πirN
k
∏

n=1

(1 + e2πiran/p)

= p−12k
p−1
∑

r=0

eπir(A−2N)/pβr,
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where

βr =

k
∏

n=1

cos(πran/p).

The aim of Erdős and Heilbronn, achieved in their Lemma II.5, is to establish that,

as p → ∞ and kp−2/3 → ∞, we have
∑p−1

r=1 |βr| → 0, from which Theorem II is

immediate.

If k is a multiple of 4 and the an occur in pairs an, p − an, then

F(0) = p−12k
(

1 +
p−1
∑

r=1

βr

)

,

every βr is real and positive, and the property β1 + · · · + βp−1 → 0 is necessary.

Erdős and Heilbronn set Λ = log p, assume k < p2/3
Λ, and define

σ(r) = σ(r, Sm) =

m
∑

n=1

(sin(πran/p))2,

γ(r) = γ(r, Sm) = σ(r, Sm)(m3 p−2)−1,

where r 6≡ 0 (mod p) and Sm denotes an m-element subset of the a j , possibly rela-

belled.

Supposing there exists an r such that σ(r, Sk) < Λ, they define

µ = min γ(s, Sm)(Λ6 + k − m)

taken over all s 6≡ 0 (mod p) and subsets Sm of Sk with k/2 ≤ m ≤ k. Since the γ(r)

are bounded below uniformly in r and Sm, say by γ ≥ γ0 > 0, any m for which µ is

attained exceeds k − γ−1
0 Λ

7.

They then fix a pair s, Sm for which µ is attained and establish a sequence of five

lemmas of which the first two follow.

Lemma II.1 If σ(r, Sm) < Λ, r 6≡ s (mod p), then there exist integers u, v such that

vr ≡ us (mod p), (u, v) = 1, 1 ≤ v ≤ Λ, 1 ≤ u ≤ Λ
2.

Further, assuming the residue classes san, 1 ≤ n ≤ m, are represented by numbers

in the interval [−p/2, p/2], these numbers are divisible by v with at most 2Λ
3m3 p−2

exceptions.

Lemma II.2 v = 1 under the conditions of Lemma II.1.

It might be said that the tactic used by Erdős and Heilbronn was to prune the an

until they reached a subset Sm, with m/k not too small, for which the small σ(r, Sm)

have a structure adequate to an estimate from below.

In fact, the minimality of µ does not enter into play until the second of these

results, and it is worthwhile to relieve their combined argument of its particularities.

I begin again. For an odd prime p and distinct residue class representatives a j ,

j = 1, . . . , k, define

σ(r) = σ(r, Sk) =

k
∑

j=1

(sin πra j/p)2.
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Lemma A Assume that for distinct non-zero residue classes r and s (mod p), we have

σ(r) ≤ ∆ and σ(s) ≤ ∆, where k ≥ max(14, (32p)4/7
∆

3/7). Then there are integers

u, v, 1 ≤ u ≤ λ2, 1 ≤ v ≤ λ, (u, v) = 1, with λ = 16pk−3/2
∆

1/2, for which rv ≡ su

(mod p).

Proof Without loss of generality s = 1 and |a j | < p/2 for all j.

By Dirichlet’s box principle, if λ ≥ 1, then there are integers u, v, (u, v) = 1,

1 ≤ v ≤ λ, 1 ≤ u ≤ pλ−1, such that rv ≡ su (mod p). Set vr = su + qp.

By hypothesis (sin πra j/p)2 ≥ 4∆/k cannot hold for more than k/4 of the a j ;

likewise, (sin πa j/p)2 ≥ 4∆/k. Set ρ = (∆/k)1/2. Then there are at least [(k + 1)/2]

integers n for which |an| < pρ, |ran − τn p| < pρ hold, the τn integers. With hn =

−qan + vτn, we see that

|uan − hn p| < vpρ ≤ λpρ.

The interval [−pρ, pρ] contains at least [(k + 1)/2] of the an; thus there exists a

pair a ′, a ′ ′, such that 0 < a ′ ′ − a ′ ≤ 2pρ(k/2 − 1)−1 < 8pρ/k.

By subtraction, there is an integer h such that u(a ′ ′ − a ′) − hp| < 2λpρ. Since

u(a ′ ′ − a ′) < pλ−18pρk−1, if 2ρλ + λ−18pρk−1 ≤ 1, then h = 0. For example, if

we set λ = 16pρk−1, then 2ρλ = 32pρ2k−1
= 32p∆k−2 ≤ 1/3.

Thus h = 0 and u ≤ u(a ′ ′ − a ′) < 2λpρ.

Consider now how many integers w, whatsoever, can satisfy |w| < pρ and for

some integer t , |uw − t p| < λpρ. For a fixed t , there are ≤ 1 + 2λpρu−1 choices for

w. Moreover, |t| < p−1(λpρ + upρ). Altogether, the number of values for w cannot

exceed

(1 + 2λpρu−1)(1 + 2(λ + u)ρ) = 1 + 2λρ + 4λpρ2 + 2λpρ(1 + 2λρ)u−1 + 2uρ.

