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1. Introduction. Riemann's method for solving the Cauchy problem for hyperbolic
differential equations in two independent variables has been extended in a number of papers
[4], [5], [2] to the wave equation in space of higher dimensions. The method, which consists
in the determination of a so-called Riemann function, hinges on the solution of a characteristic
value problem. Accordingly, if Riemann's method is to be used in solving a characteristic
value problem, one will have to consider another characteristic value problem and thus the
process becomes circular. This difficulty was first overcome by Protter [7] in solving the
characteristic value problem for the wave equation in three variables. There he employed a
variation of Riemann's method developed by Martin [5]. Martin's result was later extended
by Diaz and Martin [2] to the wave equation in an arbitrary number of variables. This made it
possible to extend Protter's result to the wave equation in space of higher dimensions [8].

In this paper we show how the modified Riemann's method developed in [5] can be used
to obtain an explicit solution to the characteristic value problem and the Cauchy problem for
the damped wave equation

" r<-"x*-« w -4cu = 0 (1)

in three variables. At the end of the paper we make a remark concerning the extension to the
case of the damped wave equation in an arbitrary number of variables.

2. The characteristic value problem. For convenience we suppose that the initial condition
is prescribed on the direct characteristic cone

K = t2-x2-y2 = O («^0)

with vertex at the origin, so that

u(x,y,r) = ^x,y), r = (*2 + y2)*. (2)

The function ^i{x,y) will be assumed to have continuous derivatives up to at least the second
order. We then seek a solution of (1) at points interior to K = 0 which assumes the prescribed
values (2).

First we introduce the new coordinates a, /?, <f> defined by the relations

x = rcos</>, y = rsin<j), t = $(a+P), (3)

with r = $(jx-p). The coordinates a, /? are called characteristic since a = const., ft = const.
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represent characteristic cones with vertices on the /-axis. Under the transformation (3),
equation (1) becomes

«">—-&«£Sr—ft <4>

We associate with this the equation

M(v) = vaP+^j)-cv = 0 (5)

for a function v(<x, /?) depending only on the two characteristic coordinates. This equation
plays the role of the adjoint equation in our investigation.

If we write

B= -(uxva + cuv), C = ' ' n
(CC-/J)2 *'

it is easy to verify that

Aa+B0 + C<j> = (vf - vx)L(u)+(uf - ux)M(v).

Thus, if D is any domain in (a, ft, <j>) space bounded by a surface S, it follows by Green's
theorem that

/ = | I (Avx + Bvp + Cv+) dS = I I I [(»„ - va)L(u)+(up - ua)M(v)] d<x dp d<j>, (6)

where va, vp, v̂ , are the components of the unit outward normal to S.
It suffices to find the solution at points on the axis of the cone K = 0, for once the solution

is obtained there we may employ a Lorentz transformation to obtain the solution at all
interior points of the cone (see [6, p. 371]). Thus let (0,0, T) (T ^ 0) be the point at which we
wish to determine the solution. Denote by D the domain bounded by the characteristic half
cones

D:

Regarding (a,/?, $) as a rectangular coordinate system, we see that under the transformation of
coordinates (3), D is transformed into the triangular prism

T:

in which the cone K= 0 becomes the plane ft = 0, and the point (0,0, T) appears as the edge
a = P = T.

Now if u is a solution of (1) and if v is any regular function yet to be determined such that
M(v) = 0, then formula (6) applied to the domain T yields

n ^ » 0 GC™~T OE^O ® = Q iff ~ 2it
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The last two integrals above taken over the faces tj> = 0, </> = 2n cancel each other since u must
be periodic of period 2% and the normals to these planes have opposite signs. Therefore, when
the surface integrals in the first three terms are written out explicitly, we obtain

[_uavx + cuv]fi=odad<l)+\ [ u^^ + c«t ;] ( I = td /?^
Jo Jo Jo Jo

f2* f *
(7)

f2* f *
- [uava

Jo Jo

3. Determination of u(<x, /?) and the solution. We now try to determine the " Riemann
function " u(a, /?) satisfying the associate equation (5) and such that v and vfi both vanish when
a = T. Choose t; = V{9), where 9 = ( t - a ) ( T - 0 ) (see [9], p. 229). Then (5) becomes

M(v) s v + ^ \ - c v = 9V"+iV'-cV= 0,

where primes indicate differentiation with respect to 9. The last equation above is a Bessel
equation whose two independent solutions are z*/j.(z) and z * / . ^ ) , where Ip(z) denotes the
modified Bessel function of order p and z = 2(c9)i. By a well known relation, the above
solutions can be written as constant multiples of sinhz and coshz, respectively.