As arranged earlier, 2λρ ≤ 1/3. Moreover, from the improved bound on u, 2uρ ≤
4λpρ2. Then 8λpρ2

= 8.16p2k−1(∆k−1)3/2 ≤ k/8 from our upper bound on ∆.

Further, if u > λ2, then

2λpρ(1 + 2λρ)u−1 < 3λpρu−1 < 3pρλ−1
= 3k/16.

Our upper bound is thus less than 3/2 + 3k/16 + k/8 < k/2− 1. This contradicts the

existence of at least [(k + 1)/2] of the restricted a j .

Hence u ≤ λ2, and the lemma is justified.

Under the conditions on k, ∆ in Lemma A, there are at most (16pk−3/2
∆

1/2)3

values of r for which σ(r) ≤ ∆. This corresponds to only the first part of Lemma

II.1, but it is already enough to furnish Theorem II.

For r 6≡ 0 (mod p), we have

|βr| ≤
k
∏

n=1

| cos(πran/p)| ≤
(

k−1
k

∑

n=1

(

cos(πran/p)
) 2

) k/2

=
(

1 − k−1σ(r, Sk)
) k/2 ≤ exp

(

−σ(r, Sk)/2
)

.
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Considering those r for which 2 jα ≤ σ(r) ≤ 2 j+1α, j = 0, 1, . . . , where α is a

minimal value of σ(r), we have

p−1
∑

r=1

|βr| ≤ (16pk−3/2α1/2)3
∞
∑

j=0

23( j+1)/2 exp(−2 j−1α) + p exp(−k7/3(32p)−4/3).

Here,

α ≥ 2
[k/2]
∑

m=1

4(m/p)2 > (8/3)p−2[k/2]3 > k3/(5p2).

If k3 ≥ p2, then

F(N) = 2k p−1
(

1 + O
(

exp(−k3/(10p2)) + exp(−2−7 p2/9)
)

)

and Theorem II is evident.

Since there has been no application of minimality, we may interchange the rôles

of r and s and obtain integers u1, v1, (u1, v1) = 1, 1 ≤ u1 ≤ λ2, 1 ≤ v1 ≤ λ for which

u1r ≡ v1s (mod p).

Eliminating between the pair of congruences involving r and s gives vv1 −uu1 ≡ 0

(mod p). Moreover, |vv1 − uu1| ≤ max(1, λ4) < p provided ∆ < (16)−2k3/2 p−3/2.

From what we have already required of ∆, k > 4p1/4 will certainly secure this. Hence

vv1 = uu1, u divides v1 and satisfies the stronger bound u ≤ λ.

I now enjoin the ideas of Lemma II.2 and, as the account of that lemma by Erdős

and Heilbronn is abbreviated, elaborate.

Lemma B If k ≥ 28, ∆ ≤ min(k7/3(27 p)−4/3, 211k3 p−3/2), then the reduced residue

classes r (mod p) for which σ(r, Sk) ≤ ∆ lie in a progression us, 1 ≤ u ≤ λ1 with

λ1 = 211/2k−3/2
∆

1/2 p.

Individual σ(us, Sk) may still exceed ∆.

Proof For a positive real τ to be chosen later, let m, T give a minimal value δ for

σ(r, B)(τ + k − r) taken over all subsets B of Sk with a cardinality |B| ≥ k/2 and all

reduced residue classes r (mod p).

Without loss of generality, there is a t for which σ(t, Sk) ≤ ∆. Hence,

σ(m, T)(τ + k − |T|) ≤ σ(t, Sk)τ ≤ ∆τ .

In particular, σ(m, T) ≤ ∆. Moreover, for k ≥ 28, σ(m, T) ≥ k3(40p2)−1, so that

|T| ≥ k − 40p2
∆τk−3 + τ .

Suppose there is an r 6≡ m (mod p) for which σ(r, T) ≤ ∆. We apply Lemma A

and, under the slightly stronger restriction on ∆ obtained by replacing k with k/2,

obtain integers u, v, 1 ≤ u ≤ λ1 (which is λ with k replaced by k/2), 1 ≤ v ≤ λ1,

(u, v) = 1, for which rv ≡ um (mod p).

Of the a j in T, at most λ2
1∆ satisfy (sin πra j/p)2 ≥ λ−2

1 , and a similar number

(sin πma j/p)2 ≥ λ−2
1 . The members of the remaining set, which we call Y , satisfy

||ra j/p|| < (2λ1)−1, ||ma j/p|| < (2λ1)−1.
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Again we may assume m = 1 and |a j | < p/2. Then |a j | < p(2λ1)−1 and, in the

notation of Lemma A, |ra j − τ j p| < p(2λ1)−1. Therefore,

|ua j − h j p| < vp(2λ1)−1 ≤ p/2 and |ua j | < λ1(p2λ1)−1
= p/2.

Hence, h j = 0, i.e., vτ j = qa j . Since rv = mu + qp = u + qp and (u, v) = 1, we have

(v, q) = 1 and v | a j . This is the second part of Lemma II.1.

Consider now

σ(v̄,Y ) =
∑

a j∈Y

(sin πv−1a j p−1)2,

where vv̄ ≡ 1 (mod p), and we apply that for integers a j in Y , p−1(vv̄ − 1)v−1a j is

an integer. Typically,

| sin(πv−1a j p−1)| ≤ πv−1|a j p−1| ≤ π(2v)−1| sin(πa j p−1)|.

As a consequence,

σ(v̄,Y ) ≤ (π/(2v))2σ(1,Y ) ≤ (π/(2v))2σ(1, T),

and

σ(v̄,Y )(τ + k − |Y |) ≤ (π(2v)−1)2(1 + τ−1(|T| − |Y |))σ(1, T)(τ + k − |T|).

Since |T| − |Y | ≤ 2λ2
1∆, if v > 1 and we choose τ = 6λ2

1∆, then

(π/(2v))2(1 + τ−1(|T| − |Y |)) < 11
12

.

This will contradict the minimality of δ unless |Y | < k/2 and, in particular, k/2 <
40p2τk−3. However, with our choice of τ , the first bound on ∆ ensures that this last

expression does not exceed 2−9k.

Thus v = 1. Moreover, if r 6≡ us (mod p), 1 ≤ u ≤ λ1, then σ(r, Sk) ≥
σ(r, T) > ∆.

Lemma B is established.

As a corollary, if k ≥ 26 p4/7(log p)3/7, then F(N) ≪ 2kk−3/2. To this end we need

only that
∞
∑

j=0

(2 jα)1/2 exp(−2 jα)

is bounded uniformly in α > 0. For α ≥ 1, this is straightforward. If α < 1 and we

define the integer w by 2αw ≤ 1 < 2w+1α, then the terms with j ≥ w may also be

readily treated. The remaining terms contribute

≤ α1/2
w−1
∑

j=0

(
√

2) j
= α1/2((

√
2)w − 1)(

√
2 − 1)−1 ≤ 3(2wα)1/2 ≤ 3.

In a subsequent treatment of concentration functions using Fourier analysis, Ha-

lász [3], yields the concentration estimate implicit in Lemma B subject to the weaker
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condition (say) ∆ ≤ k/4 from which the bound F(N) ≪ 2kk−3/2 follows uncondi-

tionally. The method, which is flexible and short, again employs results of Cauchy–

Davenport type, but does not characterize those r for which σ(r, Sk) is small. For

a related combinatorial treatment of such concentration estimates, see Sárközy and

Szemerédi [5].

Adapting the further argument of Erdős and Heilbronn to the circumstances of

Lemma B and without loss of generality assuming s = 1, at most k/2 of the a j in Sk

satisfy (sin(πa j/p))2 ≥ 2k−1
∆. For the remaining sequence, W say,

∑

a j∈W

(sin(πa j/p))4 < 2k−1
∆

2.

Since

(sin(tα))2 − (t sin α)2 ≪ (t2 + t4)(sin α)4

holds for all real t and α, |α| ≤ π/2 (the solo upper bound factor t4 in Erdős and

Heilbronn is untenable for small t), there is a lower bound estimate

σ(u, Sk) ≥ u2(σ(1,W ) − c0u2k−1
∆

2) ≥ c1u2(k3 p−2 − c2u2k−1
∆

2)

for all integers u, 1 ≤ u ≤ λ1; and a bound σ(r, Sk) > ∆ for the remaining r 6≡ 0

(mod p).

This is the essential content of Lemma II.4 of Erdős and Heilbronn and is again

adequate to deliver Theorem II.

Having symmetrized the argument of Erdős and Heilbronn, we may arrange for

the an to act upon the r.

Lemma C If there are m reduced classes r (mod p) for which σ(r, Sk) ≤ ∆, then

after removing at most

28 + max((27 p)4/3m−4/3, 211 p3/2m−2)∆

members of Sk, the remaining an are contained in an arithmetic progression us (mod p),

1 ≤ u ≤ min(2m−1/3 p1/3, p1/4).

Proof There are rt , 1 ≤ t ≤ m, such that

m
∑

t=1

k
∑

n=1

(sin(πrt an/p))2 ≤ m∆.

Let M > 0 and denote the set of classes rt (mod p) by R. Interchanging the order of

summation, we obtain at least k − m∆/M of the a j for which σ(a j , R) ≤ M.

We apply Lemma B to this dual system. If k − m∆/M ≥ 28 and

M ≤ min(m7/3(27 p)−4/3, 2−11m3 p−3/2),

then our remaining a j lie in an arithmetic progression

us (mod p), 1 ≤ u ≤ 211/2m−3/2 pM1/2.

Choosing M to effect equality with its upper bound, we may rapidly complete the

argument.
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No attempt has been made to sharpen this result, which becomes non-trivial if k

is below approximately p1/4.

Underlying Lemma C is the notion that the dual of the operator

(z j) ∈ C
k →

( k
∑

r=0

z j(sin(πrt a j/p))2
)

∈ C
m

with L∞ norms is the operator

(yt ) ∈ C
m →

( m
∑

t=1

yt (sin(πrt a j/p))2
)

∈ C
k

with L1 norms.

We have reached a result that is (in current parlance) of inverse type.

“Read the masters!” said Davenport. What excellent advice.
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