For our purpose we take v = sinhz, z = 2[C(T—<X)(T—/?)]*. It is clear that v and vfi both
vanish when a = T. On a = /?, we note that r = 0, a = /,

*("„ ~ v,) = 0, i(p. + » , ) = - c* cosh [2C*(T - 0 ] ,

and on /? = 0 we have

u = sinh[2{c(T-a)r}*],

Moreover, from (3) we note that

"a = K«i + »r) and up = K«, - «,)•

Substituting these values in (7), we then obtain

Jo Jo
/*2n ("t (*2it ("t

-c*M,cosh[2c*(T-0]*<ty+2
Jo Jo Jo Jo

The integration on the right above is performed along the /-axis. In the integral on the left, u
and hence ua are known on /? = 0. Thus, after performing an integration by parts in the first
integral on the right and rearranging terms, we have finally the formula
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W(0,0,T) = «K0,0) cosh (2C*T)

.if
This gives the solution of the characteristic value problem (1), (2) for points on the /-axis. For
a point (<!;, i\, x) inside K = 0 not lying on the f-axis we apply a Lorentz transformation [6, (1.6)]
which takes (^,r\,x) into (0,0,(T2 — ^2—?/2)*) and then use (8). That the solution obtained
actually satisfies (1), (2) may be established in a manner similar to that performed by d'Adhemar
[1].

When c = 0, (8) coincides with (1.4) of [6] provided we note that 2r = a on /? = 0.

4. The Cauchy problem. It is well known that the solution to the Cauchy problem

u(x, y, 0) =f(x, y), u,(x, y, 0) = g(x, y) (?)

for the damped wave equation (1) is given (see for example [3], p. 209) by

(10)

where

-n
Jo Jo

h(£ + r cos <t>, r\ + r sin <f>) cosh 2 [ C ( T 2 — r 2 ) ] *~r '
with(jc—£)2+(y—rj)2 = r2. In order to be able to compare this with the solution to be obtained
here, we shall rewrite (10) as follows.

On setting r = px and differentiating under the integral sign, we find that

Ac

)o Jo

After an integration by parts in the first term and a little simplification, this reduces to

d C2" ft/,cosh2[c(T2-r2)]*

fa ' Jo Jo ( T 2 - ' " 2 ) *
Thus the solution (10) takes the form

1 f2" P rfr+ri
-—— I I —j j

2rc J o J o (T ~r
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Now, to solve the problem (1), (9) by Riemann's method, we introduce the coordinates
(a, p, <f>) denned by the relations

x = S+±(a-£)cos<£, y = r,+it(oi-P)sin<f>, t = i(a+p). (12)

If we write r2 = (x—(,)2 + (y—q)2, then we have r = i(<x—P). Under (12) the characteristic
retrogade cone

(t-r)2-(x-O2-(y-r,)2 = 0 (x^t^O)

is transformed in the (a, /?, <f>) space into the wedge

W: 0 ̂  a g T, -a^P^a, 0^(f>^2n,

with the face a = — /? corresponding to the plane t = 0 on which the initial data are prescribed.
Applying formula (6) over the wedge JFand using the same argument as in Section 2, we obtain

Jo J - i Jo Jo

Jo Jo
Again we take v = sinhz, z = 2{C(T—<X)(T—/?)}*, so that the first term above drops out.

On a = — P, where the values of u are known, we note from (9) and (12) that

and

«/r = K«," «,) = ««-/,)•
Further, a~—p implies that r = a so that

c*r cosh [2{c(T2-r2)}*]
*».-»>,) (T2-r2)*

and

Substituting these values in (13), we finally obtain

which is (11).

5. Concluding remark. For the damped wave equation in more than three variables, the
same problems may be solved by using the extension of Martin's result given by Diaz and
Martin [2]. In this case the associate equation (5) becomes

Val>+(^pJ^Va~V^~CV = 0)
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where n denotes the number of space variables, and the corresponding Riemann function
v(a,P) is 2(n" 1)/2/(n_i)/2(z). However, the solution w(0,T) or M(^'T), Z = (Zl,...,Zl), must be
obtained by solving an integral equation of Volterra type involving a Bessel function as a
kernel.
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